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Abstract: This paper investigates the sum capacity of a single-cell multi-user system under the
constraint that the transmitted signal is adopted from M-ary two-dimensional constellation with
equal probability for both uplink, i.e., multiple access channel (MAC), and downlink, i.e., broadcast
channel (BC) scenarios. Based on the successive interference cancellation (SIC) and the entropy power
Gaussian approximation, it is shown that both the multi-user MAC and BC can be approximated to
a bank of parallel channels with the channel gains being modified by an extra attenuate factor
that equals to the negative exponential of the capacity of interfering users. With this result,
the capacity of MAC and BC with arbitrary number of users and arbitrary constellations can be
easily calculated which in sharp contrast with using traditional Monte Carlo simulation that the
calculating amount increases exponentially with the increase of the number of users. Further, the sum
capacity of multi-user under different power allocation strategies including equal power allocation,
equal capacity power allocation and maximum capacity power allocation is also investigated. For the
equal capacity power allocation, a recursive relation for the solution of power allocation is derived.
For the maximum capacity power allocation, the necessary condition for optimal power allocation is
obtained and an optimal algorithm for the power allocation optimization problem is proposed based
on the necessary condition.

Keywords: sum capacity; power allocation; M-ary constellation; entropy power; multiple access
channel; broadcast channel

1. Introduction

Recent years, with the rapid growth of mobile data traffic, a great deal of attentions have been
attracted on the information theoretic issues of multi-user systems. When a base station receives data
from its wireless terminals, multiple transmitters communicate simultaneously to a common receiver.
Such many-to-one wireless communication scenarios, for which the common mathematical model
is the Gaussian multiple-access channel (MAC), or in turn, the broadcast channel (BC), have been
studied intensively in the literature [1–13]. It was pointed out Gaussian MAC and BC are dual [1],
with which the capacity region and the transmitting strategy for MAC can be achieved from BC [2]
and vice versa. In addition, the capacity region for Gaussian MAC or BC can be achieved through
superposition coding and successive interference cancellation (SIC) [3,4] while the maximum sum
capacity can be obtained when all the power is allocated to the user with the best channel gain for
Gaussian BC which is also true for Gaussian MAC by the duality. Although the power allocation can
be greatly simplified with Gaussian BC [5–7] and MAC [8–10], they can never be realized in practice.
Rather, the inputs must usually be drawn from discrete constellations with limited peak-to-average
ratios (e.g., M-QAM, M-PSK) which is significantly depart from Gaussian distribution. Yet, no solutions
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has been found for calculating the sum capacity and allocating power that maximizes the sum capacity
with non-Gaussian inputs.

As we know, no literature had been concerned on the study of sum capacity and power allocation
for multi user situation due to the complexity for discrete input scenarios. For non-Gaussian inputs,
there are no theoretical methods for calculating sum capacity of the multiuser AWGN channel. Even for
the simplest single user scenario, there exists no closed form formula which can be used to calculate
the capacity. The bounds and approximations for the capacity of point-to-point communication
can be found in [14–17] which simplified the complicated integration into a closed-form solution.
Usually, numerical solutions are available for estimating the capacity of a single user, e.g., Monte Carlo
integration [18]. However, for multi user systems, it is too cumbersome to use Monte Carlo integration
for estimating the sum capacity when the number of users is pretty large due to a series of mixed
gaussian integration involved, let alone power allocation.

In this paper, first an approximation for the capacity of point-to-point communication with
arbitrary inputs (e.g., QAM, PSK) is introduced, which is simple enough for calculation with high
accuracy. Through the parallelization of MAC and BC based on the SIC and the concept of entropy
power [19], a universal approximation for multi-user systems with arbitrary inputs distributions is
obtained. Then an optimal algorithm that maximizes the sum capacity and a recursive relation for the
solution of equal capacity power allocation is proposed based on the parallelization of MAC and BC.

2. System Model

2.1. Multiple Assess Channel

The system model for MAC is shown in Figure 1 where K users transmit data simultaneously to
a common base station. User i encodes its data with a capacity achievable code of rate Ri into signal
Xi satisfying E[|Xi|2] = 1 and then, send Xi with power Pi through the uplink channel of gain gi.
The overall signal received by the base station can be expressed as

Y =
K

∑
i=1

√
PigiXi + Z, (1)

where Z ∼ CN (0, 1) is the complex Gaussian noise. Without loss of generality, assume that users are
indexed in an ascending order of power gain, i.e., 0 < g1 ≤ g2 ≤ · · · ≤ gK.
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Figure 1. System model for a multi-user MAC system.
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The sum-capacity Csum is the maximum achievable sum rate R1 + R2 + · · ·+ RK, and is given by

Csum = max {I(Y; XKXK−1 · · ·X1)} (2)

where the maximization is over the joint distribution of X1, X2, · · · , XK.
For Gaussian encoders, X1, X2, · · · , XK are independent and identically distributed (i.i.d.)

CN (0, 1). In this case, the sum capacity for a given power allocation P1, P2, · · · , PK is [2,3]

CGaussian
sum = ln

(
1 +

K

∑
i=1

Pigi

)
. (3)

Under the total power constraint P1 + P2 + · · ·+ PK = P, the sum-capacity can be maximized to

CGaussian
sum = ln (1 + PgK) , (4)

since
K
∑

i=1
Pigi ≤

K
∑

i=1
PigK = PgK. The optimal power allocation for the maximum sum capacity for

Gaussian MAC is to allocate all power only to the strongest channel.
For discrete M-ary channel inputs, X1, X2, · · · , XK are i.i.d. random variables taking values

Ω = {α1, α2, · · · , αM} ⊂ C with equal probabilities. The sum capacity is given by

Csum = h(Y)− h(Y|X)

= −E[p(y)]− h(Z)

= −
∫ ∞

−∞
p(y) ln p(y)dy− ln(2πe),

(5)

where the probability density function (PDF) of the received signal Y is

p(y) =
M

∑
i1=1

M

∑
i2=1
· · ·

M

∑
iK=1

1
2πMK e

−0.5

∣∣∣∣∣y− K
∑

j=1

√
Pjgjαij

∣∣∣∣∣
2

. (6)

and M is the number of the discrete points of Ω for each user.
For point-to-point communication, i.e., K = 1, the PDF of the received signal (6) becomes

p(y) =
M

∑
i=1

1
2πM

e−0.5|y−
√

Pgαi|2 . (7)

Then the capacity of point-to-point communication can be denoted as

C0(γ) = −
∫ ∞

−∞

(
M

∑
i=1

1
2πM

e−0.5|y−
√

Pgαi|2
)

log

(
M

∑
i=1

1
2πM

e−0.5|y−
√

Pgαi|2dy

)
− ln(2πe). (8)

The integration involved in (8) has no closed-form expression. There exists a simple approximation
as [17]

C0(γ) ≈ log M

(
1−

N

∑
i=1

aie−biγ

)
, (9)

where γ is the SNR, ai, bi, N are the curve fitting parameters. The optimal parameters for QPSK, 8PSK,
16QAM constellations are given in Table 1.
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Table 1. Approximation parameters of (9) for QPSK, 8PSK, 16QAM modulations.

Modulation a b N

QPSK 1 0.6507 1

8PSK 0.6130 0.1681 20.3855 0.8992

16QAM 0.7177 0.1225 20.2804 0.8702

The calculation of (5) is more complicated than (8) due to the MK mixes of Gaussian distribution
involved. The Monte Carlo integration which can be used for calculating (8) may not be used for
calculating (5) especially when K and M are large. For example, for a MAC system with K = 10 users
and QPSK modulation (M = 4), there are 410 items in the summation of (6). This problem will be
addressed in next section.

To realize the sum capacity Csum, a joint maximum likelihood (ML) decoding is required for
the base station to jointly detect the codewords sent by all users. Alternatively, with the aid of SIC,
Csum can also be realized with per user ML decoders. This is because that, according to the chain rule
of mutual information [4], the mutual information I(Y; XKXK−1 · · ·X1) can be expressed as

I(Y; XKXK−1 · · ·X1) = I(Y; XK) + I(Y; XK−1|XK) + · · ·+ I(Y; X1|XK · · ·X2), (10)

which indicates that the receiver could first decode the data XK of user K, treating X1, X2, · · · , XK−1 as
interferences, then subtract the signal XK from the receive signal Y and then, decode the data XK−1 of
user K− 1, and so on.

Note that (10) holds for arbitrary permutation of X1, X2, · · · , XK, indicating that the detection
order has no affect on the sum capacity. For this reason, in the remainder of the paper, it is assumed that
the receiver is equipped with a SIC ML decoder and that the user data is detected in the descending
order of channel gains.

2.2. Broadcast Channel

Figure 2 is the system model for the multi-user BC system working in superposition code
strategy [2]. The data of users is independently encoded at the base station and then the combined
signal is broadcast to all users. The channel for user j can be considered as a MAC with an equal
channel gain gj and the signal received at user j can be written as

Yj =
√

gj

K

∑
i=1

√
PiXi + Zj (11)

where Zj ∼ CN (0, 1) for j = 1, 2, · · · , K are i.i.d. complex Gaussian noise, Xi is the transmitted signals
of user i, Pi is the power allocated to user i, gj is the channel gain from base station to user j. We also
assume that 0 < g1 ≤ g2 ≤ · · · ≤ gK.

The achievable rate Rj is upper bounded by the capacity of the j-th link which can be written as

Cj(γj) = I(Yj; Xj). (12)

The mutual information is monotonically increase with channel gain, so it is obvious that

I(Yj+1; Xj|Xj−1 · · ·X1) ≥ I(Yj; Xj|Xj−1 · · ·X1) (13)
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which means that, if user j can successfully decode its data Xj, so can user j + 1 who has a better
channel for gj+1 ≥ gj. Under the superposition coding strategy, user 1 treats the signals of other users
as noise and decodes its data X1 from Y1. Then, user 2, which has the better channel can first decode
X1 of user 1 from Y2 and proceed to subtract the transmit signal of user 1 from Y2 and decode its data
X2 and so on.
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Figure 2. System model for a multi-user BC system.

For Gaussian channel inputs, the sum capacity for BC under a given power allocation P1, P2, · · · , PK
can be expressed [2] as

CGaussian
sum =

K

∑
j=1

I(Yj; Xj)

=
K

∑
j=1

ln

1 +
Pjgj

1 + gj
K
∑

i=j+1
Pi


= ln

(
1 +

K

∑
j=1

Pjgj

)
,

(14)

which can be maximized by allocating total power P1 + P2 + · · ·+ PK = P to the best user and the
resulting maximum sum capacity is

CGaussian
sum = ln (1 + PgK) . (15)

Note that (14) and (15) are exactly the same as (3) and (4). This property is known as the duality
of Gaussian BC and MAC [2].

For non-Gaussian inputs, the sum capacity for BC is given by

Csum =
K

∑
j=1

I(Yj; Xj)

=I(Y1; X1) + I(Y2; X2|X1) + · · ·+ I(YK; XK|XK−1 · · ·X1).

(16)

3. Entropy Power and the Parallelization of MAC and BC

For Gaussian inputs, due to the very simple form of ln(1 + γ), it is trivial to calculate the
sum capacity and to find the optimal power allocation. However, this is far more complicated for
non-Gaussian inputs since the integral in the mutual information calculation involves the PDF of Y
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which is a combination of many Gaussian PDFs. This section will first introduce the concept of entropy
power approximation and then convert the K user MAC and BC into K parallel point-to-point channels.

3.1. Entropy Power

Let Z ∼ CN (0, σ2
Z), X be an arbitrary random variable with zero mean and variance E[|X|2] = σ2

X .
Z and X are mutually independent. Assume that the mutual information I(X; X + Z) is known.
Now we consider to approximate X + Z as a Gaussian variable Z̃ ∼ CN (0, σ2

e ) while keeping entropy
unchanged, i.e., h(X + Z) = h(Z̃).

Since h(Z) = ln(2πeσ2
Z), h(Z̃) = ln(2πeσ2

e ), and I(X; X + Z) = h(X + Z) − H(Z), so it is
obvious that

σ2
e = eI(X;X+Z)σ2

Z, (17)

and we have the following inequality

σ2
Z ≤ σ2

e ≤ σ2
X + σ2

Z, (18)

due to the fact that 0 ≤ I(X; X + Z) ≤ ln(1 + σ2
X/σ2

Z). σ2
e is known as the entropy power [20,21] which

is originally proposed by Claude Shannon.

3.2. Parallelization for MAC

Consider the MAC system shown in Figure 1. Assume that the base station has adopted a SIC
decoder which detects user data in the descending order of channel gains, i.e., XK is first detected
taking X1, X2, · · · , XK−1 as interference, then the XK−1 is detected with XK being cancelled out and
the interference being X1, X2, · · · , XK−2, and so on.

In detecting the last data X1, the equivalent received signal is

Y1 =
√

P1g1X1 + Z. (19)

The capacity of user 1 is given by

C1 = C0(γ1) = C0 (P1g1) , (20)

where C0(x) is the function defined in (8) and can be estimated with (9).
In detecting X2, the equivalent received signal is

Y2 =
√

P2g2X2 +
√

P1g1X1 + Z. (21)

According to (17), the last two terms
√

P1g1X1 + Z of (21) can be approximated to a Gaussian
noise of entropy power σ2

1 = e−C1 . Scaling both sides of (21) by σ1 yields

Ỹ2 =
√

P2 g̃2X2 + Z2, (22)

where g̃2 = g2e−C1 and Z2 ∼ CN (0, 1) is the Gaussian approximation of (
√

P1g1X1 + Z)/σ1.
This equation indicates that, from the perspective of user 2, the multi-user MAC channel has been
converted to a single user channel where the existence of interfering user 1 is equivalent to modify the
channel gain g2 by a factor e−C1 .

In the similar way, it is straightforward to see that the channel for user j is equivalent to

Ỹj =
√

Pj g̃jXj + Zj, (23)
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where Zj ∼ CN (0, 1) is the normalized Gaussian approximation of interference and noise, and the
equivalent channel gain is given by

g̃j = gje
−C1−C2−···−Cj−1

Cj = C0(Pj g̃j)
(24)

for j = 1, 2, · · · , K with g̃1 = g1.
Now, (24) indicates that the K users MAC system is equivalent to K parallel single user systems

each with the channel gain gj being modified to g̃j, as shown in Figure 3. The sum capacity is then
given by

Csum ≈
K

∑
j=1

Cj =
K

∑
j=1

C0
(

Pj g̃j
)

, (25)

which can be evaluated via (8) or (9).
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Figure 3. Parallelization for MAC.

Figure 3 indicates that the existence of interfering users is equivalent to an extra attenuation of
channel gain. It can be noted that the capacity of M-ary modulation ranges from 0 to log M , therefore
it is obviously that

gj ≥ g̃j ≥
gj

Mj−1 (26)

for j = 1, 2, · · · , K. At low SNR regime, g̃j goes to gj while at high SNR regime g̃j goes to gj/Mj−1.

3.3. Parallelization for BC

For the K users BC system operated in superposition mode, user j can cancel the interference from
user 1 to j− 1. The received signal after interference cancellation can be expressed as

Yj =
√

PjgjXj +
√

gj

K

∑
i=j+1

√
PiXi + Zj. (27)

Similar to the case in MAC, by approximating Z′ = √gj
K
∑

i=j+1

√
PjXi + Zj to a Gaussian noise

with equivalent noise variance be the entropy power of Z′, and after noise power normalization,
the channel form Xj to user j can be equivalent to

Ỹj =
√

Pj g̃jXj + Z̃j, (28)
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where Z̃j ∼ CN (0, 1) is the normalized effective Gaussian noise, g̃j is the equivalent channel gain
given by

g̃j = gje
−∑K

j=i+1 Cji (29)

with

Cji = I
(
Yj; Xi

)
(30)

be the mutual information between the transmitted data Xi and the received signal Yj which can be
evaluated by regarding the channel between Xj, Xj+1, · · · , XK to Yj as a MAC but with inverse SIC
detection order.

In such a way, the K user BC system is also equivalent to K parallel point-to-point channels as
depicted in Figure 4.
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Figure 4. Parallelization for BC.

As Figure 4 has the same structure as Figure 3 with the only difference lying in the scaling
coefficient between gj and g̃j, we will only consider MAC hereafter.

4. Sum Capacity for MAC with Different Power Allocation Strategies

Based on the parallel model shown in Figure 3, this section will discuss the capacity of MAC
channel under different power allocation strategies.

4.1. Equal Power Distribution

In the case of equal power allocation, the total transmit power P is uniformly allocated among K
users, i.e., P1 = P2 = · · · = PK = P

K . The signal arrived at the base station is

Y =

√
P
K

K

∑
j=1

√
gjXj + Z, (31)

and the sum capacity is given by

Csum =
K

∑
j=1

Cj =
K

∑
j=1

C0

(Pg̃j

K

)
, (32)

where g̃j = gj · e−C1−C2−···−Cj−1 is the scaled equivalent channel gain, and C0(·) can be evaluated with
the approximation Formula (9).
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It can be noted that the sum capacity given by (32) is upper bounded by

Csum ≤
K

∑
i=1

log
(

1 +
Pgi
K

)
, (33)

since the Gaussian encoder has maximum channel mutual information. In addition, when K → ∞,
the sum capacity with M-ary inputs will approach to the upper bound because that the term

1√
K ∑K

j=1
√gjXj in (31) will approach to Gaussian according to central limit theorem (CLT).

Asymptotically, lim
K→∞

1√
K ∑K

j=1
√gjXj ∼ CN (0, 1) with E[gi] = 1 and the capacity will go to ln(1 + P).

In other words, the Shannon capacity can be realized with a large number of small power nodes,
no matter what the constellation size is.

4.2. Power Allocation for Equal Capacity

If the objective is to guarantee all users have the same quality-of-service (QoS),
i.e., C1 = C2 = · · · = CK = C, then from Figure 3 it is obvious that the power allocation
should satisfy

Pi g̃i = Pi−1 g̃i−1, (34)

for all i = 2, 3, · · · , K.
Equation (34) can be rewritten as

Pi = Pi−1 ·
g̃i−1

gi
= Pi−1 ·

gi−1

gi
eC. (35)

Apply (35) recursively, the result obtained is

Pi = P1 ·
g1

gi
e(i−1)C. (36)

Whenever P1 is given, C = C0(P1g1) and P2, P3, · · · , PK are also given. Therefore, the optimal
power allocation which can maximize the common capacity C can be easily obtained by using
numerical search algorithms, say, the dichotomy algorithm.

4.3. Optimal Power Allocation for Maximum Sum Capacity

This section focus on the optimal power allocation that can maximum the sum capacity of a K
user MAC system under the total power constraint. For the Gaussian inputs, the optimal solution is
known as to allocate all power to the strongest user. However, this is not the case for M-ary inputs as
will be seen latter.

The optimization problem can be formulated as

maximize f (P1, · · · , PK) =
K

∑
j=1

Cj =
K

∑
i=1

C0 (Pi g̃i)

subject to
K

∑
j=1

Pj = P

. (37)

Define

J =
K

∑
i=1

Ci − λ

(
K

∑
i=1

Pi − P

)
. (38)
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If P∗ = [P∗1 , P∗2 , · · · , P∗K] is the optimal solution for (37), then at P∗, the partial derivatives of f
with respect to Pk must satisfy

K

∑
i=1

∂Ci
∂Pk

= λ, k = 1, 2, · · · , K (39)

Define

λk =
K

∑
i=1

∂C0(Pi g̃i)

∂Pk
, (40)

which represents the slop of sum capacity with respect Pk, then the necessary condition for the optimal
power allocation can be stated as

λ1 = λ2 = · · · = λK. (41)

Based on this necessary condition, an iterative algorithm for the optimal power allocation is
shown in Algorithm 1.

Algorithm 1 Optimal Power Allocation Algorithm.

Step 1: initialize: set ∆, set P1 = P2 = · · · = PK = P/K.
Step 2: Calculate λi, ∀i = 1, 2, · · · , K.
Step 3: Let λi and λj be the maximum and minimum values of [λ1, λ2, · · · , λK ].
Step 4: Pi = Pi + ∆ and Pj = Pj − ∆.
Step 5: Goto Step 2 if the incremental of Csum is large than a threshold.

It can be observed from (26) that, at low SNR regime, g̃j will go to gj. In this situation, Figure 3
becomes K parallel independent channels without interaction among channel gains. According to [22],
the optimal power allocation is to allocate power only to the strongest channel and the sum capacity is
simply given by C0(PgK).

At high SNR regime, by applying the lower bound in (26)–(37), the optimization problem becomes

maximum f (P1, · · · , PK) =
K

∑
j=1

C0

( Pjgj

Mj−1

)

subject to
K

∑
j=1

Pj = P→ ∞

. (42)

It can be verified that the objective function f (P1, · · · , PK) is concave. According to [22],
the optimal power allocation is given by

Pj =
β

g̃j
P (43)

with

1
β
=

1
K

K

∑
i=1

1
g̃j

. (44)

This indicates that the stronger an equivalent channel is, the less power it is allocated which is in
sharp contrast to water-filling policy. The sum capacity for this case is given by

Csum =
K

∑
i=1

C0(βP). (45)
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Equations (39) and (43) rely on the Karush-Kuhn-Tucker (KKT) conditions [23]. In general, there
is a unique P∗ that satisfies the KKT conditions when problem (37) is strictly concave, corresponding
to the global maximum. However, the optimal power allocation in (37) is nonconcave. It becomes
concave only in some specific cases, e.g., for Gaussian input distributions (4). Especially, (37) is
also concave at low and high SNR regime in which case the K parallel channels are independent,
i.e., the power allocation (43) is unique. However, in general, (39) does not identify uniquely the
optimal power allocation. Thus, it is important to realize that (39) gives a necessary condition for the
optimal power allocation.

5. Numerical Results

This section presents the numerical results of the sum capacity for single-cell multi-user system.
Since Figure 4 is essentially the same with Figure 3, only the results of MAC are presented. Throughout
this section, {gj} are i.i.d. exponentially distributed random variables with unit expectation,
i.e., E[gj] = 1 which means the data of each user Xi goes through Rayleigh fading and SNR represents
the average signal-to-noise ratio per user. The true quantities are approximated using standard Monte
Carlo techniques for comparison.

Figure 5 depicts the capacity calculated by (9) versus average SNR per user. It can be seen that the
curves obtained by (9) for QPSK, 8PSK, 16QAM modulations fit well with the exact capacity which is
obtained with Monte Carlo integration [18].

−20 −15 −10 −5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR(dB)

C
ap

ac
ity

 (
bi

ts
/s

ym
bo

l)

 

 

QPSK, Monte Carlo
QPSK, Approximation
8PSK, Monte Carlo
8PSK, Approximation
16QAM, Monte Carlo
16QAM, Approximation

Figure 5. Approximations for the capacity with QPSK, 8PSK, 16QAM modulations, respectively.

Figure 6 evaluates the sum capacity with the parallel model shown in Figure 3. The results of (25)
with 16QAM modulation and K = 2, 3, 4, 10 are illustrated respectively, assuming the total power P is
randomly allocated to users. The abscissa is P in decibel and the unit of capacity is bits per symbol.
The curves labeled by “Monte Carlo, K = 2, 3” are obtained via the Monte Carlo integration of (5) and
the other curves are evaluated from (25). It can be observed that the approximations fit well with the
result of Monte Carlo integration when SNR is small and has a small error with the real values when
SNR is pretty large which means that the approximations can be considered as a good alternative
for the sum capacity. Note that the curves “Monte Carlo, K = 4, 10” are missing because it is almost
impossible to use Monte Carlo integration for estimating these cases since p(y) defined in (6) has 164

and 1610 items in summation. The cases of K = 6, 8 and so on are similar to the cases of K = 2, 3, 4, 10.
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Figure 6. Approximations for the sum capacity with K = 2,4,10, respectively.

Figures 7 and 8 give the sum capacity obtained by equal power allocation, equal capacity power
allocation and optimal maximum capacity power allocation for MAC with 16QAM modulation and
K = 2, 4 users, respectively. The sum capacity is always upper limited by K log M for all strategies.
The gap between the sum capacity of optimal power allocation and that of equal power allocation
first becomes larger with the increase of total power and then gets to the upper limit. As for the equal
capacity power allocation, the gap to the maximum capacity is relatively large when the total power is
small because the optimal power allocation is to allocate power only to the strongest channel.
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Figure 7. Sum capacity for 2 users MAC with 16QAM.
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Figure 8. Sum capacity for 4 users MAC with 16QAM.
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Figures 9 and 10 indicate that the increment of sum capacity with different power allocation
strategies becomes smaller with the increase of users K when P = 0 dB, 10 dB and 30 dB, respectively.
The optimal power allocation performs the best and the sum capacities with equal power allocation
strategy are upper bounded by log2(1 + P) as shown in Section 4.1. The gap between equal capacity
power allocation and optimal power allocation becomes larger as the number of user K increases
because each user can reach the upper limit of the channel capacity log M when K is small and P
is relatively large, i.e., the optimal power allocation strategy is equivalent to equal capacity power
allocation in this case. It can be observed that the sum capacity of equal capacity power allocation
decreases as the number of user increases when P is small due to the fact that the optimal power
allocation is to allocate power only to the strongest channel with low SNR regime.

1 2 3 4 5 6 7 8 9 10

3

4

5

6

7

8

9

10

11

 K

C
ap

ac
ity

 (
bi

ts
/s

ym
bo

l)

 

 

Optimal power allocation, 30dB
Equal capacity, 30dB
Equal power allocation, 30dB
Upper limit, log2(1+1000), 30dB

Optimal power allocation, 10dB
Equal capacity, 10dB
Equal power allocation, 10dB
Upper limit, log2(1+10), 10dB

Figure 9. Sum capacity with total power P = 10 dB and 30 dB.
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Figure 10. Sum capacity with total power P = 0 dB.

Figures 11–13 illustrate the optimal power allocation and equal capacity power allocation
with total power P = −3, 30, 50 dB, respectively. The channel gains for the 4 users are
g = [0.2309, 0.5543, 0.9139, 1.5171]. When the total power is small, i.e., −3 dB, the equivalent channel
gains are the same with real channel gains g, the optimal power allocation is to allocate power only
to the strongest channel which is consistent with the power allocation for Gaussian MAC and BC.
Observed from Figure 11, the channel gain of the 4th user is the best, thus all the power is allocated
to user 4 and the power for other users is zero. In addition, to achieve the equal capacity, the
power allocation for each user is inversely proportional to its channel gain which is in shape contrast
with optimal power allocation. Figure 12 shows the power allocation with total power P = 30 dB,
the difference between equal capacity and optimal power allocation becomes small compared with
Figure 11 which can also be obtained from Figure 8. Figure 13 illustrates the power distribution
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with K = 4 and total power P = 50 dB. When P is large, first we can get an equivalent channel gain
through (24), and the better the equivalent channel gain is, the less power it is allocated. In this case,
the difference between the optimal and equal power allocation is small because they can both achieve
the upper bound of the capacity, thus the equivalent channel gains (24) for the two strategies have
no difference.
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Figure 11. Power allocation with total power P = −3 dB.
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Figure 12. Power allocation with total power P = 30 dB.
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Entropy 2017, 19, 497 15 of 16

6. Conclusions

This paper first introduces an approximation which gives a good result for the capacity of
point-to-point communication with arbitrary inputs AWGN channel. For multi-user systems, it is
shown that both MAC and BC can be approximated to a bank of parallel channels based on SIC and
entropy power Gaussian approximation. Then the sum capacity for MAC and BC can be approximated
to the sum of capacity of K parallel channels with arbitrary inputs.

Based on the approximation and the parallelization of MAC and BC, an optimal power allocation
algorithm that maximizes the sum capacity with non-Gaussian inputs is proposed by (39). When SNR
is large, e.g., 50 dB, the optimal power allocation is to allocate its power to a series of equivalent
channels and the stronger the equivalent channel is, the smaller the power of the related channel is
allocated. When SNR is small, e.g., −3 dB, the optimal power allocation is independent of the channel
inputs, i.e., the optimal power allocation is to allocate all the power only to the strongest channel
whether it is Gaussian or non-Gaussian. For the equal capacity power allocation, a recursive relation
for the solution of power allocation is derived.

Future work will focus on multiuser channels with multiple antennas in both the uplink and the
downlink. With the increase of the degrees of freedom from having multiple antennas, the gain of the
sum capacity will be investigated.
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