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Abstract: Of numerous proposals to improve the accuracy of naive Bayes by weakening its attribute
independence assumption, semi-naive Bayesian classifiers which utilize one-dependence estimators
(ODEs) have been shown to be able to approximate the ground-truth attribute dependencies;
meanwhile, the probability estimation in ODEs is effective, thus leading to excellent performance.
In previous studies, ODEs were exploited directly in a simple way. For example, averaged
one-dependence estimators (AODE) weaken the attribute independence assumption by directly
averaging all of a constrained class of classifiers. However, all one-dependence estimators in AODE
have the same weights and are treated equally. In this study, we propose a new paradigm based on
a simple, efficient, and effective attribute value weighting approach, called attribute value weighted
average of one-dependence estimators (AVWAODE). AVWAODE assigns discriminative weights
to different ODEs by computing the correlation between the different root attribute value and the
class. Our approach uses two different attribute value weighting measures: the Kullback–Leibler (KL)
measure and the information gain (IG) measure, and thus two different versions are created, which are
simply denoted by AVWAODE-KL and AVWAODE-IG, respectively. We experimentally tested them
using a collection of 36 University of California at Irvine (UCI) datasets and found that they both
achieved better performance than some other state-of-the-art Bayesian classifiers used for comparison.

Keywords: attribute value weighting; Kullback–Leibler measure; information gain; entropy

1. Introduction

A Bayesian network (BN) is a graphical model that encodes probabilistic relationships among all
variables, where nodes represent attributes, edges represent the relationships between the attributes,
and directed arcs can be used to explicitly represent the joint probability distribution. Bayesian
networks are often used for classification. Unfortunately, it has been proved that learning the optimal BN
structure from an arbitrary BN search space of discrete variables is an non-deterministic polynomial-time
hard (NP-hard) problem [1].One of the most effective BN classifiers, in the sense that its predictive
performance is competitive with state-of-the-art classifiers [2], is the so-called naive Bayes (NB). NB
is the simplest form of BN classifiers. It runs on labeled training instances and is driven by the
conditional independence assumption that all attributes are fully independent of each other given the
class. The NB classifier has the simple structure shown in Figure 1, where every attribute Ai (every leaf
in the network) is independent from the rest of the attributes, given the state of the class variable C
(the root in the network). However, it is obvious that the conditional independence assumption in NB
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is often violated in real-world applications, which will affect its performance with complex attribute
dependencies [3,4].

A1 A2 A3 A4

C

Figure 1. An example of naive Bayes (NB).

In order to effectively mitigate the assumption of independent attributes for the NB classifier,
appropriate structures and approaches are needed to manipulate independence assertions [5–7].
Among the numerous Bayesian learning approaches, semi-naive Bayesian classifiers which utilize
one-dependence estimators (ODEs) have been shown to be able to approximate the ground-truth
attribute dependencies; meanwhile, the probability estimation in ODEs is effective, thus leading to
excellent performance. Representative approaches include tree-augmented naive Bayesian (TAN) [8],
hidden naive Bayes (HNB) [9], aggregating one-dependence estimators (AODE) [10], weighted average
of one-dependence estimators (WAODE) [11].

To the best of our knowledge, few studies have focused on attribute value weighting in terms
of Bayesian networks [12]. The attribute value weighting approach is a more fine-grained weighting
approach, e.g., when dealing with the pregnancy-related disease classification problem and trying to
analyze the importance of gender attributes. It is obvious that the value of the male gender attribute
has no effect on the class value (pregnancy-related disease), whereas the value of the female gender
attribute has a great effect on the class value. It will be interesting to study whether a better performance
can be achieved by combining attribute value weighting with the ODEs. The resulting model which
combines attribute value weighting with the ODEs inherits the effectiveness of ODEs; meanwhile, this
approach is a new paradigm of weighting approach in classification learning.

In this study, we propose a new paradigm based on a simple, efficient, and effective attribute
value weighting approach, called attribute value weighted average of one-dependence estimators
(AVWAODE). Our AVWAODE approach is well balanced between the ground-truth dependencies
approximation and the effectiveness of probability estimation. We extend the current classification
learning utilizing ODEs into the next level by introducing a new set of weight space to the problem.
It is a new approach to calculating the discriminative weights for ODEs using the filter approach.
We assume that the significance of each ODE can be decomposed, and in the structure of highly
predictive ODE, the different root attribute value should be strongly associated with the class. Based on
these assumptions, we assign a different weight to each ODE by computing the correlation between the
root attribute value and the class. In order to correctly measure the amount of correlation between the
root attribute value and the class, our approach uses two different attribute value weighting measures:
the Kullback–Leibler (KL) measure and the information gain (IG) measure, and thus two different
versions are created, which are simply denoted by AVWAODE-KL and AVWAODE-IG, respectively.
We conducted two groups of extensive empirical comparisons with many state-of-the-art Bayesian
classifiers using 36 University of California at Irvine (UCI) datasets published on the main website of
the WEKA platform [13,14]. Extensive experiments show that both AVWAODE-KL and AVWAODE-IG
can achieve better performance than these state-of-the-art Bayesian classifiers used to compare.

The rest of the paper is organized as follows. In Section 2, we summarize the existing Bayesian
networks learning utilizing ODEs. In Section 3, we propose our AVWAODE approach. In Section 4,
we describe the experimental setup and results in detail. In Section 5, we draw our conclusions and
outline the main directions for our future work.
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2. Related Work

Learning Bayesian networks from data is a rapidly growing field of research that has seen a great
deal of activity in recent years [15,16]. The notion of x-dependence estimators (x-DE) was proposed by
Sahami [17]; x-DE allows each attribute to depend, at most, on only other x attributes in addition to
the class. Webb et al. [18] defined the averaged n-dependence estimators (AnDE) family of algorithms.
AnDE further relaxes the independence assumption. Extensive experimental evaluation shows that
the bias-variance trade-off for averaged 2-dependence estimators (A2DE) results in strong predictive
accuracy over a wide range of data sets [18]. A2DE proves to be a computationally tractable version of
AnDE that delivers strong classification accuracy for large data without any parameter tuning.

To maintain efficiency, the Bayesian network appears desirable to restrict classifiers to ODEs [19].
A comparative study of linear combination schemes for superparent-one-dependence estimators
was proposed by Yang [20]. Approaches which utilize ODEs have demonstrated remarkable
performance [21,22]. Different from totally ignoring the attribute dependencies as naive Bayes or
taking maximum flexibility for modelling dependencies as the Bayesian network, ODEs try to exploit
attribute dependencies in moderate orders. By allowing one-order attribute dependencies, ODEs have
been shown to be able to approximate the ground-truth attribute dependencies, whilst keeping the
effectiveness of probability estimation, thus leading to excellent performance. In ODEs, directed
arcs can be used to explicitly represent the joint probability distribution. The class variable is the
parent of every attribute; meanwhile, every attribute has another attribute node as its parents; each
attribute is independent of its nondescendants given the state of its parents. Using the independence
statements encoded in ODEs, the joint probability distribution is uniquely determined by these local
conditional distributions. These independencies are then used to reduce the number of parameters
and to characterize the joint probability distribution.

ODEs restrict each attribute to depending only on one parent in addition to the class. If we
assume that A1, A2, · · · , Am are m attributes, then a test instance x can be represented by an attribute
value vector < a1, a2, · · · , am >, where ai denotes the value of the i-th attribute Ai; under the attribute
independence assumption, Equation (1) is used to classify the test instance x:

c(x) = arg max
c∈C

P(c)
m

∏
i=1

P(ai|aip, c), (1)

where aip is the attribute value of Aip, which is the attribute parent of Ai.
Friedman et al. [8] proposed tree-augmented naive Bayesian (TAN). The TAN algorithm builds

a maximum weighted spanning tree; the conditional mutual information between each pair of attributes
is computed, in which the vertices are the attributes; they finally transform the resulting undirected
tree to a directed one by choosing a root variable and setting the direction of all edges to be outward
from it. In TAN, the class variable has no parents and each attribute can only depend on another
attribute parent in addition to the class; each attribute can have one augmenting edge pointing to it.
The example of TAN is shown in Figure 2.

A1 A2 A3 A4

C

Figure 2. An example of tree-augmented naive Bayesian (TAN).
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Jiang et al. [9] proposed a structure extension-based algorithm (HNB), which is based on ODEs;
each attribute in HNB has a hidden parent that is a mixture of the weighted influences from all other
attributes. HNB uses conditional mutual information to estimate the weights directly from data,
and establishes a novel model that can consider the influences of all the attributes; it avoids learning
with intractable computational complexity. The structure of HNB is shown in Figure 3.

C

A1 A2 A3 An

Ahp1 Ahp2 Ahp3 Ahpn

Figure 3. A structure of hidden naive Bayes (HNB).

The approach of AODE [10] is to select a limited class of ODE and to aggregate the predictions
of all qualified classifiers where there is a single attribute that is the parent of all other attributes.
In order to avoid including models for which the base probability estimates are inaccurate, the AODE
approach excludes models where the training data contain fewer than 30 examples of the value for ai
of the parent attribute Ai. An example of the aggregate of AODE is shown in Figure 4.

C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

Figure 4. An example of aggregating one-dependence estimators (AODE).

AODE classifies a test instance x using Equation (2).

c(x) = arg max
c∈C

(
∑m

i=1ΛF(ai)≥30 P(ai, c)∏m
k=1,k 6=i P(ak|ai, c)

numParent
), (2)

where F(ai) is a count of the frequency of training instances having attribute value ai, and is used to
enforce the frequency limit; numParent is the number of the root attributes, which satisfy the condition
that the training instances contain more than 30 instances with the value ai for the parent attribute Ai.

However, all ODEs in AODE have the same weights and are treated equally. WAODE [11] was
proposed to assign different weights to different ODEs. In WAODE, a special ODE is built for each
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attribute. Namely, each attribute is set as the root attribute once and each special ODE is assigned
a different weight. An example of the aggregate of WAODE is shown in Figure 5.

C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

IP(A1;C) IP(A2;C)

IP(A3;C) IP(A4;C)

Figure 5. An example of weighted average of one-dependence estimators (WAODE).

WAODE classifies a test instance x using the following Equation (3).

c(x) = arg max
c∈C

(
∑m

i=1 WiP(ai, c)∏m
k=1,k 6=i P(ak|ai, c)

∑m
i=1 Wi

), (3)

where Wi is the weight of the ODE while the attribute Ai is set as the root attribute, which is the parent
of all other attributes. The WAODE approach assigns weight to each ODE according to the relationship
between the root attribute and the class; it uses the mutual information IP(Ai; C) between the root
attribute Ai and the class variable C to define the weight Wi. The detailed Equation is:

Wi = IP(Ai; C) = ∑
ai ,c

P(ai, c) log
P(ai, c)

P(ai)P(c)
. (4)

3. AVWAODE Approach

The remarkable performance of semi-naive Bayesian classifiers utilizing ODEs suggests that
ODEs are well balanced between the attribute dependencies assumption and the effectiveness of
probability estimation. To the best of our knowledge, few studies have focused on attribute value
weighting in terms of Bayesian networks [12]. Each attribute takes on a number of discrete values, and
each discrete value has different importance with respect to the target. Therefore, the attribute value
weighting approach is a more fine-grained weighting approach. It is interesting to study whether
a better performance can be achieved by exploiting the ODEs while using the attribute value weighting
approach. The resulting model which combines attribute value weighting with the ODEs inherits
the effectiveness of ODEs; meanwhile, this approach is a new paradigm of weighting approach in
Bayesian classification learning.

In this study, we extend the current classification learning utilizing ODEs into the next level by
introducing a new set of weight space to the problem. Therefore, this study proposes a new dimension
of weighting approach by assigning weights according to attribute values. We propose a new paradigm
based on a simple, efficient, and effective attribute value weighting approach, called attribute value
weighted average of one-dependence estimators (AVWAODE). Our AVWAODE approach is well
balanced between the ground-truth dependencies approximation and the effectiveness of probability
estimation. It is a new method for calculating discriminative weights for ODEs using the filter approach.
The basic assumption of our AVWAODE approach is that the root attribute value should be strongly
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associated with the class in the structure of highly predictive ODE, and in ODEs; when a certain root
attribute value is observed, it gives a certain amount of information to the class. The more information
a root attribute value provides to the class, the more important the root attribute value becomes.

In AVWAODE, a special ODE is built for each attribute. Namely, each attribute is set as the root
attribute once and each special ODE is assigned a different weight. Different from the existing WAODE
approach which assigns different weights to different ODEs according to the relationship between
the root attribute and the class, our AVWAODE approach assigns discriminative weights to different
ODEs by computing the correlation between the root attribute value and the class. Since the weight of
each special ODE is associated with the root attribute value, AVWAODE uses Equation (5) to classify
a test instance x.

c(x) = arg max
c∈C

(
∑m

i=1 Wi,ai P(ai, c)∏m
k=1,k 6=i P(ak|ai, c)

∑m
i=1 Wi,ai

), (5)

where Wi,ai is the weight of the ODE when the root attribute Ai has the attribute value ai. The base
probabilities P(ai, c) and P(ak|ai, c) are estimated using the m-estimate as follows:

P(ai, c) =
F(ai, c) + 1.0/(ni ∗ nc)

n + 1.0
, (6)

P(ak|ai, c) =
F(ak, ai, c) + 1.0/nk

F(ai, c) + 1.0
, (7)

where F(•) is the frequency with which a combination of terms appears in the training data, n is the
number of training instances, ni is the number of values of the root attribute Ai, nk is the number of
values of the leaf attribute Ak, and nc is the number of classes.

Now, the only question left to answer is how to use a proper measure which can correctly
quantify the amount of correlation between the root attribute value and the class. To address this
question, our approach uses two different attribute value weighting measures: the Kullback–Leibler
(KL) measure and the information gain (IG) measure, and thus two different versions are created,
which are simply denoted by AVWAODE-KL and AVWAODE-IG, respectively. Note that KL and
IG are two widely used measures already presented in the existing literature; we just redefine them
following our proposed methods.

3.1. AVWAODE-KL

The first candidate that can be used in our approach is the KL measure, which is a widely
used method for calculating the correlation between the class variable and an attribute value [23].
The KL measure calculates the distances of different posterior probabilities from the prior probabilities.
The main idea is that the KL measure becomes more reliable as the frequency of a specific attribute
value increases. It originally was proposed in the article [24]. The KL measure calculates the average
mutual information between the events c and the attribute value ai with the expectation taken with
respect to a posteriori probability distribution of C [23]. The KL measure uses Equation (8) to quantify
the information content of an attribute value ai:

KL(C|ai) = ∑
c

P(c|ai) log
P(c|ai)

P(c)
, (8)

where KL(C|ai) represents the attribute value-class correlation.
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It is quite an intuitive argument that if the root attribute value ai gets a higher KL value, the ODE
will deserve a higher weight. Therefore, we use the KL(C|ai) between the root attribute value ai and
the class C to define the weight Wi,ai of the ODE as:

Wi,ai = KL(C|ai) = ∑
c

P(c|ai) log
P(c|ai)

P(c)
, (9)

where ai is the attribute value of the root attribute, which is the parent of all other attributes.
An example of AVWAODE-KL is shown in Figure 6.

Figure 6. An example of attribute value weighted average of one-dependence estimators (AVWAODE)-KL.

The detailed learning algorithm for our AVWAODE approach using the KL measure (AVWAODE-KL)
is described briefly as Algorithm 1.

Algorithm 1: AVWAODE-KL (D, x)

Input: A training dataset D and a test instance x
Output: Class label c(x) of x

1. For each class value c
2. Compute P(c) from D
3. For each attribute value ai

4. Compute F(ai, c) from D
5. Compute P(ai, c) by Equation (6)
6. For each attribute value ak (k 6= i)
7. Compute F(ak, ai, c) from D
8. Compute P(ak|ai, c) by Equation (7)
9. For each attribute value ai

10. Compute F(ai) from D
11. Compute Wi,ai by Equation (9)
12. Estimate the class label c(x) for x using Equation (5)
13. Return the class label c(x) for x

Compared to the well-known AODE, AVWAODE-KL requires some additional training time to
compute the weights of all the attribute values. According to the algorithm given above, the additional
training time complexity for computing these weights is only O(ncmv); where nc is the number
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of classes, m is the number of attributes, and v is the average number of values for an attribute.
Therefore, AVWAODE-KL has only a training time complexity of O(nm2 + ncmv), where n is the
number of training instances. Note that ncv is generally much less than nm in reality. If we only
take the highest order term, the training time complexity is still O(nm2), which is the same as AODE.
In addition, the classification time complexity of AVWAODE-KL is O(ncm2), which is also the same as
AODE. All of this means that AVWAODE-KL is simple and efficient.

3.2. AVWAODE-IG

The second candidate that can be used in our approach is the IG measure, which is a widely used
method for calculating the importance of attributes [5,25]. The C4.5 approach [2] uses the IG measure
to construct the decision tree for classifying objects. The information gain used in the C4.5 approach [2]
is defined as:

H(C)− H(C|Ai) = ∑
ai

P(ai)∑
c

P(c|ai)logP(c|ai)−∑
c

P(c)logP(c). (10)

Equation (10) computes the difference between the entropy of a priori distribution and the entropy
of a posteriori distribution of the class, and the C4.5 approach uses the difference value as the metric
for deciding the branching node. The value of the IG measure can represent the significance of the
attribute; the bigger the value is, the greater impact of the attribute when classifying the test instance.
The correlation between the attribute Ai and the class C can be measured by Equation (10). Since
we require discriminative power for an attribute value, we cannot use Equation (10) directly as the
measure of the discriminative power for an attribute value. The IG measure calculates the correlation
between an attribute value ai and the class variable C by:

IG(C|ai) = ∑
c

P(c|ai)logP(c|ai)−∑
c

P(c)logP(c). (11)

It is quite an intuitive argument that if the root attribute value ai gets a higher IG value, the ODE
will deserve a higher weight. Therefore, we use the IG(C|ai) between the root attribute value ai and
the class C to define the weight Wi,ai of the ODE as:

Wi,ai = IG(C|ai) = ∑
c

P(c|ai)logP(c|ai)−∑
c

P(c)logP(c), (12)

where ai is the attribute value of the root attribute, which is the parent of all other attributes.
An example of AVWAODE-IG is shown in Figure 7.

Figure 7. An example of AVWAODE-IG.
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The training time complexity and the classification time complexity of AVWAODE-IG is the same
as AVWAODE-KL. In order to save space, we do not repeat the detailed analysis here.

4. Experiments and Results

In order to validate the classification performance of AVWAODE, we ran our experiments on all
the 36 UCI datasets [26] published on the main web site of Weka platform [13,14]. In our experiments,
missing values are replaced with the modes and means of the corresponding attribute values from the
available data. Numeric attribute values are discretized using the unsupervised ten-bin discretization
implemented in Weka platform. Additionally, we manually delete three useless attributes: the attribute
“Hospital Number” in the dataset “colic.ORIG”, the attribute “instance name" in the dataset “splice”,
and the attribute “animal” in the dataset “zoo”.

We compare the performance of AVWAODE with some state-of-the-art Bayesian classifiers:
TAN [8], HNB [9], AODE [10], WAODE [11], NB [2] and A2DE [18]. We conduct extensive empirical
comparisons in two groups with these state-of-the-art models in terms of the classification accuracy.
In the first group, we compared AVWAODE-KL with all of these models, and in the second group,
we compared AVWAODE-IG with these competitors.

Tables 1 and 2 show the detailed results of the comparisons in terms of the classification accuracy.
All of the classification accuracy estimates were obtained by averaging the results from 10 separate
runs in a stratified ten-fold cross-validation. We then conducted corrected paired two-tailed t-tests at
the 95% significance level [27] in order to compare our AVWAODE-KL and AVWAODE-IG with each
of their competitors: TAN, HNB, AODE, WAODE, NB, and A2DE. The averages and the Win/Tie/Lose
(W/T/L) values are summarized at the bottom of the tables. Each entry’s W/T/L in the tables implies
that, compared to their competitors, AVWAODE-KL and AVWAODE-IG win on W datasets, tie on T
datasets, and lose on L datasets. The average (arithmetic mean) of each algorithm across all datasets
provides a gross indicator of the relative performance in addition to the other statistics.

Then, we employ a corrected paired two-tailed t-test with the p = 0.05 significance level [27]
to compare each pair of algorithms. Tables 3 and 4 show the summary test results with regard to
AVWAODE-KL and AVWAODE-IG, respectively. In these tables, for each entry i(j), i is the number
of datasets on which the algorithm in the column achieves higher classification accuracy than the
algorithm in the corresponding row, and j is the number of datasets on which the algorithm in the
column achieves significant wins with the p = 0.05 significance level [27] with regard to the algorithm
in the corresponding row.

Tables 5 and 6 show the ranking test results with regard to AVWAODE-KL and AVWAODE-IG,
respectively. In these tables, the first column is the difference between the total number of wins and
the total number of losses that the corresponding algorithm achieves compared with all the other
algorithms, which is used to generate the ranking. The second and third columns represent the total
numbers of wins and losses, respectively.

According to these comparisons, we can see that both AVWAODE-KL and AVWAODE-IG perform
better than TAN, HNB, AODE, WAODE, NB, and A2DE. We summarize the main features of these
comparisons as follows.

1. Both AVWAODE-KL and AVWAODE-IG significantly outperform NB with 16 wins and one loss,
and they also outperform TAN with 11 wins and zero losses.

2. Both AVWAODE-KL and AVWAODE-IG perform notably better than HNB on six datasets and
worse on zero datasets, and also better than A2DE on five datasets and worse on one dataset.

3. Both AVWAODE-KL and AVWAODE-IG are markedly better than AODE with nine wins and
zero losses.

4. Both AVWAODE-KL and AVWAODE-IG perform substantially better than WAODE on two
datasets and one datset, respectively.
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5. Seen from the ranking test results, our proposed algorithms are always the best ones, and NB
is the worst one. The overall ranking (descending order) is AVWAODE-KL (AVWAODE-IG),
WAODE, A2DE, HNB, AODE, TAN and NB, respectively.

6. The results of these comparisons suggest that assigning discriminative weights to different ODEs
by computing the correlation between the root attribute value and the class is highly effective
when setting weights for ODEs.

Table 1. Accuracy comparisons for AVWAODE-KL versus TAN, HNB, AODE, WAODE, NB, and A2DE.

Dataset AVWAODE-KL TAN HNB AODE WAODE NB A2DE

anneal 98.86 96.73 • 97.74 • 96.74 • 98.56 94.32 • 98.36
anneal.ORIG 91.10 90.49 89.87 88.79 • 89.80 • 88.16 • 90.32

audiology 76.17 65.35 • 69.04 • 71.66 • 76.26 71.40 • 74.84
autos 80.75 72.54 • 75.49 73.48 • 80.36 63.97 • 76.97

balance-scale 88.53 86.14 • 89.14 89.78 89.28 91.44 ◦ 91.44 ◦
breast-cancer 70.67 69.53 73.09 72.53 71.97 72.94 70.63

breast-w 96.08 95.45 95.67 97.11 96.57 97.30 97.17
colic 80.96 80.11 81.44 80.90 80.66 78.86 81.12

colic.ORIG 75.50 67.71 • 75.66 75.30 75.93 74.21 76.68
credit-a 85.17 84.10 85.80 85.91 84.43 84.74 84.83
credit-g 75.31 74.88 76.29 76.42 76.38 75.93 75.19
diabetes 75.03 76.31 76.00 76.37 75.83 75.68 75.74

glass 59.47 58.69 59.02 61.13 59.62 57.69 63.14
heart-c 81.98 79.70 82.31 82.48 82.61 83.44 81.75
heart-h 82.29 81.27 83.21 84.06 83.11 83.64 81.74

heart-statlog 82.85 79.48 82.70 83.67 82.30 83.78 83.81
hepatitis 83.82 83.00 83.92 84.82 84.14 84.06 85.26

hypothyroid 93.42 93.36 93.49 93.53 93.54 92.79 • 93.17
ionosphere 92.11 91.34 92.00 92.08 92.94 90.86 92.88

iris 95.13 94.27 93.93 94.47 95.73 94.33 94.33
kr-vs-kp 94.32 92.88 • 92.36 • 91.01 • 94.18 87.79 • 93.69

labor 90.90 89.00 92.73 95.30 91.73 96.70 92.67
letter 89.24 82.69 • 84.68 • 85.54 • 88.86 • 70.09 • 80.44 •

lymph 85.35 83.69 83.90 86.25 84.16 85.97 84.75
mushroom 99.99 99.99 99.94 99.95 99.98 95.52 • 99.52 •

primary-tumor 48.14 44.77 47.66 47.67 47.94 47.20 47.32
segment 95.41 93.91 • 93.72 • 92.94 • 95.06 89.03 • 94.83

sick 98.11 97.70 • 97.77 97.51 • 97.99 96.78 • 97.55 •
sonar 77.46 75.34 81.75 79.04 78.28 76.35 74.30

soybean 94.28 94.98 93.88 93.28 94.33 92.20 • 94.45
splice 96.31 94.95 • 95.84 • 96.12 • 96.36 • 95.42 • 95.40 •

vehicle 73.35 73.35 72.15 71.62 73.09 61.03 • 72.48
vote 94.46 94.43 94.43 94.52 94.46 90.21 • 93.26

vowel 92.67 91.89 91.34 89.52 • 92.56 66.09 • 92.62
waveform-5000 83.61 80.44 • 83.79 84.24 84.00 79.97 • 82.17

zoo 98.50 96.63 97.73 94.66 98.11 94.37 95.65

Average 85.48 83.53 84.99 85.01 85.59 82.34 85.01

W/T/L - 11/25/0 6/30/0 9/27/0 2/34/0 16/19/1 5/30/1

◦, • statistically significant improvement or degradation over AVWAODE-KL.
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Table 2. Accuracy comparisons for AVWAODE-IG versus TAN, HNB, AODE, WAODE, NB, and A2DE.

Dataset AVWAODE-IG TAN HNB AODE WAODE NB A2DE

anneal 98.75 96.73 • 97.74 • 96.74 • 98.56 94.32 • 98.36
anneal.ORIG 89.45 90.49 89.87 88.79 89.80 88.16 90.32

audiology 76.04 65.35 • 69.04 • 71.66 • 76.26 • 71.40 • 74.84
autos 80.16 72.54 • 75.49 73.48 • 80.36 63.97 • 76.97

balance-scale 88.46 86.14 • 89.14 89.78 89.28 91.44 ◦ 91.44 ◦
breast-cancer 71.84 69.53 73.09 72.53 71.97 72.94 70.63

breast-w 96.25 95.45 95.67 97.11 96.57 97.30 97.17
colic 80.93 80.11 81.44 80.90 80.66 78.86 81.12

colic.ORIG 75.33 67.71 • 75.66 75.30 75.93 74.21 76.68
credit-a 85.45 84.10 85.80 85.91 84.43 84.74 84.83
credit-g 75.79 74.88 76.29 76.42 76.38 75.93 75.19
diabetes 75.60 76.31 76.00 76.37 75.83 75.68 75.74

glass 58.95 58.69 59.02 61.13 59.62 57.69 63.14
heart-c 82.15 79.70 82.31 82.48 82.61 83.44 81.75
heart-h 81.98 81.27 83.21 84.06 83.11 83.64 81.74

heart-statlog 82.52 79.48 82.70 83.67 82.30 83.78 83.81
hepatitis 84.52 83.00 83.92 84.82 84.14 84.06 85.26

hypothyroid 93.48 93.36 93.49 93.53 93.54 92.79 • 93.17
ionosphere 93.02 91.34 92.00 92.08 92.94 90.86 • 92.88

iris 95.13 94.27 93.93 94.47 95.73 94.33 94.33
kr-vs-kp 94.13 92.88 • 92.36 • 91.01 • 94.18 87.79 • 93.69

labor 91.40 89.00 92.73 95.30 91.73 96.70 92.67
letter 89.24 82.69 • 84.68 • 85.54 • 88.86 • 70.09 • 80.44 •

lymph 84.47 83.69 83.90 86.25 84.16 85.97 84.75
mushroom 99.99 99.99 99.94 99.95 99.98 95.52 • 99.52 •

primary-tumor 48.50 44.77 47.66 47.67 47.94 47.20 47.32
segment 95.41 93.91 • 93.72 • 92.94 • 95.06 89.03 • 94.83

sick 98.03 97.70 • 97.77 97.51 • 97.99 96.78 • 97.55 •
sonar 77.18 75.34 81.75 79.04 78.28 76.35 74.30

soybean 94.50 94.98 93.88 93.28 • 94.33 92.20 • 94.45
splice 96.39 94.95 • 95.84 • 96.12 96.36 95.42 • 95.40 •

vehicle 73.34 73.35 72.15 71.62 73.09 61.03 • 72.48
vote 94.25 94.43 94.43 94.52 94.46 90.21 • 93.26

vowel 92.67 91.89 91.34 89.52 • 92.56 66.09 • 92.62
waveform-5000 83.61 80.44 • 83.79 84.24 84.00 79.97 • 82.17 •

zoo 98.41 96.63 97.73 94.66 98.11 94.37 95.65

Average 85.48 83.53 84.99 85.01 85.59 82.34 85.01

W/T/L - 11/25/0 6/30/0 9/27/0 1/35/0 16/19/1 5/30/1

◦, • statistically significant improvement or degradation over AVWAODE-IG.

Table 3. Summary test results with regard to AVWAODE-KL.

Algorithm AVWAODE-KL TAN HNB AODE WAODE NB A2DE

AVWAODE-KL - 3 (0) 14 (0) 17 (0) 20 (0) 11 (1) 11 (1)
TAN 33 (11) - 27 (6) 27 (9) 31 (10) 17 (6) 25 (9)
HNB 22 (6) 9 (0) - 22 (2) 27 (5) 10 (2) 18 (5)

AODE 19 (9) 9 (3) 14 (3) - 20 (9) 6 (1) 19 (5)
WAODE 16 (2) 5 (0) 9 (0) 16 (0) - 9 (1) 13 (1)

NB 25 (16) 19 (13) 26 (16) 30 (13) 27 (17) - 26 (13)
A2DE 25 (5) 11 (2) 18 (4) 17 (3) 23 (5) 9 (0) -
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Table 4. Summary test results with regard to AVWAODE-IG.

Algorithm AVWAODE-IG TAN HNB AODE WAODE NB A2DE

AVWAODE-IG - 6 (0) 17 (0) 17 (0) 19 (0) 10 (1) 11 (1)
TAN 30 (11) - 27 (6) 27 (9) 31 (10) 17 (6) 25 (9)
HNB 19 (6) 9 (0) - 22 (2) 27 (5) 10 (2) 18 (5)

AODE 19 (9) 9 (3) 14 (3) - 20 (9) 6 (1) 19 (5)
WAODE 17 (1) 5 (0) 9 (0) 16 (0) - 9 (1) 13 (1)

NB 26 (16) 19 (13) 26 (16) 30 (13) 27 (17) - 26 (13)
A2DE 25 (5) 11 (2) 18 (4) 17 (3) 23 (5) 9 (0) -

Table 5. Ranking test results with regard to AVWAODE-KL.

Resultset Wins−Losses Wins Losses

AVWAODE-KL 47 49 2
WAODE 42 46 4

A2DE 15 34 19
HNB 9 29 20

AODE −3 27 30
TAN −33 18 51
NB −77 11 88

Table 6. Ranking test results with regard to AVWAODE-IG.

Resultset Wins−Losses Wins Losses

AVWAODE-IG 46 48 2
WAODE 43 46 3

A2DE 15 34 19
HNB 9 29 20

AODE −3 27 30
TAN −33 18 51
NB −77 11 88

Yet at the same time, based on the accuracy results presented in Tables 1 and 2, we take advantage
of KEEL Data-Mining Software Tool [28,29] to complete the Wilcoxon signed-ranks test [30,31] to
thoroughly compare each pair of algorithms. The Wilcoxon signed-ranks test is a non-parametric
statistical test, which ranks the differences in performances of two algorithms for each dataset, ignoring
the signs, and compares the ranks for positive and negative differences. Tables 7–10 summarize the
detailed results of the nonparametric statistical comparisons based on the Wilcoxon test. According to
the table, for the exact critical values in the Wilcoxon test at a confidence level of α = 0.05 (α = 0.1) and
with datasets where N = 36, two algorithms are considered “significantly different" if the smaller of
R+ and R− is equal to or less than 208 (227), and thus we could reject the null hypothesis. ◦ indicates
that the algorithm in the column improves the algorithm in the corresponding row, and • indicates
that the algorithm in the row improves the algorithm in the corresponding column. According to these
comparisons, we can see that both AVWAODE-KL and AVWAODE-IG performed significantly better
than NB, and TAN, and AVWAODE-IG performed even significantly better than A2DE at a confidence
level of α = 0.1.
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Table 7. Ranks computed by the Wilcoxon test on AVWAODE-KL.

Algorithm AVWAODE-KL TAN HNB AODE WAODE NB A2DE

AVWAODE-KL - 636.5 426.5 370.5 264.5 525.0 427.0
TAN 29.5 - 100.0 130.0 35.0 362.5 131.5
HNB 239.5 566.0 - 312.5 172.0 521.0 298.0

AODE 295.5 536.0 353.5 - 259.5 593.0 315.5
WAODE 401.5 631.0 494.0 406.5 - 547.0 446.0

NB 141.0 303.5 145.0 73.0 119.0 - 135.5
A2DE 239.0 534.5 368.0 350.5 220.0 530.5 -

Table 8. Summary of the Wilcoxon test on AVWAODE-KL. ◦: The algorithm in the column improves
the algorithm in the corresponding row. •: The algorithm in the row improves the algorithm in
the corresponding column. Lower diagonal level of significance α = 0.05; upper diagonal level of
significance α = 0.1.

Algorithm AVWAODE-KL TAN HNB AODE WAODE NB A2DE

AVWAODE-KL - • •
TAN ◦ - ◦ ◦ ◦ ◦
HNB • - ◦ •

AODE • - •
WAODE • • - • •

NB ◦ ◦ ◦ ◦ - ◦
A2DE • • -

Table 9. Ranks computed by the Wilcoxon test on AVWAODE-IG.

Algorithm AVWAODE-IG TAN HNB AODE WAODE NB A2DE

AVWAODE-IG - 628.0 431.5 380.5 255.0 525.5 440.5
TAN 38.0 - 100.0 130.0 35.0 362.5 131.5
HNB 234.5 566.0 - 312.5 172.0 521.0 298.0

AODE 285.5 536.0 353.5 - 259.5 593.0 315.5
WAODE 411.0 631.0 494.0 406.5 - 547.0 446.0

NB 140.5 303.5 145.0 73.0 119.0 - 135.5
A2DE 225.5 534.5 368.0 350.5 220.0 530.5 -

Table 10. Summary of the Wilcoxon test on AVWAODE-IG. ◦: The algorithm in the column improves
the algorithm in the corresponding row. •: The algorithm in the row improves the algorithm in
the corresponding column. Lower diagonal level of significance α = 0.05; upper diagonal level of
significance α = 0.1.

Algorithm AVWAODE-IG TAN HNB AODE WAODE NB A2DE

AVWAODE-IG - • • •
TAN ◦ - ◦ ◦ ◦ ◦
HNB • - ◦ •

AODE • - •
WAODE • • - • •

NB ◦ ◦ ◦ ◦ - ◦
A2DE • • -
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Additionally, in our experiments, we have also observed the performance of our proposed
AVWAODE in terms of the area under the Receiver Operating Characteristics (ROC) curve
(AUC) [25,32–34]. Tables 11 and 12 show the detailed comparison results in terms of AUC. From these
comparison results, we can find that our proposed AVWAODE is also very promising in terms of the
area under the ROC curve. Please note that, in order to save space, we do not present the detailed
summary test results, the ranking test results, and the Wilcoxon test results.

Table 11. Area under the ROC curve (AUC) comparisons for AVWAODE-KL versus TAN, HNB,
AODE, WAODE, NB, and A2DE.

Dataset AVWAODE-KL TAN HNB AODE WAODE NB A2DE

anneal 99.76 99.63 99.68 99.34 • 99.73 98.88 • 99.73
anneal.ORIG 97.24 96.80 96.78 • 95.71 • 97.01 • 95.45 • 96.91

audiology 97.73 95.92 • 96.39 • 96.98 • 97.67 96.93 • 97.66
autos 94.14 92.65 93.32 92.56 94.16 88.10 • 93.89

balance-scale 92.10 94.00 ◦ 96.40 ◦ 94.85 ◦ 92.16 96.22 ◦ 96.15 ◦
breast-cancer 68.13 65.36 68.78 70.81 68.53 70.18 66.75

breast-w 99.17 98.89 99.24 99.35 99.19 99.25 99.39
colic 86.30 85.58 86.88 86.60 86.54 84.36 84.55

colic.ORIG 83.04 72.02 • 82.65 82.29 84.35 81.18 83.11
credit-a 91.19 90.49 92.00 92.38 91.49 91.86 91.98
credit-g 77.56 77.10 80.32 ◦ 79.69 ◦ 78.81 ◦ 79.10 77.56
diabetes 82.17 81.87 82.91 82.85 82.76 82.61 82.21

glass 83.90 80.73 • 81.76 82.64 83.75 80.17 • 82.27
heart-c 89.69 87.90 90.40 91.00 ◦ 89.93 91.08 90.20
heart-h 88.11 87.09 89.34 89.97 88.66 90.04 88.47

heart-statlog 89.98 89.36 90.84 91.26 90.01 91.34 91.16
hepatitis 87.83 87.15 87.46 89.31 87.60 89.36 90.31

hypothyroid 84.76 83.16 • 83.47 • 84.03 84.64 83.45 84.01
ionosphere 97.96 98.05 97.43 97.32 98.20 93.69 • 98.19

iris 99.13 98.96 98.59 98.77 99.17 98.97 98.96
kr-vs-kp 98.49 98.26 98.21 97.42 • 98.57 95.19 • 98.27

labor 97.29 93.75 97.83 98.79 97.75 98.67 97.38
letter 99.68 99.15 • 99.40 • 99.45 • 99.66 • 97.12 • 98.98 •

lymph 92.18 91.98 93.43 93.16 92.41 92.88 92.67
mushroom 100.00 100.00 100.00 100.00 100.00 99.80 • 100.00 •

primary-tumor 83.57 80.97 • 82.65 • 82.89 83.64 82.79 82.94
segment 99.70 99.53 • 99.55 • 99.42 • 99.68 • 98.36 • 99.60 •

sick 98.68 98.08 97.53 • 97.07 • 98.82 95.87 • 98.28
sonar 88.35 83.79 • 90.33 88.92 89.17 85.50 83.59 •

soybean 99.70 99.79 99.76 99.57 • 99.69 99.48 • 99.70
splice 99.51 99.18 • 99.46 • 99.45 99.51 99.35 • 99.24 •

vehicle 91.05 91.77 91.02 90.76 90.96 83.47 • 91.21
vote 98.83 98.75 98.78 98.67 98.75 97.15 • 98.43

vowel 99.63 99.54 99.56 99.43 • 99.61 95.76 • 99.59
waveform-5000 96.19 94.50 • 96.52 ◦ 96.60 ◦ 96.38 ◦ 95.32 • 95.35 •

zoo 99.96 99.91 99.96 99.92 99.96 99.92 99.88

Average 92.57 91.43 92.74 92.76 92.75 91.63 92.46

W/T/L - 10/25/1 8/25/3 9/23/4 3/31/2 17/18/1 6/29/1

◦, • statistically significant improvement or degradation over AVWAODE-KL.
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Table 12. AUC comparisons for AVWAODE-IG versus TAN, HNB, AODE, WAODE, NB, and A2DE.

Dataset AVWAODE-IG TAN HNB AODE WAODE NB A2DE

anneal 99.76 99.63 99.68 99.34 • 99.73 98.88 • 99.73
anneal.ORIG 97.00 96.80 96.78 95.71 • 97.01 95.45 • 96.91

audiology 97.71 95.92 • 96.39 • 96.98 • 97.67 96.93 • 97.66
autos 94.14 92.65 93.32 92.56 94.16 88.10 • 93.89

balance-scale 92.10 94.00 ◦ 96.40 ◦ 94.85 ◦ 92.16 96.22 ◦ 96.15 ◦
breast-cancer 69.58 65.36 68.78 70.81 68.53 70.18 66.75

breast-w 99.21 98.89 99.24 99.35 99.19 99.25 99.39
colic 86.39 85.58 86.88 86.60 86.54 84.36 84.55

colic.ORIG 84.02 72.02 • 82.65 82.29 84.35 81.18 83.11
credit-a 91.18 90.49 92.00 92.38 91.49 91.86 91.98
credit-g 78.18 77.10 80.32 ◦ 79.69 ◦ 78.81 79.10 77.56
diabetes 82.66 81.87 82.91 82.85 82.76 82.61 82.21

glass 83.29 80.73 81.76 82.64 83.75 80.17 • 82.27
heart-c 89.51 87.90 90.40 91.00 ◦ 89.93 91.08 ◦ 90.20
heart-h 87.99 87.09 89.34 89.97 88.66 90.04 88.47

heart-statlog 89.58 89.36 90.84 91.26 90.01 91.34 91.16
hepatitis 87.90 87.15 87.46 89.31 87.60 89.36 90.31

hypothyroid 85.08 83.16 • 83.47 • 84.03 84.64 83.45 • 84.01
ionosphere 98.09 98.05 97.43 97.32 98.20 93.69 • 98.19

iris 99.13 98.96 98.59 98.77 99.17 98.97 98.96
kr-vs-kp 98.38 98.26 98.21 97.42 • 98.57 ◦ 95.19 • 98.27

labor 97.17 93.75 97.83 98.79 97.75 98.67 97.38
letter 99.68 99.15 • 99.40 • 99.45 • 99.66 • 97.12 • 98.98 •

lymph 92.24 91.98 93.43 93.16 92.41 92.88 92.67
mushroom 100.00 100.00 100.00 100.00 100.00 99.80 • 100.00 •

primary-tumor 83.64 80.97 • 82.65 • 82.89 83.64 82.79 82.94
segment 99.70 99.53 • 99.55 • 99.42 • 99.68 • 98.36 • 99.60 •

sick 98.67 98.08 • 97.53 • 97.07 • 98.82 95.87 • 98.28
sonar 88.26 83.79 • 90.33 88.92 89.17 85.50 83.59 •

soybean 99.69 99.79 99.76 99.57 • 99.69 99.48 • 99.70
splice 99.52 99.18 • 99.46 • 99.45 99.51 99.35 • 99.24 •

vehicle 91.05 91.77 91.02 90.76 90.96 83.47 • 91.21
vote 98.90 98.75 98.78 98.67 98.75 97.15 • 98.43

vowel 99.63 99.54 99.56 99.43 • 99.61 95.76 • 99.59
waveform-5000 96.19 94.50 • 96.52 ◦ 96.60 ◦ 96.38 ◦ 95.32 • 95.35 •

zoo 99.97 99.91 99.96 99.92 99.96 99.92 99.88

Average 92.64 91.43 92.74 92.76 92.75 91.63 92.46

W/T/L - 10/25/1 7/26/3 9/23/4 2/32/2 18/16/2 6/29/1

◦, • statistically significant improvement or degradation over AVWAODE-IG.

5. Conclusions and Future Work

Of numerous proposals to improve the accuracy of naive Bayes by weakening its attribute
independence assumption, semi-naive Bayesian classifiers which utilize one-dependence estimators
(ODEs) have been shown to be able to approximate the ground-truth attribute dependencies;
meanwhile, the probability estimation in ODEs is effective. In this study, we propose a new paradigm
based on a simple, efficient, and effective attribute value weighting approach, called attribute value
weighted average of one-dependence estimators (AVWAODE). Our AVWAODE approach is well
balanced between the ground-truth dependencies approximation and the effectiveness of probability
estimation. We assign discriminative weights to different ODEs by computing the correlation
between the root attribute value and the class. Two different attribute value weighting measures,
which are called the Kullback–Leibler (KL) measure and the information gain (IG) measure, are used
to quantify the correlation between the root attribute value and the class, and thus two different
versions are created, which are simply denoted by AVWAODE-KL and AVWAODE-IG, respectively.
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Extensive experiments show that both AVWAODE-KL and AVWAODE-IG achieve better performance
than some other state-of-the-art ODE models used for comparison.

How to learn the weights is a crucial problem in our proposed AVWAODE approach. An interesting
future work will be the exploration of more effective methods to estimate weights to improve our current
AVWAODE versions. Furthermore, applying the proposed attribute value weighting approach to
improve some other state-of-the-art classification models is another topic for our future work.
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