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Abstract: Terrestrial vegetation dynamics are closely influenced by both hydrological process
and climate change. This study investigated the relationships between vegetation pattern and
hydro-meteorological elements. The joint entropy method was employed to evaluate the dependence
between the normalized difference vegetation index (NDVI) and coupled variables in the middle
reaches of the Hei River basin. Based on the spatial distribution of mutual information, the whole
study area was divided into five sub-regions. In each sub-region, nested statistical models were
applied to model the NDVI on the grid and regional scales, respectively. Results showed that the
annual average NDVI increased at a rate of 0.005/a over the past 11 years. In the desert regions, the
NDVI increased significantly with an increase in precipitation and temperature, and a high accuracy
of retrieving NDVI model was obtained by coupling precipitation and temperature, especially in
sub-region I. In the oasis regions, groundwater was also an important factor driving vegetation
growth, and the rise of the groundwater level contributed to the growth of vegetation. However,
the relationship was weaker in artificial oasis regions (sub-region III and sub-region V) due to the
influence of human activities such as irrigation. The overall correlation coefficient between the
observed NDVI and modeled NDVI was observed to be 0.97. The outcomes of this study are suitable
for ecosystem monitoring, especially in the realm of climate change. Further studies are necessary
and should consider more factors, such as runoff and irrigation.
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1. Introduction

Terrestrial vegetation plays a key role in energy, water, and biogeochemical cycles, while variation
in vegetation can significantly influence atmospheric and hydrological processes. Vegetation is
a sensitive indicator of global change and can also be a natural link between the atmosphere, land
surface, soil, and water [1,2]. Changes in vegetation cover are influenced by climate change, human
activities, and the atmospheric CO2 fertilization effect [3–5]. It is necessary to explore the response
mechanism of vegetation dynamics to hydrological processes and climate change.

Vegetation emergence and senescence are closely related to characteristics of the lower atmosphere,
including the annual cycle of weather pattern shifts, temperature and precipitation [6]. In particular, the
amount and duration of precipitation and temperature play a significant role in controlling vegetation
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development [2,7–9]. During the last decades, the global average land surface air temperature has
been increasing systematically in the northern middle and high latitude [10]. Elevated air temperature
increased plant growth by lengthening the growing season [11], enhancing photosynthesis, and
altering nitrogen availability by accelerating decomposition or mineralization. Precipitation is the
dominant controlling climatic factor in water-limited, semi-arid and arid regions such as the northern
China [10]. The increase in precipitation contributes to the growth of vegetation. Several studies
have reported relationships between vegetation indices and precipitation and temperature [3,12–17].
However, most of these studies focused solely on either precipitation or temperature for vegetation
models, thereby resulting in low precision and low correlation coefficients between vegetation
indices and climatic variables [17]. For instance, Ichii et al. (2002) found a weaker relationship
between vegetation growth and precipitation [18], while Nicholson et al. (1990) reported a weaker
relationship between NDVI and precipitation, indicating a nonlinear overall relationship [19]. However,
apart from the influence of climatic change, vegetation is also strongly related to the groundwater
table level (GTL) in arid and semi-arid regions [2,20–22]. Groundwater is a key impact factor in
sustaining the ecological environment, by supplying soil moisture through capillarity for maintaining
the root system. The shallower the groundwater depth the more available soil moisture, and vice
versa [22]. Many investigators have also reported the relationship between vegetation and groundwater
availability [2,21]. For instance, Jin et al. (2016) found a linear correlation between NDVI and
groundwater depth in the Qaidam basin [2]. The distribution of GTL is becoming more heterogeneous
in the middle reaches of the Hei River as a result of increasing cultivated land area and runoff from
Yingluoxia station [21]. The distribution of vegetation is also highly heterogeneous and depends upon
multiple factors. In this study, different statistical tools, as well as the joint entropy method, were
employed in order to understand the relationships between NDVI and precipitation, temperature, and
GTL. This will be necessary for investigating the relevance of coupling variables.

The joint entropy expresses the total amount of uncertainty contained in the union of events [23]
either in a linear or nonlinear system [24] and has been employed for various purposes. For instance,
Li et al. (2012) employed joint entropy to design appropriate hydrometric networks [25], while
Mishra et al. (2012) employed the entropy theory to overcome the nonlinear relationship between
precipitation and vegetation, and further identified the downscaling method yielding higher mutual
information [23]. Entropy theory has also been applied in ecological studies [5,17,26,27]. For instance,
Sohoulande, Djebou and Singh (2015) employed joint entropy to retrieve vegetation growth patterns
from climatic variables. However, this study emphasizes the mutual information of NDVI and the
influencing factors.

In this paper, the mutual information of NDVI was investigated by coupling cumulative
precipitation, the average temperature of growing season, and GTL. To that end, the study area was
divided into 5 sub-regions, based on 3 spatial distributions of mutual information. In each sub-region,
NDVI was modeled using nested statistical models at the grid and regional scales, respectively.

2. Methodology

2.1. Trend Analysis

Trends for each pixel were represented to reflect the characteristics of vegetation cover over
different periods of time [28]. The rate of change of NDVI was calculated as [29].

θslope =

n×
n
∑

i = 1
i× NDVIi −

n
∑

i = 1
i

n
∑

i = 1
NDVIi

n×
n
∑

i = 1
i2 − (

n
∑

i = 1
i)2

(1)

where θslope is the slope of the trend line of annual NDVI; i represents the years; n is the time span; and
NDVIi is the NDVI value for the i-th year.
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θslope describes the trend in the annual NDVI within the study area. If θslope > 0, the NDVI
increases; or else, the NDVI decreases (θslope < 0) or remains constant (θslope = 0).

2.2. Joint Entropy and Mutual Information

Mutual information was employed to explore the relationship between NDVI and influencing
factors. Considering a random variable X, for each value of X, xi represents an event with
a corresponding probability of occurrence, pi. The entropy H(X) can be expressed as:

H(X) = −
n

∑
i = 1

pi log2(pi) (2)

Where i means the ith event. The logarithm is based on 2, because it is more convenient to use than
logarithms based one or 10, however, the base can be taken as other than 2 without alteration [24].
The entropy is thereby measured in bits. The probability density function (PDF) of variable X is
obtained using discrete intervals for the values of X. The discrete PDF is defined for n equal-width
bins defined for the range of X [17,24,30]. The entropy H(X) is a measurement of information or
uncertainty [24]. Similarly, the joint entropy can be computed for a joint probability distribution of
two or more variables [24,25]. Specifically, with three variables, the joint PDF is computed based on
a three-dimensional contingency analysis as illustrated in Table 1. Considering the three variables
precipitation, temperature and NDVI, the process generates a discrete PDF made of n3 discrete
probabilities such that:

n

∑
i = 1

n

∑
j = 1

n

∑
k = 1

p(P = Pi, T = Tj, NDVI = NDVIk) = 1 (3)

The joint entropy of the three variables can be defined as:

H(P, T, NDVI) = −
n

∑
i = 1

n

∑
j = 1

n

∑
k = 1

p(Pi, Tj, NDVIk) log2[p(Pi, Tj, NDVIk)] (4)

where n means the number of events.

Table 1. Illustration of a three-dimension contingency employed to compute the joint PDF. Consider 3
variables X, Y, and Z.

Variables
Discrete Probabilities

X = {X1,X2} Y = {Y1,Y2} Z = {Z1,Z2}

X = X1

Y = Y1
Z = Z1 p(X = X1, Y = Y1, Z = Z1)
Z = Z2 p(X = X1, Y = Y1, Z = Z2)

Y = Y2
Z = Z1 p(X = X1, Y = Y2, Z = Z1)
Z = Z2 p(X = X1, Y = Y2, Z = Z2)

X = X2

Y = Y1
Z = Z1 p(X = X2, Y = Y1, Z = Z1)
Z = Z2 p(X = X2, Y = Y1, Z = Z2)

Y = Y2
Z = Z1 p(X = X2, Y = Y2, Z = Z1)
Z = Z2 p(X = X2, Y = Y2, Z = Z2)

Note: Each variable is categorized into 2 classes (n = 2).

The mutual information represents the amount of information common to both X and Y and
provides a general measure of dependence between the random variables. It is superior to the Pearson
correlation coefficient, because it captures both linear and nonlinear dependence while the Pearson
correlation coefficient is only suitable for linear relationships [25]. It equals the difference between the
sum of two marginal entropies and the total entropy:
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M(X, Y) = H(X) + H(Y)− H(X, Y) (5)

The two-dimensional cases of the amount of information transmitted can be extended to three or
more dimensional cases [31]. Considering the three variables of precipitation, temperature, and NDVI,
precipitation and temperature are considered inputs while NDVI is considered an output. Therefore:

M(P, T; NDVI) = H(P, T) + H(NDVI)− H(P, T, NDVI) (6)

Moreover, applying the same methodology, the coupling of P and GTL; T and GTL along with
NDVI were further explored. The ensemble E of candidate equations can be summarized as:

E = {NDVIGTL, P = f (GTL, P); NDVIGTL, T = f (GTL, T); NDVIT, P = f (T, P)} (7)

3. Study Area and Data

The study area occupied the middle reaches of the Hei River basin (38◦30′–39◦55′N,
98◦55′–100◦55′E; Figure 1), which is located in the middle of Hexi corridor of Gansu Province,
northwest of China, and belongs to an arid climate zone. The total area is about 10,000 km2. The mean
annual temperature is around 8 ◦C, the mean annual precipitation is between 69 and 216 mm and is
concentrated between June and September, while the mean annual potential evaporation is between
1453 and 2351 mm [32].
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Figure 1. Map of the middle reaches of Hei River basin and the monitoring wells.

The Hei River is the second largest inland river in China with a total length of 821 km and a runoff
of 16.0 × 108 m3·year−1. It flows through Yingluoxia and Zhengyixia stations, entering and exiting
middle reaches. Runoff has shown an increasing/decreasing trend in the past decade. The annual
runoff at Yingluoxai station increased to 16.0 × 108 m3 in the 1990s from around 14.4 × 108 m3 in the
1960s (Figure 2), while the runoff at Zhengyixai station decreased by 3 × 108 m3 during the same time
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period (Figure 2). This situation accelerated desertification within the northern parts of the basin [33,34].
In order to mitigate deteriorating ecosystems in the Hei River basin, an Ecological Water Diversion
Project (EWDP) was initiated by the Chinese government in 2000 to ensure the delivery of water to the
lower reaches for ecological water needs [35]. After that, runoff at Zhengyixia station has increased to
levels not recorded since the 1960s [33,36]. The implementation of the EWDP alleviated the ecological
deterioration in the lower reaches of the Hei River but aggravated the water resources shortage in the
middle reaches. In order to meet the increasing demand for water resources, groundwater exploration
provided an option. After 2004, the recharge of groundwater also increased due to the increase in
precipitation, irrigation and runoff replenishment. The temporal variation in groundwater levels of
the observation wells over the period from2001 to 2011 is shown in Figure 3c which shows a rising
trend in groundwater level along the Hei River [37]. However, the water level in the region away from
the river showed a declining trend.
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Figure 2. Annual discharge of Hei River at Yinluoxia and Zhengyixia stations.
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Figure 3. The temporal variation of average temperature of growing season (a); cumulative
precipitation (b) and average ground depths (c).

The annual NDVI of each pixel was calculated by the annual maximum value of NDVI in
order to eliminate the noise from the cloud and solar altitude. The Moderate-resolution imaging
spectroradiometer (MODIS)-based NDVI products(MYD13A2 and MOD13A2)used for this study
were acquired from the National Natural Science Foundation of China “Environmental and Ecological
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Science Data Center in the West of China (http://westdc.westgis.ac.cn/)” with a spatial resolution
of 1 km and a temporal resolution of 1 day, groundwater depths of 53 wells were obtained from the
National Natural Science Foundation of China “Hei River Project Data Management Center (http:
//westdc.westgis.ac.cn/)” while monthly precipitation and temperature datasets were acquired from
the China Meteorological Network (http://data.cma.cn/), with a 0.5◦ spatial resolution, interpolated
according to the observed data of 2747 stations in China.

The ordinary kriging method was employed to interpolate the observed values of ground water
depths. For consistency regarding the NDVI spatial resolution, the interpolated groundwater table
levels, precipitation, and temperature datasets were rescaled to a 1 km spatial resolution.

4. Results and Discussion

4.1. Variation of Hydrometeorological Variables and NDVI

During the period from2001 to 2011, both the average temperature and cumulative precipitation
increased at the three hydrologic stations (Figure 3a,b). The temperature increases significantly at
Gaotai station (p < 0.05). However, the trend of temperature increase is not obvious at another
two stations. The distributions of cumulative precipitation and average temperature are shown in
Figure 4a,b. Temperature gradually rises from south to north, while precipitation decreases were also
observed. This is mainly determined by topography.
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Figure 4. The spatial distribution of (a) average temperature of growing season; (b) cumulative
precipitation.

Figure 5a illustrates the annual maximum NDVI in the middle reaches of the Hei River basin
from 2000 to 2011. The slope of the linear regression trend-line was 0.005. The NDVI time series
corresponded to the average of all the pixels in the study area and reflected the overall trend. Figure 5b
shows the spatial distribution of the linear regression slope (θslope). In most cases, the area in which
NDVI increased occupied about 94% of the total area. It can be seen that NDVI changes obviously.
In order to explore the influencing factors on NDVI variation, the whole region was divided into 5
sub-regions based on the joint entropy method, and different regression models were constructed
considering hydro-meteorological variables.

4.2. Mutual Information of NDVI with Coupling of Variables

To understand the relationship between NDVI and hydro-meteorological variables, mutual
information was employed to measure the dependence between the NDVI time series and each
coupled variable. The greater the values of mutual information the higher the correlation. The
spatial distribution of mutual information between NDVI and coupled variables are shown in
Figure 6a–c, respectively. It can be observed from the figures that the mutual information of NDVI
and coupled variables of precipitation and GTL generally decreased from southeast to northwest. The
mutual information values of NDVI and the coupled variables of precipitation and temperature were
dispersedly distributed, increasing from the center to the edge of regions, while the mutual information

http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/
http://data.cma.cn/
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of NDVI and the coupled variables of temperature and groundwater table levels were greater in the
northwestern and southeastern regions. In order to appropriately model the NDVI using dependent
variables, the study region was artificially divided into 5 sub-regions (Figure 6d), based on three spatial
distributions of mutual information, topographic and land use maps. In order to simply construct
models, as far as possible each sub-region was made to have the same characteristics. For instance,
sub-region I and sub-region IV are mainly mountainous and M (P, T; NDVI) is higher than M (T, GTL;
NDVI) and M (P, GTL; NDVI) in most areas of these sub-regions. As the same time, the land use types
are desert. Likewise, in most areas of sub-region II and sub-region V, M (GTL, P; NDVI) is higher than
M (P, T; NDVI) and M (T, GTL; NDVI), and these areas are distributed as artificial oases.
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4.3. Modelling NDVI

In sub-regions I and IV, precipitation and temperature were used to model the NDVI, since the
mutual information of NDVI and the variables of precipitation and temperature were relatively higher.
GTL and precipitation were used to model the NDVI in sub-regions II and V, while temperature and
GTL were selected to model the NDVI in sub-region III.

Nested statistical models were developed for modeling NDVI in each sub-region. In most
cases, the linear fitting of the NDVI time series to precipitation, temperature, and GTL resulted in
poor correlation coefficients and high root means square error [17]. The vegetation growth may
not be monotonic in relation to the atmospheric variables. For example, the temperature sensitivity
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of photosynthesis increases up to an optimum and later decreases as temperature gets higher [17].
A two-dimensional fitting was used to model NDVI using each of the hydro-meteorological variables
as a factor. In order to select appropriate functional forms for modeling NDVI, four simple functional
forms including linear function, quadratic function, exponent function and logarithm function were
compared using Akaike information criterion (AIC) criteria. AIC is a measure of the relative quality of
statistical models for a given set of data. The comparison of AIC values between different functional
forms are as shown in Table 2. The smaller the AIC value, the more appropriate the form of the
regression function. It was discovered that a logarithmic transformation of precipitation produced
a better correlation with NDVI in some sub-regions (I, II, IV). Considering GTL and temperature,
a negative exponential and a quadratic model showed a better relationship with NDVI. However, the
logarithm regression model exhibited a better relationship between GTL and NDVI in sub-region III.

Table 2. The comparison of AIC values between different functional forms on 5 sub-regions; AIC in
bold indicates most appropriate functional form.

NDVI and Temperature

Function
Regin Region I Region II Region III Region IV Region V

liner −3.6153 −4.7407 −6.1732
quadratic −3.8733 −5.4122 −6.5508
exponent −0.6537 −1.3973 −2.9187
logarithm −3.7049 −5.2447 −6.5427

NDVI and Groundwater

Function
Regin Region I Region II Region III Region IV Region V

liner −1.8812 −3.8162 −2.7076
quadratic −3.8876 −5.1042 −4.3212
exponent −3.9708 −2.2641 −4.3329
logarithm 0.3744 −5.1401 0.4571

NDVI and Precipitation

Function
Regin Region I Region II Region III Region IV Region V

liner −3.5757 −1.7001 −4.9864 −2.8516
quadratic −4.5808 −4.714 −7.1646 −4.4654
exponent −4.5530 −4.5093 −7.1620 −4.4443
logarithm −4.7402 −4.7974 −7.2847 −2.5677

Different candidate equations were used to fit NDVI by coupling pair-wise precipitation,
temperature, and GTL. The aim of the fitting procedures was to maximize the correlation coefficient and
minimize the sum of squared residuals. However, the main importance of the fitting procedure was to
maximize the proportion of the area in which the correlation coefficient met with significance testing.

In each sub-region, analysis was performed at the grid scale. In sub-regions I and IV, the coupling
of precipitation and temperature resulted in a model of NDVI time series with an average correlation
coefficient of 0.68 and 0.58, respectively. Li et al. (2016) also reported that in the desert regions in middle
reaches of the Hei River, precipitation is a dominant influencing factor on annual NDVI variation [38].
Zhou et al. (2013) also demonstrated that precipitation and temperature are important factors driving
the increase of NDVI in the study area [39]. However, the percentage of the area in which the correlation
coefficient met with significance testing was only 42% (p < 0.05) and 15% (p < 0.01) in sub-region IV.
This was mainly because the temperature was relatively high, thereby increasing evapotranspiration
and water demand for vegetation growth that precipitation was unable to satisfy. In sub-regions II and
V, the best fitting models were obtained by combining pair-wise negative exponentially transformed
GTL respectively with the logarithmically and linearly transformed precipitation. In these regions,
groundwater depths became an important influencing factor. Zhao et al. (2014) have also reported
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that in an oasis ecosystem, groundwater plays an important role in the formation of vegetation
productivity [40]. In sub-region V, the percentage area in which the correlation coefficient met with the
significance testing was only 50% (p < 0.05) and 16% (p < 0.01). There was a large area of arable land and
artificial grassland in sub-region V (Figure 1). In sub-regions III and V, the growth of vegetation was
strongly influenced by human activities, e.g., irrigation. Therefore, irrigation was the main influencing
factor for vegetation growth. Beyond that, there was a considerable amount of water in sub-region III,
thereby influencing prediction accuracy. After various fittings in different sub-regions, the correlation
coefficients were combined for the entire study area (Figure 7). Results showed that there was about
53% of the area in which relationships were significant.
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Analysis was also performed on a regional scale. Using the average NDVI time series of different
sub-regions as predicted and each of the average hydro-meteorological variables as a predictor,
a two-dimensional fitting was employed in the five sub-regions, respectively. This prediction also
employed the same formulas used for the prediction on a grid scale (Table 3). Figure 8a–e showed the
results of the three-dimensional scatter-plot couplings. Comparisons of these figures demonstrated
that sub-regions I and II had a better accuracy of fitting. Figure 8f presents the overall relationship
between observed NDVI and modeled NDVI for the whole region, where the correlation coefficient
was observed to be 0.97, which indicated a high accuracy. This showed that this method was suitable
for NDVI modeling.

Table 3. Fitting models, correlation coefficients and area proportion meeting significance testing in
five sub-regions.

Sub-Region
No.

Fitting Formula Average Correlation
Coefficient

Area Proportion Area Proportion

(p < 0.05) (p < 0.01)

I NDVIT,P = a · ln(b · P) + c · T2 + d · T + e 0.68 0.75 0.40
II NDVIGTL,P = a · e−(b·GTL) + c · ln(d · P) + e 0.66 0.72 0.42
III NDVIGTL,T = a · ln(b ·GTL) + c · T2 + d · T + e 0.47 0.36 0.16
IV NDVIT,P = a · ln(b · P) + c · T2 + d · T + e 0.58 0.42 0.15

V NDVIGTL,P =
a · GTL2 + b · GTL + c · P2 + d · P + e 0.57 0.50 0.16
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5. Conclusions

In this study, the spatio-temporal variation of vegetation cover in the middle reaches of theHei
River basin and the main driving factors during the period from 2001 to 2011 were analyzed using
MODIS NDVI data and hydro-meteorological data. Considering the nonlinear relationship between
hydro-meteorological variables, the entropy theory was employed to calculate the mutual information
between the NDVI time series and coupled hydro meteorological variables. Based on the spatial
distribution of mutual information, the whole region was further divided into 5 sub-regions, and
nested statistical models were employed to simulate NDVI in each sub-region. The main conclusions
are as follows:

(1) The average annual NDVI increased at a rate of 0.005/a over the past 11 years in the middle
reaches of the Hei River. The percentage area in which NDVI increased occupied 94% of the
total area.

(2) In the desert sub-regions (I and IV), temperature and precipitation are the main driving factors
for vegetation growth. In sub-region I, NDVI is consistent with the trend of temperature and
precipitation (Figure 9a). However, in sub-region IV, the trend of temperature change is not
obvious and the change in NDVI is mainly due to the increase in precipitation (Figure 9b).
In the oasis regions (sub-region II and sub-region III), groundwater was an important factor for
vegetation growth.

(3) In coupling hydro-meteorological variables, a nested statistical model was proposed for modeling
NDVI on a regional scale. The overall correlation coefficient between observed NDVI and
modeled NDVI was observed to be 0.97. This high simulation accuracy further proves the
suitability of this method.

(4) Due to the influence of human activities, the modeling accuracy was not effective within the
artificial oasis (sub-region III and sub-region V). For instance, in irrigation areas, vegetation can
absorb water from irrigation to sustain growth but in non-irrigation areas the over-exploitation
of groundwater caused by the increase in the amount of irrigation breaks the natural ecological
balance, affecting the growth of natural vegetation. Additionally, the shortage of the dataset may
also be a factor influencing the modeling accuracy. For instance, the scarcity of temperature and
precipitation data may cause nearby cells to have similar values of T and P. Therefore, further
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studies are necessary for modeling NDVI that consider additional factors such as runoff and
irrigation using long-term and higher resolution datasets.
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The results can provide some scientific guidance for water resources management and the
reasonable exploitation of groundwater, especially in the artificial oasis areas. The outcomes
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