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Abstract: A content-addressable memory (CAM) stores key-value associations such that the key is
recalled by providing its associated value. While CAM recall is traditionally performed using recurrent
neural network models, we show how to solve this problem using adiabatic quantum optimization.
Our approach maps the recurrent neural network to a commercially available quantum processing
unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy
of the quantum processor to store key-value associations by quantifying recall performance against
an ensemble of problem sets. We observe that different learning rules from the neural network
community influence recall accuracy but performance appears to be limited by potential noise in
the processor. The strong connection established between quantum processors and neural network
problems supports the growing intersection of these two ideas.
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1. Introduction

A series of novel quantum processing units (QPUs) has been developed recently based on the
principles of adiabatic quantum computing. This computational model uses the time-dependent
change in the underlying Hamiltonian to drive the pure-state dynamics of a quantum physical system
serving as a quantum computational register [1,2]. Ideal operation concludes by preparing the state of
the quantum register in the ground state of the driving Hamiltonian at the final time. The designed
quantum dynamics rely on the conditions of the adiabatic theorem to ensure the prepared state maps
into the lowest energy eigenstate. However, these idealized principles of operation are difficult to
realize in practice. One of the reasons is related to the fact that the actual quantum state for the register
elements depends on temperature. Besides this, imperfections in the fabrication of the QPU device
may introduce undesired couplings between the registers. Given these unavoidable circumstances,
it is therefore necessary to ask how well the principles of adiabatic quantum computing suffice for
developing applications using current QPU devices.

We focus on the QPU developed by D-Wave Systems, Inc., which represents a special-purpose
variant of the adiabatic model limited to a restricted set of Hamiltonians, namely, a traverse-field Ising
model [3,4]. This restriction imposes a limit on the Hamiltonian interactions driving the dynamics of
the register elements during computation. While these limited interactions do not encode the complete
range of solutions amenable to adiabatic quantum computing [5], they are sufficient for a narrow
set of special-purpose methods referred to as adiabatic quantum optimization. The defining feature
of adiabatic quantum optimization is that it is the final time the Hamiltonian takes the form of an
Ising spin-1/2 system, which is isomorphic to a wide variety of conventional optimization problems.
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The underlying principles of adiabatic quantum computing therefore provide the ability to encode
and solve a variety of interesting problems [6].

The D-Wave QPU has been shown previously to operate far from the ideal conditions for
which they were designed but instead lie in a regime more aptly called quantum annealing [7].
This finite-temperature, open system model is expected to more accurately describe the dynamics
underlying the QPU [8]. Nevertheless, several experimental tests of the D-Wave QPU have been
carried out including applications of machine learning, binary classification, protein folding, graph
analysis, and network analysis [9–18]. Demonstrations of enhanced performance using the D-Wave
QPU have been found only for a few selected and highly contrived problem instances [19–21].
Thus, there is an outstanding need to find broad classes of applications for which the current
hardware offers improvements [22,23]. Many such investigations have been based on measuring the
time-to-solution for the associated problem, especially with respect to problem size and features [24].
These metrics emphasize the need to experimentally verify potential claims of quantum-enhanced
speedups. Notwithstanding the search for quantum speedups, the fact that the D-Wave QPU computes
the solution to any problem accurately, and with high probability, raises the question as to whether the
idealized principles of adiabatic quantum optimization are warranted when designing applications
and algorithms for this processor. This is an important point in understanding how the D-Wave
QPU programming and execution models integrate future applications into existing computing
systems [25–27].

As a specific example, we consider the application of adiabatic quantum optimization to the
problem of recall in a content-addressable memory system [28]. Content-addressable memory (CAM)
represents a memory structure in which key-value data is recalled based on its value as opposed to its
key [29]. Unlike random-access memory (RAM), which uses an organized hierarchy of keys to recall
a value, CAM uses the value to recall the key within an otherwise unorganized list. This difference
in operation is apparent in the ways in which CAM and RAM are typically used. For example,
the CAM paradigm is especially useful for interacting with sets of key-value pairs that are unsorted
or unorganized [30]. This includes networking applications such as switching, where incoming
packets are routed to outgoing ports based on header address information stored as the key-value pair
(port, address) [31]. Similarly, CAM systems are also used for translation lookaside buffers (TLB’s),
which are a critical part of modern computer memory hierarchies that enables fast caching.

CAM recall using adiabatic quantum computing is based on finding the energetic minimum of
a Ising model constructed from a database of known key-value pairs [28]. Under ideal conditions,
the energetic minimum within this Ising model energy landscape encodes the association between
a sought-after key-value pair. This association between the key-value pair and energetic minima
is also what underlies existing CAM recall methods based on neural networks [32]. Although the
physics of conventional neural networks are fundamentally different from quantum physical systems,
the principles of operation for both types of memory systems are the same while their performance is
not [33,34]. For example, a prominent concern in neural network methods for CAM recall is avoiding
interference between stored memories [35,36]. Interference limits the number of memories that can
be accurately recalled from n-bits of storage, i.e., the so-called memory capacity. Depending on the
encoding methods (learning rules) applied, conventional memory recall methods yield logarithmic
and polynomial capacities [32,36,37].

Previously, Nishimori and Nonomura found that a quantum Ising model demonstrates many of the
same statistical features as the conventional Ising spin system [33]. Most notably, this includes a phase
separation between the memory-retrieval and spin-glass phase near a pattern to spin ratio ≈ 0.14
for vanishing transverse field, which mirrors earlier results from McEliece et al. for classical spin
systems [36]. However, Santra et al. have shown recently that the capacity for memory recall using
adiabatic quantum optimization can be exponential in the size of the memory [34]. This remarkable
enhancement in the capacity suggests that the quantum dynamics play an important role in mitigating
interference. However, whether this enhancement can be observed depends on the versatility of the
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underlying device to overcome computational bottlenecks. For example, Knysh has shown recently
that many binary optimization problems mapped into the quantum Ising model become limited by
the appearance of multiple energy gaps in the quantum computational landscape [38].

We previously verified the principles of CAM recall by adiabatic quantum optimization using
numerical simulations to investigate the pure-state dynamics of a small memory system [28].
Through simulations of the quantum dynamics, we showed that specific key-value associations could
be recovered when the ground state of an encoded Ising model Hamiltonian was prepared by adiabatic
quantum optimization. The related problem of pattern recognition, in which a single noisy value is
correctly recovered, has been validated experimentally by Neigovzen et al. using nuclear magnetic
resonance (NMR) platforms [10]. In this contribution, we experimentally test the performance of CAM
recall using the D-Wave QPU and the principles of adiabatic quantum optimization. We compare
different methods of expressing the association between key-value pairs and we test the accuracy
available by using different learning rules. Our results experimentally validate the ability for the QPU
to recall stored memories within the context of adiabatic quantum optimization but they also highlight
the sensitivity of the application to potential hardware limitations. Our analysis has been restricted to
a pure-state model, and future studies using more sophisticated quantum annealing models may be
able to improve upon these results.

2. CAM Recall Using Adiabatic Quantum Optimization

A CAM system stores the association between a key k and a value v and recalls this association
by retrieving k when given an exact or an approximate value for v. A CAM system should recall
the key that is closest to the matching value stored in memory. This is in contrast to random access
memory (RAM), which may also store a key-value pair (k, v) but recalls whatever value is associated
with the provided key, e.g., a memory address. We formalize the CAM recall problem as follows:
given a set

M = {ξ(µ) = (k(µ), v(µ)) : µ = 1 to m} (1)

of m key-value pairs that are each of total length n, recall with probability of success ε the key k(0)

corresponding to the known value v(0). The order by which labels are assigned to the m memories
is arbitrary and, therefore, recall of the pair (k(0), v(0)) expresses the general problem. Elements k(µ)i

and v(µ)i use the bipolar encoding ±1. Our definition of the problem has introduced the success
probability ε to account for those solvers that may only be probabilistically correct. As explained
below, the implementation of adiabatic quantum optimization realized by the D-Wave QPU fits such
a probabilistic model. In practice, it is necessary to quantify recall performance with respect to the
statistical behavior of an ensemble of identically prepared instances.

As discussed in the introduction, adiabatic quantum optimization (AQO) is an algorithmic variant
for finding the global minimum of an objective function. The objective function must be expressed as a
Hamiltonian whose lowest energy eigenstate, i.e., ground state, defines a valid solution for the encoded
optimization problem. By the nature of being the lowest energy state, this solution corresponds to the
minimizing argument of the objective function. Adiabatic quantum optimization specifies the objective
Hamiltonian as part of the time-dependent evolution of the underlying quantum register, where the
idealized equation of motion is given by Schrodinger’s equation and the initial boundary condition
for the register state is defined as the known ground state of a more easily solved Hamiltonian.
During evolution, the initial Hamiltonian is slowly deformed, i.e., adiabaticially, to the Hamiltonian
expressing the objective function. Completion of the evolution prepares the quantum register as a
ground state of the final Hamiltonian. Because the final Hamiltonian expresses the original objective
function, the value of the quantum register similarly represents a valid solution for the optimization
problem. We will use this idealized model for describing the behavior of the D-Wave QPU.
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We encode a CAM recall problem into the AQO solver by storing all key-value pairs in a set M
into the coupling weights of an Ising Hamiltonian

Hθ = −
n

∑
i,j

wijzizj −
n

∑
i

θiv
(0)
i zi (2)

where zi ∈ {±1} is the state of the i-th spin variable. The real-valued weights wij are set according to a
learning rule that we specify in detail below. The parameter θ represents a vector of real-valued biases
that breaks the quadratic symmetry of the Hamiltonian according to the specified input value v(0).
By design, the memories stored in the weights of the Ising model represent stable fixed points within
the energy landscape. In the absence of bias (θ = 0), these states form a degenerate ground state
manifold for the spin system. It is the presence of the linear bias term that breaks this symmetry and
lowers the energy of the sought-after memory. The non-zero value of θ plays an important role in
determining the probability for recall success. However, in the limit that θ exceeds some critical value,
then the biased value v(0) will generate an unexpected fixed-point for the Ising model. In this scenario,
the input value is then recalled as opposed to stored memory. This critical value can be calculated
based on the Hamming distance between the stored memories [28,34].

For a given problem instance, we recover the lowest energy eigenstate of Hθ using AQO.
The time-dependent Hamiltonian that evolves the state of the quantum register is defined as

H(t; θ) = A(t)Hx + B(t)Hθ , t ∈ [0, T] (3)

where the schedules A(t) and B(t) control the time evolution and satisfy the boundary conditions
A(0) = B(T) = 1 and A(T) = B(0) = 0 given the (adiabatic) evolution time T. The state of the
quantum register is initialized as the ground state of the initial Hamiltonian, H(0) = Hx, where

Hx = −
n

∑
i

Xi ⊗ In−1 (4)

is the transverse-field operator and

Xi =

(
0 1
1 0

)
(5)

is the Pauli bit-flip operator for the i-th qubit and In is the identity operator on n qubits.
The non-degenerate ground state of this initial Hamiltonian is a uniform superposition of all possible
computational basis states with energy—n. The state of the register at time t is |ψ(t)〉 and is given by
the Schrodinger equation,

ih̄
∂ |ψ(t)〉

∂t
= H(t) |ψ(t)〉 (6)

over the range t ∈ [0, T]. Under adiabatic quantum dynamics, the register state will be in the ground
state of the Hamiltonian H(T) = Hθ at the final time t = T. Measuring prepared state in the
computational basis yields an n-bit string χ. This classical spin configuration represents the solution to
the CAM recall problem, i.e., χ = {k(χ), v(χ)}.

The probability that the register is prepared in the ground state of the Hamiltonian H(T) is strongly
influenced by whether the quantum dynamics underlying the register evolution was sufficiently slow
relative to internal dynamical timescales. A leading order error in AQO arises from excitations to
higher-lying energy eigenstates. These transitions occur when the instantaneous energy gap between
the ground and (first) excited-state manifold becomes small relative to the inverse of the evolution time.
The time complexity of this probabilistic algorithm is thus determined by the shortest evolutionary
period T needed to obtain a probability ε to be in the ground state. However, this value is not arbitrary
as the probability of success depends on the energy gap for the specific key-value pairs stored in the
Hamiltonian according to the elected learning rule. The implicit dependence of the minimal evolution
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time, necessary to ensure the adiabatic theorem for a specific problem instance, is a well-known
challenge for adiabatic quantum computing.

Given a computed solution χ, we quantify the accuracy of recall by comparing the measured spin
string χ with the expected state ξ(0) = (k(0), v(0)) as the inner product c = χTξ(0). Perfectly accurate
recall coincides with a maximal value of the inner product c = n for the bipolar encoding.
For the criterion of perfect recall, any other value for c is considered a recall failure. Under this criterion,
we may then calculate the average accuracy for an ensemble of N trials with ci the results of the i-th
trial. We quantify accuracy for perfect recall as

accuracy =
1
N

N

∑
i=1

δci,n (7)

with the Kronecker δi,j = 1 only if i = j and 0 otherwise. This measure of accuracy is the frequency by
which the sought-after memory is found exactly over all trials.

3. Experimental Validation of CAM Recall

We have performed experimental tests to validate the principles of CAM recall using adiabatic
quantum optimization implemented in the 1152-qubit D-Wave QPU [24]. Variants of this device have
been installed in several third-party locations, and our experimental results were acquired using the
D-Wave QPU housed at the NASA Ames Research Center. A photograph of an example D-Wave QPU
is shown in Figure 1.

Figure 1. A photograph of the latest member of the DW processor family: the DW2X processor is
composed from 1152 physical qubits, whose connectivity graph is shown in Figure 2. Credit: D-Wave
Systems, Inc. (Burnaby, BC, Canada).

The D-Wave QPU provides an implementation adiabatic quantum optimization model with
several known hardware constraints. Foremost are restrictions on the available Ising model Hamiltonian.
In particular, the processor hardware is constructed from an array of interacting superconducting
Josephson junctions laid out in a square grid of bipartite graphs known as the Chimera graph. A graphical
model of this connectivity is shown in Figure 2. These limitations on hardware connectivity restrict
which qubits can interact together. The Chimera layout permits interactions of each qubit with only
six neighbors, and only five neighbors for qubits on the edge. The limited connectivity between
hardware register elements can be partially overcome by forming chains of physical qubits to represent
so-called logical qubits. The mapping from a set of logical qubits to set of physical qubits represents the
problem of minor graph embedding, which seeks a representation of the connectivity for the logical
Ising Hamiltonian within the physical hardware. Many different methods have been developed for
solving the minor graph embedding within the context of the Chimera target graph [39–43]. We use a
deterministic method for mapping a complete graph into the Chimera layout that is known to provide
the least overhead with respect to number of physical qubits and, therefore, enables us to test the
largest problem sizes available within this device [40].
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Figure 2. The hardware connectivity graph describing the D-Wave processor family, in which nodes
represent physical qubits and edges signify tunable interactions. This diagram presents 512 qubits,
or an 8-by-8 lattice of unit cells. The most recent processor supports a 12-by-12 lattice and 1152 qubits.

In addition to the embedding method, other programming choices for the D-Wave QPU include
the schedule for annealing the system to the final Hamiltonian, which is characterized by the temporal
waveform and its duration. The available hardware control systems restrict these options to pre-defined
forms and ranges. Execution of the program within the hardware also requires pre-processing steps
to initialize the electronic control system and construct the analog signals applied to the quantum
chip. These steps include the time required to initialize the programmable magnetic memory (PMM)
that is used as the control lines into the super-cooled processor. Technical details about the electronic
programming process are available in the relevant literature [44], but it suffices to note that these steps
contribute a near constant time cost to the total for the execution model [27].

3.1. Problem Instances

A CAM problem is specified by the set of memories M, a sought memory ξ(0) = (k(0), v(0)),
and a success rate ε. Our tests focus on evaluating the ability to perform CAM recall using AQO and,
therefore, we identify values for ε in which accurate recall is possible. We sample from a set of problem
instances defined by stored memories that correspond to known key-value pairs. For each sample,
we choose one of the known key-value pairs as the sought-after association. The pairs are represented
as bipolar strings of length n with the first part of the string acting as the key and the remainder
as the value. We test cases with a key length κ = b0.3nc and a value length of ν = b0.7nc . Sets of
memories are characterized as being orthogonal or non-orthogonal. For orthogonal memory sets,
all key strings within the set are mutually orthogonal and all value strings are mutually orthogonal.
There is no guarantee of orthogonality between any of the keys and values. There can only be
n orthogonal vectors in an n-dimensional vector space, and the number of memories generated is
limited to the length of the keys or the length of the values. For non-orthogonal memory sets, the only
restriction on these randomly generated memories is that the keys and values were unique, such that
the number of available memory sets was much greater. Thus, the Hamming distance between any
two random keys or values would vary from 1 to κ or ν, respectively. We test these instances with
respect to statistical sampling derived from running multiple problem instances and we record an
average accuracy to score the performance. The performance of CAM recall using AQO is measured
by collecting statistics on ensembles of problems given different specifications for the memories and
the learning rules.
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We reduce a CAM recall problem instance to an AQO instance by mapping the set of memories
M into the Ising Hamiltonian. This is accomplished by encoding the memories into the Ising weight
matrix using one of several possible learning rules. A learning rule is a deterministic mapping defined
over the set of possible input maps into the real-valued weight coefficients. We investigate the use
of several specific mappings well known from the neural network community, namely, the Hebb
and projection learning rules, which have been studied previously within the context of Hopfield
neural networks. These learning rules are typically used in applications of pattern matching, for which
the association is between a value and itself, e.g., to identify a pattern based on partial information.
Such pattern matching applications make use of data structures represented by complete graphs.
A complete graph structure is sufficient for CAM recall but it is not clear that this graph structure is
necessary for an association defined by a bipartite relationship. Due to the connectivity constraints
within the D-Wave QPU, we also use variants of these learning rule that take advantage of the
bipartite structural relationship between the key and value. This changes the original problem with the
intent of being easier to map to the hardware graph while keeping the stored memories as energetic
minima. The bipartite structure is especially appealing due to ease of embedding into the hardware
graph [42,43]. Reducing the encoded interactions between qubits also reduces interference between
stored memories. We provide specifications for all three learning rules below.

Given key-value pairs as in Equation (1), the Hebb rule is defined as [35]

W =
1
n

XTX (8)

where X = [ξ1, ξ2, ..., ξm] and n is the length of ξi. When building the weight matrix W for a bipartite
structure, square diagonal blocks were zeroed out corresponding to the key length and value length.
If the length of the keys is κ and the length of the values is ν, with κ + ν = n, then the submatrix from
rows and columns 1 to κ is replaced with a zero matrix as is the submatrix from rows and columns
κ + 1 to n. The off-diagonal blocks then satisfy the original definition of the Hebb rule given in [32],
WB = 1

n KTV where K = [k(1), k(2), ..., k(m)]T and V = [v(1), v(2), ..., v(m)]T. The final weight matrix for
the bipartite Hebb rule is

W =

(
0 WB

WT
B 0

)
(9)

The second learning rule used is the projection rule [37]. The projection rule is expected to be
an improvement over the Hebb rule because it is based on decorrelating the memory set prior to
encoding the weight values. This has the result of minimizing the effect of crosstalk, i.e., interference,
between stored memories. Beginning with M as defined in Equation (1), the projection rule is given as

W = XX+ (10)

where X = [ξ1, ξ2, ..., ξm] and X+ is the pseudo-inverse. As with the Hebb rule, square diagonal blocks
are zeroed out to create the bipartite projection rule. This conjecture is supported by empirical evidence
below. This third rule is a bipartite projection rule and it is based on the definition in [32], WB = KV+

where K = [k(1), k(2), ..., k(m)]T and V = [v(1), v(2), ..., v(m)]T, with W built as in Equation (9).
All definitions of the learning rules above allow for weight coefficients that can have a magnitude

that scales with n−1. For large values of n, this magnitude can become too small for accurate
representation by the D-Wave QPU controls, which are frequently cited as being limited to 4–5 bits of
precision. We counter this by scaling values of the weight matrix to better fit into the defined control
range of [−1, 1] for the QPU. This is done by finding the largest value in the matrix Wmax and scaling
the matrix by 3

4Wmax
. The latter choice of 3

4 supported the requirement that intra-chain coupling be
much larger than any of the stored weights and was found to improve the observed recall accuracy for
several test problems without this scaling.
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3.2. Experimental Setup

Our experimental setup uses the Hebb rule as the baseline for recall accuracy. In general,
there are 3 parameters varied when selecting the test problems. These parameters are the size of
the logical system n, the number of stored memories m, and the applied bias θ. The orthogonality of
the memories is also specified but this case was not of interest beyond the initial testing reported below.
Because CAM recall using orthogonal memories is expected to be well behaved, we use that case to
test the fundamental performance of the D-Wave processor to recall stored memories. The remaining
parameters are chosen from the following sets respectively,

n ∈ {8, 12, 16, 20, 24, 28, 32} (11)

m
2n ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (12)

and
θ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} (13)

For each parameter combination (n, m, θ), 100 problem instances are randomly generated as
specified in Section 3.1 and utilizing one of the learning rules to encode the memories into a weight
matrix. Each selected problem instance is then programmed and executed N = 1000 times on the
D-Wave QPU to calculate the average recall accuracy c.

Executing these programs on D-Wave QPU requires embedding the logical Ising Hamiltonian
generated from Equation (2) into the physical hardware. For our testing purposes, we use the
embedding function find_embedding provided by the D-Wave SAPI library to find a mapping
from the logical qubits to the physical qubits. The SAPI find_embedding method relies on random
number generation, and to remove a source of variability, the seed parameter was set to 0 for all
tests. The resulting map is then used by the embed_problem function along with the weight matrix
to set the coupling values between qubits and bias values on the qubits. The bias values encode the
memory that is to be recalled. Additionally, a strong coupling value of +1 is set between physical
qubits representing the same logical qubit. This complete problem specification is sent to the D-Wave
machine using the solve_ising function with an anneal time of 20 µs and the number of reads set
to N = 1000. The resulting spin configurations are unmapped using the unembed_answer function.
This provides a list of candidate solutions for the CAM recall instance and calculating the accuracy
requires searching through this list and counting up the number of correct solutions. This accuracy
is averaged over 100 different problem instances. In addition to accuracy, the times to embed the
problem and run it on D-Wave are collected and averaged. While we have seen some variability in
recall accuracy with changes in anneal time, we do not report on those results below, preferring to
focus our analysis on a fixed value of program duration.

Experimental runs are carried out using the D-Wave DW2X processor installed at NASA Quail.
This processor has 1097 active qubits laid out in a faulty Chimera connectivity pattern. Data is archived
locally and post-processed to generate the results presented in the next section. The results presented
were collected in August and September of 2016 [27].

4. Experimental Results

Accuracy results for CAM recall with orthogonal memories and varying memory sizes are
presented in Figure 3 with plots labeled by H for the Hebb rule, P for the projection rule, and P2
for the bipartite projection rule. We exclude results for other rule definitions because their recall
accuracy was typically lower than P and P2. Figure 3 plots the recall accuracy with respect to the
logical key-value size n, and each line shows the results for a different applied bias θ. These results
show that the D-Wave QPU is able to perform CAM recall with very high accuracy in the presence of
applied bias. In the absence of the bias necessary to select a specific key-value pair, the accuracy is
approximately the likelihood of observing any one of the m orthogonal ground states. We find that
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the accuracy for recall in a small memory set (m = 0.1n) quickly increases to one when the bias is
increased to a non-zero value. For a small number of logical spins, we observe perfect accuracy in
the learning rules with only slight deviations. This behavior is expected for orthogonal memories
due to a lack of interference during memory storage. However, as the memory size m increases,
the accuracy decreases for moderate and large bias values. This decrease correlates with an increase
in the size of the key-value pair with the largest deviation occurring at the largest value of n = 32.
It is important to note that the recall accuracy depends on the learning rule with the bipartite projection
rule demonstrating the best average behavior across all test instances. We note there is an unexpected
dip in accuracy in Figure 3a. This is due to several of the tests using random sets of orthogonal
memories under the P2 rule reporting zero recall accuracy for n = 12, an indication that the processor
did not exhibit perfect recovery of the sought after memory. Subsequent testing with larger problem
sizes yielded perfect accuracy. We speculate this may be due to numerical instabilities in the P2 rule
for low memory capacities as this anomalous dip does not arise for either the H or P rules or for larger
set sizes.

Accuracy results for CAM recall with random memories and varying capacity are presented
in Figure 4 with respect to the number of logical spins. These plots show the recall accuracy as a
function of the logical problem size, and each line shows the results for a different applied bias. Plots
for the random memories cover a wider range of spins and capacities than the orthogonal memories
due to fewer restrictions in their method of generation as discussed in Section 3.1.

The first observation for results with random memories is that the D-Wave machine can still
perform CAM recall but with varying levels of success. As can be seen, the recall accuracy is influenced
by several factors. Most striking is the effect the memory capacity has on recall accuracy. The recall
accuracy is nearly perfect for all rules and biases in Figure 4a which corresponds to a capacity of
m = 0.1. However, as the capacity increases, the accuracy decreases to under 40% for the large problem
sizes, as shown in Figure 4c. The expectation is that the greater the number of memories stored relative
to the system size, the greater the interference the memories inflict on each other. The number of local
minima is therefore increased while the basins of attraction decrease in radius. As a result, recalling
the correct memory becomes more difficult [28].

Compared to the near perfect recall behavior shown in Figure 4a, the other plots demonstrate that
the choice of learning rule affects the recall accuracy. In particular, the uses of the projection rules P
and P2 generally perform better than the Hebb rule H. We believe this indicates that the projection rule
alters the underlying energy surface, a behavior that has also been observed in the case of conventional
neural networks [32]. In particular, the projection rule generally performs the best among all rules
tested here except when the number of spins reaches 32. There is a sharp drop in recall accuracy at this
point for capacities above 0.1 though it is most dramatic in Figure 4b. The projection rule performance
even descends below that of H for some bias values.

We define the error in recall as the number of instances where the sought memory is not the
lowest energy state for the system. Instead, the lowest energy state for the system may correspond to a
spurious state or any other state that arises from overlap in the memories. The measured recall errors
with random memories are shown in Figure 5. We note that the low error for the low capacity case
agrees with the high recall accuracy in Figure 4a. The recall error is more substantial for the higher
capacity cases, but this does not always explain the loss in recall accuracy. For example, the behavior
of the projection rule P shown in Figure 4b can be compared to the recall error presented in Figure 5b.
It is apparent from this comparison that the loss in recall accuracy does not arise from returning a
lower energy state, but rather from returning a higher energy state. By contrast, for both H and P2,
as the capacity and system sizes increase, the error increases even with bias applied. This is not
the typical case for P; there is only one instance where the error is above 0 in the presence of bias.
We conclude that at larger system sizes, P is not finding its lowest energy. Currently, no explanation
for this behavior is known.
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(a)

(b)

(c)

Figure 3. Content-addressable memory (CAM) recall accuracy for problems with orthogonal memories.
The number of memories stored is [n ∗m]. For (a) the capacity is 0.1, 0.2 for (b), and 0.3 for (c).
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(a)

(b)

(c)

Figure 4. CAM recall accuracy for problems with random memories. The number of memories stored
is [n ∗m]. For (a) the capacity is 0.1, 0.2 for (b), and 0.3 for (c).
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The reported recall accuracy is the average of recall success for an ensemble of 100 problems.
The distribution of these successes is shown in Figure 6, with each panel corresponding to a different
learning rule. For each plot, the size of the system is n = 28, the number of stored memories is
m = 0.3n = 8, and the applied bias is θ = 1.0. The histograms show the frequency with which
different probabilities of success are observed. It is notable that the distributions are not the same for
each learning rule and, in particular, the Hebb rule demonstrate a bimodal distribution not seen in
the projection rule. Though H has a high frequency around 0.9, it also has a significant frequency
around 0.0. The P and P2 rules have high frequency around 0.9 with decreasing frequencies for lower
accuracies. These histograms can be used to create cumulative distribution plots for the recall accuracy.
Such a plot can be used to indicate the probability of achieving a desired recall accuracy or better,
P(X > x). For instance, in Figure 7 with P and bias of 1.0, P(X > 0.8) ≈ 0.92. The probability of
achieving recall accuracy of greater than 0.8 is about 0.92. This provides a means to determine how
many iterations on the D-Wave would be needed to achieve a desired accuracy within a given tolerance.

(a)

(b)

Figure 5. Cont.
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(c)

Figure 5. Error for problems with random memories. The number of memories stored is [n ∗ m].
For (a) the capacity is 0.1, 0.3 for (b), and 0.5 for (c).

Figure 6. Histogram of recall accuracies for problems on 28 spins with random memories. The capacity is 0.3.

Of additional interest is the comparison of the projection rules P and P2, for which the weight
matrix decorrelates memories. Both rules generally perform better than the Hebb rule, however, we see
that P2 outperforms recall P in instances with higher capacity or larger system sizes. The primary
distinction between P and P2 is the complete versus bipartite graph structure for storing the weight
patterns. Both rules require the same number of logical qubits, but P2 requires fewer physical qubits
due to its smaller edge set. However, as shown in the distribution of recall accuracy, the P2 rules have
a broad distribution of error for these relatively small sample sizes. Though its contribution is not as
drastic as memory size and learning rule, the applied bias also clearly affects the recall accuracy. For H,
the bias trends are somewhat spaced out and follow similar paths. For P and P2, the bias lines for bias
above 0.2 are much closer together. As expected, a higher bias improves the recall accuracy though
the gain is not generally significant in P and P2. It has greater influence for H.
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Figure 7. Cumulative distribution of recall accuracies for problems on 28 spins with random memories.
The capacity is 0.3.

5. Conclusions

We have presented experimental results testing the accuracy of CAM recall using adiabatic
quantum optimization. We have performed these tests using a variety of learning rules and parameter
settings mapped into the D-Wave QPU. We have collected statistics on the recall accuracy for these
different tests and we have reported on the average recall accuracy. We have found that the average
recall accuracy depends significantly on the learning rule and parameters chosen, including the nature
of the stored memories. Notably, we have found parameter choices in which the D-Wave processor
exhibits very high recall accuracy, nearly 100%. In addition, we have performed initial statistical
tests to quantify the likelihood of solving an arbitrary CAM recall instance based on the statistics
recorded here.

While our results have validated the principle of CAM recall using the D-Wave processor, we note
that there are several unanswered questions regarding performance. In particular, the unexpected
decreases in recall accuracy of the projection rule without an associated increase in recall error indicate
that there may be some noise or other imperfection within the processor that limits performance.
We have not verified that the problem instances tested necessarily are mapped faithfully into the
processor hardware. The D-Wave hardware is known to have a limited number of bits available
within its programmable system. This limit may inadvertently corrupt these tests such that the
observed results correspond to alternative problem instances. We believe a more detailed analysis of
the hardware bits of precision could elucidate the nature of this uncertainty. In addition, we have made
some initial attempts to improve the learning rules for storing key-value pairs. Because of the bipartite
structure underlying this associative memory model, these learning rules consume less space on the
hardware and could be a useful avenue for future research. In conclusion, we believe that CAM recall
is viable within the adiabatic quantum optimization model, but current hardware requires additional
refinement in order to optimize performance.
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