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Abstract: Robust biometric authentication is studied from an information theoretic perspective.
Compound sources are used to account for uncertainty in the knowledge of the source statistics
and are further used to model certain attack classes. It is shown that authentication is robust
against source uncertainty and a special class of attacks under the strong secrecy condition. A
single-letter characterization of the privacy secrecy capacity region is derived for the generated
and chosen secret key model. Furthermore, the question is studied whether small variations of
the compound source lead to large losses of the privacy secrecy capacity region. It is shown that
biometric authentication is robust in the sense that its privacy secrecy capacity region depends
continuously on the compound source.
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1. Introduction

Biometric identifiers, such as fingerprints, iris and retina scans, are becoming increasingly
attractive for the use in security systems because of their uniqueness and time invariant
characteristics—for example, in authentication and identification systems. Conventional personal
authentication systems usually use secret passwords or physical tokens to guarantee the legitimacy
of a person. On the other hand, biometric authentication systems use the physical characteristics of a
person to guarantee the legitimacy of the person to be authenticated.

Biometric authentication systems are decomposed into two phases: the enrollment and the
authentication phase. A simple authentication approach is to gather biometric measurements in
the enrollment phase, apply a one-way function and then store the results in a public database.
In the authentication phase, new biometric measurements are gathered. The same one-way is
applied and the outcome is then compared to the one stored in the database. Unfortunately,
biometric measurements might be affected by noise. To deal with noisy data, error correction is
needed. Therefore, helper data is generated during the enrollment phase as well based on the
biometric measurements and then stored directly in the public database that will be then used in
the authentication phase, which will then be used in the authentication phase to correct the noisy
imperfections of the measurements.

Since the database containing the helper data is public, an eavesdropper can have access to the
data if desired. How can we prevent an eavesdropper from gaining information about the biometric
data from the publicly stored helper data? One is interested in encoding the biometric data into a
helper data and a secret key such that the helper data does not reveal any information about the
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secret key. Cryptographic techniques are one approach to keeping the key secret. However, security
on higher layers is usually based on the assumption of insufficient computational capabilities of
eavesdroppers. Information theoretic security, on the contrary, uses the physical properties of the
source to guarantee security independent from the computational capabilities of the adversary. This
line of research was initiated by Shannon in [1] and has attracted considerable interest recently—cf.,
for example, recent textbooks [2–4] and references therein. In particular, Ahlswede and Csiszár in [5]
and Maurer in [6] introduced a secret key sharing model. It consists of two terminals that observe
the correlated sequences of a joint source. Both terminals generate a common key based on their
observation and using public communication. The message transmitted over the public channel
should not leak any amount of information about the common key.

Both works mentioned above use the weak secrecy condition as a measure of secrecy. Given
a code of a certain blocklength, the weak secrecy condition is fulfilled if the mutual information
between the key and the available information at the eavesdropper normalized by the code
blocklength is arbitrarily small for large blocklengths. On the other hand, the strong secrecy condition
is fulfilled if the un-normalized mutual information between the key and the available information
at the eavesdropper is arbitrarily small for large blocklengths, i.e., the total amount of information
leaked to the eavesdropper is negligible. The secret key sharing model satisfying the strong secrecy
condition has been studied in [7].

One could model the biometric authentication similar to this secret key generation source model;
however, this model does not take into account the amount of information that the public data (the
helper data in the biometric scenario) leaks about the biometric measurement. The goal of biometric
authentication is to perform a secret and successful authentication procedure without compromising
the information about the user (privacy leakage). Compromised biometric information is unique
and cannot be replaced, so once it is compromised, it is compromised forever, which might lead
to an identity theft (see [8–10] for more information on privacy concerns). Since the helper data
we use to deal with noisy data is a function of the biometric measurements, it contains information
about the biometric measurement. Thus, if an attacker breaks into the data base, he could be able to
extract information about the biometric measurement from where the helper data is stored. Hence,
we aim to control the privacy leakage as well. An information theoretic approach of secure biometric
authentication controlling the privacy leakage was studied in [11,12] under ideal conditions, i.e., with
perfect source state information (SSI) and without the presence of active attackers.

In both references [11,12], the capacity results under the weak secrecy condition were derived.
In [13], the capacity result for the sequential key-distillation with rate limited one-way public
communication using the strong secrecy condition was shown.

For reliable authentication, SSI is needed; however, in practical systems, it is never perfectly
available. Compound sources model a simple and realistic SSI scenario in which the legitimate users
are not aware of the actual source realisation. Nevertheless, they know that it belongs to a known
uncertainty set of sources and that it remains constant during the entire observation. This model was
first introduced and studied in [14,15] in a channel coding context. Compound sources can also model
the presence of an active attacker, who is able to control the state of the source. We are interested in
performing an authentication process that is robust against such uncertainties and attacks. The secret
key generation for source uncertainty was studied in [16–19]. In [16], the secret key generation using
compound joint sources was studied and the key-capacity was established.

In [20], the achievability result of the privacy secrecy capacity region for generated secret keys
for compound sources has been derived under the weak secrecy condition. In this work, we study
robust biometric authentication in detail and extend this result in several directions. First, we
consider a model where the legitimate users suffer from source uncertainty and/or attacks and derive
achievability results under the strong secrecy conditions for both the generated and chosen secret key
authentication. We then provide matching converses to obtain single-letter characterizations of the
corresponding privacy secrecy capacity regions.
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We further address the following question: can small changes of the compound source cause
large changes in the privacy secrecy capacity region? Such a question has been first studied in [21] for
arbitrarily varying quantum channels (AVQCs) showing that deterministic capacity has discontinuity
points, while the randomness-assisted capacity is a continuous function of the AVQCs. This line of
research is continued in [22] and [23], in which the classical compound wiretap channel, the arbitrarily
varying wiretap channel (AVWC), and the compound broadcast channel with confidential messages
(BCC) are studied. We study this for the biometric authentication problem at hand and show
that the corresponding privacy secrecy capacity regions are continuous functions of the underlying
uncertainty sets. Thus, small changes in the compound set lead to small changes in the capacity
region only.

The rest of this paper is organized as follows. In Section 2, we introduce the biometric
authentication model for perfect SSI and present the corresponding capacity results. In Section 3, we
introduce the biometric authentication model for compound sources and show that secure, under the
strong secrecy condition, and reliable authentication, under source uncertainty with positive rates, is
possible deriving a single-letter characterization of the privacy secrecy capacity region for the chosen
and generated secret key model. In Section 4, we show that the privacy secrecy capacity region for
compound sources is a continuous function of the uncertainty set. Finally, the paper ends with a
conclusion in Section 5.

Notation: Discrete random variables are denoted by capital letters and their realizations and
ranges by lower case and script letters. P(X ) denotes the set of all probability distributions on X ;
E(·) denotes the expectation of a random variable; Pr{·}, H(·) and I(·; ·) indicate the probability, the
entropy of a random variable, and mutual information between two random variables; D(·‖·) is the
information divergence; ‖p − q‖TV is the total variation distance between p and q on X defined as
‖p − q‖TV := ∑x∈X |p(x) − q(x)|. The set T n

p,δ denotes the set of δ−typical sequences of length n
with respect to the distribution p; the set T n

W,δ(xn) denotes the set of δ−conditional typical sequences
with respect to the conditional distribution W : X → P(Y) and sequence xn ∈ X n; pxn denotes the
empirical distribution of the sequence xn.

2. Information Theoretic Model for Biometric Authentication

Let X and Y be two finite alphabets. Let (xn, yn) ∈ X n ×Yn be a pair of biometric sequences of
length n ∈ N; then, the discrete memoryless joint-source is given by the joint probability distribution
Qn(xn, yn) := ∏n

i=1 Q(xi, yi). This models perfect SSI, i.e., all possible measurements are generated
by the discrete memoryless joint-source source Q, which is perfectly known at both the enrollment
and the authentication terminal.

2.1. Generated Secret Key Model

The information theoretic authentication model consists of a discrete memoryless joint-source
Q, which represents the biometric measurement source, and two terminals: the enrollment terminal
and the authentication terminal as shown in Figure 1. At the enrollment terminal, the enrollment
sequence Xn is observed and the secret key K and helper data M′ are generated. At the authentication
terminal, the authentication sequence Yn is observed. An estimate of the secret key K̂ is made based
on the authentication sequence Yn and the helper data M′. Since the helper data is stored in a public
database, this should not reveal anything about the secret key K and also as little as possible about
the enrollment measurement Xn. The distribution of the key must be close to uniform.
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Enrollment Authentication
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Figure 1. The biometric measurements Xn and Yn are observed in the enrollment and authentication
terminal, respectively. In the enrollment terminal, the key K and the helper data M′ are generated.
The helper data is public, hence the eavesdropper also has access to it. In the authentication terminal,
an estimation of a key K̂ is made based on the observed biometric measurements Yn and the helper
data M′.

We consider a block-processing of arbitrary but fixed length n. Let M′ := {1, . . . , M′n} be the
helper data set and K := {1, . . . , Kn} the secret key set.

Definition 1. An (n, M′n, Kn)-code for generated secret key authentication for joint-source
Q ∈ P(X ×Y) consists of an encoder f at the enrollment terminal with

f : X n → K×M′

and a decoder ϕ at the authentication terminal

ϕ : Yn ×M′ → K.

Remark 1. Note that the function f means that every xn is mapped into a (k, m′) ∈ K ×M′, which implies
that | f (·)| = Kn M′n ≤ |X n|.

Definition 2. A privacy secrecy rate pair (RPL, RK) ∈ R2
+ is called achievable for the generated secret

key authentication for a joint-source Q, if, for any δ > 0, there exist an n(δ) ∈ N and a sequence of
(n, M′n, Kn)-codes such that, for all n ≥ n(δ), we have

Pr{K̂ 6= K} ≤ δ, (1a)
1
n

H(K) + δ ≥ 1
n

log Kn ≥ RK − δ, (1b)

1
n

I(K; M′) ≤ δ, (1c)

1
n

I(Xn; M′) ≤ RPL + δ. (1d)

Remark 2. Condition (1b) requires the key distribution pK to be close to the uniform distribution
pK̃, where K̃ is a random variable uniformly distributed over the key set K. By (1b), we have
1
n log Kn − 1

n H(K) = D(K‖K̃) ≤ δ; combined with Pinsker’s inequality, we have
‖pK − pK̃‖ ≤

√
2 ln 2δ. For small δ, we have that both distributions are close to each other.

Remark 3. Condition (1a) stands for reliable authentication, the information about the key leaked by the helper
data is negligible by (1c) and the information about the biometric measurements leaked by the helper data
1
n I(Xn; M′) is close to RPL by (1d).

Definition 3. The set of all achievable privacy secrecy rate pairs for generated key authentication is called
privacy secrecy capacity region and is denoted by CG(Q).
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We next present the privacy secrecy capacity region for the generated key authentication for the
joint-source Q, which was first established in [11] and [12].

To do so, for some U with alphabet |U | ≤ |X | + 1 and V : X → P(U ), we define the region
R(Q, V) as the set of all (RPL, RK) ∈ R2

+ satisfying

RK ≤ I(U; Y),

RPL ≥ I(U; X)− I(U; Y),

with PUXY(u, x, y) = V(u|x)Q(x, y).

Theorem 1 ([11,12]). The privacy secrecy capacity region for generated key authentication is given by

CG(Q) =
⋃

V : X→P(U )
R(Q, V).

2.2. Chosen Secret Key Model

In this section, we study the authentication model for systems for which the secret key is chosen
beforehand. At the enrollment terminal, a secret key K is chosen uniformly and independent of
the biometric measurements. The secret key K is bound to the biometric measurements Xn, and,
based on this, the helper data M′ is generated as shown in Figure 2. At the authentication terminal,
the authentication measurement Yn is observed. An estimate of the secret key K̂ is made based on
the authentication sequence Yn and the helper data M′. Since the helper data is stored in a public
database, this should not reveal anything about the secret key and minimize the information leakage
about the enrollment sequence Xn. However, we should be able to reconstruct K. To achieve this, a
masking layer based on the one-time pad principles is used.

Enrollment Authentication

Q

M′

Xn

K

Yn

K̂

Eavesdropper

Figure 2. The biometric sequences Xn and Yn are observed at the enrollment and authentication
terminal, respectively. In the enrollment terminal, the helper data M′ is generated for a given secret
key K. The helper data is public, hence the eavesdropper also has access to it. In the authentication
terminal, an estimation of a key K̂ is made based on the observed biometric authentication sequence
Yn and the helper data M′.

The masking layer, which is another uniformly distributed chosen secret key K, is added to the
top of the generated secret key authentication. At the enrollment terminal, a secret key Kg and a
helper data M are generated. The generated secret key is added modulo-|K| to the masking layer
K and sent together with the helper data as additional helper data, i.e., M′ = (M, K ⊕ Kg). At the
authentication terminal, an estimation of the generated secret key K̂g is made based on Yn and M and
the estimation of masking layer is made K̂ = K⊕ Kg 	 K̂g.

We consider a block-processing of arbitrary but fixed length n. Let M′ := {1, . . . , M′n} be the
helper data set and K := {1, . . . , Kn} the secret key set.
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Definition 4. An (n, M′n, Kn)-code for chosen secret key authentication for joint-source Q ∈ P(X × Y)
consists of an encoder f at the enrollment terminal with

f : K×X n →M′

and a decoder ϕ at the authentication terminal

ϕ : Yn ×M′ → K.

Definition 5. A privacy secrecy rate pair (RPL, RK) ∈ R2
+ for chosen secret key authentication is called

achievable for a joint-source Q, if, for any δ > 0, there exist an n(δ) ∈ N and a sequence of (n, M′n, Kn)-codes,
such that, for all n ≥ n(δ), we have

Pr{K̂ 6= K} ≤ δ, (2a)
1
n

log Kn ≥ RK − δ, (2b)

1
n

I(K; M′) ≤ δ, (2c)

1
n

I(Xn; M′) ≤ RPL + δ. (2d)

Remark 4. The difference between Definition 5 and 2 is that, in here, the uniformity of the key is
already guaranteed.

Definition 6. The privacy secrecy capacity region for chosen secret key authentication for the joint-source
Q ∈ P(X ×Y) is called privacy secrecy capacity region and is denoted as CC(Q).

We next present the privacy secrecy capacity region for chosen secret key authentication for the
joint-source Q as showed in [11].

Theorem 2 ([11]). The privacy secrecy capacity region for the chosen secret key authentication is given by

CC(Q) =
⋃

V : X→P(U )
R(Q, V).

3. Authentication for Compound Sources

Let X and Y be two finite sets and S a finite state set. Let (xn, yn) ∈ X n × Yn be a sequence
pair of length n ∈ N. For every s ∈ S , the discrete memoryless joint-source is given by the joint
probability distribution Qn

s (xn, yn) := ∏n
i=1 Qs(xi, yi) = ∏n

i=1 ps(xi)Ws(yi|xi), with ps ∈ P(X ) a
marginal distribution on X and Ws : X → P(Y) a stochastic matrix.

Definition 7. The discrete memoryless compound joint-source QXY is given by the family of joint
probabilities distributions on X ×Y as

QXY := {Qs ∈ P(X ×Y) : s ∈ S}.

We define the finite set of marginal distributions QX over the alphabet X from the compound
joint-source QXY as

QX :=
{

ps ∈ P(X ) : s ∈ S , ps(x) = ∑
y∈Y

Qs(x, y) for every x ∈ X and Qs ∈ QXY
}

.

We define L as the index set of QX . Note that |L| = |QX | ≤ |QXY |.
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For every ` ∈ L, we define the subset of the compound joint-source QXY with the same marginal
distribution p` as

QXY ,` :=
{

Qs ∈ QXY : Qs(x, y) = p`(x)Ws(y|x) for every (x, y) ∈ X ×Y
}

.

For every ` ∈ L, we define the index set S` of QXY ,` as

S` := {s ∈ S : Qs ∈ QXY ,`}.

Remark 5. Note that, for every `, `′ ∈ L with ` 6= `′, it holds that QXY ,` ∩QXY ,`′ = ∅, S` ∩ S`′ = ∅,
S =

⋃
`∈L S` and QXY =

⋃
`∈LQXY ,`.

3.1. Compound Generated Secret Key Model

In this section, we study the generated secret key authentication for finite compound
joint-sources, which is a special class of sources that model a limited SSI, as shown in Figure 3.

Enrollment Authentication

Qs

M′

Xn

K

Yn

K̂

Attacker/
Source Uncertainty

s ∈ S

Figure 3. The attacker controls the state of the source s ∈ S . The biometric sequences Xn and Yn are
observed at the enrollment and authentication, terminal respectively. In the enrollment terminal, the
key K and the helper data M′ are generated. The helper data is public, hence the attacker also has
access to it. In the authentication terminal, an estimation of a key K̂ is made based on the observed
authentication sequence Yn and the helper data M′.

We consider a block-processing of arbitrary but fixed length n. Let M′ := {1, . . . , M′n} be the
helper data set and K := {1, . . . , Kn} the secret key set.

Definition 8. An (n, M′n, Kn)-code for generated secret key authentication for the compound joint-source
QXY ⊂ P(X ×Y) consists of an encoder f at the enrollment terminal with

f : X n → K×M′

and a decoder ϕ at the authentication terminal

ϕ : Yn ×M′ → K.
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Definition 9. A privacy secrecy rate pair (RPL, RK) ∈ R2
+ is called achievable for generated secret key

authentication for the compound joint-source QXY , if, for any δ > 0, there exist an n(δ) ∈ N and a sequence
of (n, M′n, Kn)-codes, such that for all n ≥ n(δ) and for every s ∈ S , we have

Pr{K̂ 6= K} ≤ δ,

H(K) + δ ≥ 1
n

log Kn ≥ RK − δ,

I(K; M′) ≤ δ,
1
n

I(Xn
s ; M′) ≤ RPL + δ.

Consider the compound joint-source QXY . For a fixed ` ∈ L, V : X → P(U ) and for every
s ∈ S`, we define the regionR(V, `, s) as the set of all (RPL, RK) ∈ R2

+ that satisfy

RK ≤ I(U`; Ys),

RPL ≥ I(U`; X`)− I(U`; Ys),

with PUXY,s(u, x, y) = V(u|x)Qs(x, y).

Theorem 3. The privacy secrecy capacity region for generated secret key authentication for the compound
joint-source QXY is given by

CG(QXY ) =
⋂
`∈L

⋃
V:X→P(U )
|U |≤|X |+|S` |

⋂
s∈S`

R(V, `, s).

Proof. The proof of Theorem 3 consists of two parts: achievability and converse. The achievability
scheme uses the following protocol:

• Estimate the marginal distribution p ˆ̀ ∈ QX from the observed sequence Xn at the enrollment
terminal via hypothesis testing.

• Compute the key K and a helper data M based on Xn, a common shared sequence
T = Un by the enrollment and authentication terminal and using an extractor function
g : {0, 1}n × {0, 1}d → {0, 1}k with N, d, k ∈ N whose input are the shared sequence T and a
sequence of d uniformly distributed bits Ud. The helper data M is equivalent to the helper data
for the case with perfect SSI. The extended helper data in this case contains also the state of the
marginal distribution and the uniformly distributed bits sequence, i.e., M′ = (M, L̂, Ud).

• Store the extended helper data M′ in the public database.
• Estimate the key K̂ at the authentication terminal, based on the observations M′ and Yn, which

can be seen as the outcome of one of the channels in W ˆ̀ := {Ws : X → P(Y) : s ∈ S ˆ̀}.

A detailed proof can be found in Appendix A.

Remark 6. Note that the authentication for compound source model is a generalization of the models studied
by [11,12], i.e., |S| = 1. Furthermore, one can see that, for |S| = 1, the capacity region under the strong
secrecy condition equals the capacity region under the weak secrecy condition showed by [11,12].

Remark 7. As we already mentioned, we aim for strong secrecy, i.e., in contrast to the weak secrecy constraint
in (1c), we now require the un-normalized mutual information between the key and the helper data to be
negligibly small. It would be Ideal to show perfect secrecy and a perfectly uniformed key, i.e., I(K; M′) = 0
and H(K) = 1

n log Kn. It would be interesting to see how this constraint affects the achievable rate region. We
suspect that the achievable rate region under perfect secrecy and perfectly uniformed key remains the same as in
Theorem 3.
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Remark 8. From the protocol, note that once we have estimated the marginal distribution p ˆ̀ ∈ QX , we deal
with a compound channel model without channel state information (CSI) at the transmitter (see [24]).

Remark 9. The order of the set operations of the capacity region displays the fact that the marginal distribution
is first estimated. This can be seen as partial state information, where the marginal distribution over X
is known.

3.2. Compound Chosen Secret Key Model

In this section, we study chosen secret key authentication for finite compound joint-sources (see
Figure 4).

Enrollment Authentication

Qs

M′

Xn

K

Yn

K̂

Attacker/
Source Uncertainty

s ∈ S

Figure 4. The attacker controls the state of the source s ∈ S . The biometric sequences Xn and Yn are
observed in the enrollment and authentication terminal, respectively. In the enrollment terminal, the
key K is predefined and the helper data M′ is generated. The helper data is public, hence the attacker
also has access to it. In the authentication terminal, an estimation of a key K̂ is made based on the
observed authentication sequences Yn and the helper data M′.

We consider a (n, M′n, Kn)-code of arbitrary but fixed length n.

Definition 10. A privacy secrecy rate pair (RPL, RK) ∈ R2
+ is called achievable for chosen secret key

authentication for the compound joint-source QXY , if for any δ > 0 there exist an n(δ) ∈ N and a sequence of
(n, M′n, Kn)-codes, such that, for all n ≥ n(δ) and for every s ∈ S , we have

Pr{K̂ 6= K} ≤ δ, (4a)
1
n

log Kn ≥ RK − δ, (4b)

I(K; M′) ≤ δ, (4c)
1
n

I(Xn
s ; M′) ≤ RPL + δ. (4d)

Consider the compound joint-source QXY . For a fixed ` ∈ L, V : X → P(U ) and for every
s ∈ S`, we define the regionR(V, `, s) as the set of all (RPL, RK) ∈ R2

+ that satisfy

RK ≤ I(U`; Ys),

RPL ≥ I(U`; X`)− I(U`; Ys),

with PUXY,s(u, x, y) = V(u|x)Qs(x, y).

Theorem 4. The privacy secrecy capacity region for chosen secret key authentication for the compound
joint-source QXY is given by

CC(QXY ) =
⋂
`∈L

⋃
V:X→P(U )
|U |≤|X |+|S` |

⋂
s∈S`

R(V, `, s).
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Proof. The proof can be found in Appendix B.

Remark 10. Note that, as for generated secret key authentication for compound sources, chosen secret key
authentication for compound sources is a generalization of the models studied by [11]. Furthermore, for perfect
SSI, one can see that the capacity region under the strong secrecy condition equals the capacity region under
the weak secrecy condition showed by [11].

Remark 11. Note that the privacy secrecy capacity region for the generated key model equals the privacy
secrecy capacity region for chosen secret key authentication, i.e., CG(QXY ) = CC(QXY ).

4. Continuity of the Privacy Secrecy Capacity Region for Compound Sources

We are interested in studying how small variations in the compound source affect the privacy
secrecy capacity region. The question of whether the capacity or capacity region is a continuous
function of a source or channel is not always clear, especially if the source or channel are complicated.
In [22], one can find an example of AVWCs, whose uncertainty set consists of only two channels,
which already shows discontinuity points in its unassisted secrecy capacity. For a detailed discussion,
see [25]. In this section, we study the continuity of the privacy secrecy capacity region for compound
sources. For this purpose, we introduce the distance between two compound sources and capacity
regions, respectively.

4.1. Distance between Compound Sources

Definition 11. Let QXY ,1 and QXY ,2 be two compound sources. We define

d1(QXY ,1,QXY ,2) = max
s2∈S2

min
s1∈S1

‖Qs1 −Qs2‖TV ,

d2(QXY ,1,QXY ,2) = max
s1∈S1

min
s2∈S2

‖Qs1 −Qs2‖TV .

The Hausdorff distance DH(QXY ,1,QXY ,2) between QXY ,1 and QXY ,2 is defined as

DH(QXY ,1,QXY ,2) = max
{

d1(QXY ,1,QXY ,2), d2(QXY ,1,QXY ,2)
}

.

Definition 12. Let R1, and R2 be two non-empty subsets of the metric space (R2, d) with

d(x, y) =
√

∑2
i=1 |xi − yi|2 for all x, y ∈ R2. We define the distance between two sets as

DR(R1,R2) = max{max
r1∈R1

min
r2∈R2

d(r1, r2), max
r2∈R2

min
r1∈R2

d(r1, r2)}.

4.2. Continuity of the Privacy Secrecy Capacity Region

Theorem 5. Let ε ∈ (0, 1) and n ∈ N. Let QXY ,1 and QXY ,2 be two compound sources. If

DH(QXY ,1,QXY ,2) ≤ ε,

then it holds
DR(CG(QXY ,1),CG(QXY ,2)) ≤ δ(ε, |X |, |Y|) (5)

with δ(ε) =
√

δ1(ε)2 + δ2(ε)2, where δ1(ε) = 2ε log |Y| + 2H2(ε) − ε log ε
|U | and

δ2(ε) = 2ε log |Y||X |+ 4H2(ε)− 2ε log ε
|U | .

Remark 12. Note that since the privacy secrecy capacity region for the chosen secret key equals the privacy
secrecy capacity region for the chosen secret key, the continuity behaviour holds also for the chosen secret key
privacy capacity region.
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Remark 13. This theorem shows that the privacy secrecy capacity region is a continuous function of the
uncertainty set. In other words, small variations of the uncertainty set lead to small variations in the
capacity region.

Proof. A detailed proof can be found in Appendix C.

Remark 14. A complete characterisation of the discontinuity behaviour of the AVC capacity under list
decoding can be found in [26]. Note that this behaviour, based on Theorem 5, can not occur.

5. Conclusions

In this paper, we considered a biometric authentication model in the presence of source
uncertainty. In particular, we studied a model where the actual source realization is not known,
however it belongs to a known source set: this is the finite compound source model. We have
shown that biometric authentication is robust against source uncertainty and certain classes of attacks.
In other words, reliable and secure authentication is possible at positive key rates. We further
characterize the minimum privacy leakage rate under source uncertainty. For future work, perfect
secrecy for the biometric authentication model and a compound source with infinite sources is of
great interest.
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Appendix A. Proof of Theorem 3

Appendix A.1. Achievability of Theorem 3

Appendix A.1.1. State Estimation

We first show that we can estimate the marginal distribution p ˆ̀ ∈ QX correctly with probability
approaching one. Then, for every ` = ˆ̀ ∈ L, we use the random coding argument to show that all
rate pairs (RPL, RK) ∈ R(V, `, s) are achievable.

To estimate the actual source realization, we perform hypothesis testing. The set of hypotheses
is the set of finite marginal distributions QX . For every ` ∈ L, we define

δ` =
1
2

min
`′ 6=`
`′∈L

‖p` − p`′‖TV .

We choose 0 < δ < min`∈L δ` and consider the test set (typical sequences set)
T n

p`,δ := {xn ∈ X n : ‖pxn − p`‖ ≤ δ}. Note that, for every `, `′ ∈ L with `′ 6= `, we have that
T n

p`′ ,δ
∩ T n

p`,δ = ∅. We show this by arbitrarily choosing a sequence xn ∈ T n
p`,δ of type pxn and show

that ‖p`′ − pxn‖TV > δ for `′ 6= `. By the triangle inequality, we have

‖p` − p`′‖TV = ‖p` − p`′ + pxn − pxn‖TV

≤ ‖p` − pxn‖TV + ‖pxn − p`′‖TV .

Hence,

‖pxn − p`′‖TV ≥ ‖p` − p`′‖TV − ‖p` − pxn‖TV

≥ 2δ`′ − δ > δ,
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proving the disjointness of the sets.
The test function is the indicator function 1[xn ∈ T n

p`,δ], i.e., after observing xn the test looks for
the hypothesis p ˆ̀ = p` for which 1[xn ∈ T n

p`,δ] = 1.
An error occurs, if the sequence xn was generated by the source p` for any ` ∈ L; however,

xn /∈ T n
p`,δ. This implies that either xn /∈ ⋃`∈L T n

p`,δ or xn ∈ T n
p`′ ,δ

with `′ 6= `. Using Lemma 2.12
in [27], we upper bound the probability of this error event by

p`(T n
p`,δ

c) ≤ εδ(n, |X |), (A1)

where εδ(n, |X |) = (n + 1)|X |2−ncδ2
. Letting n→ ∞, the right-hand side of (A1) tends to zero.

Appendix A.1.2. Code Construction

For each ` ∈ L, we consider the auxiliary random variable U and the channel V and construct a
code for which we analyze the decoding error, secrecy and privacy condition.

Generate 2n(RK+RM) codewords Un
k,m with k ∈ K := {1, . . . , 2nRK} and

m ∈ M := {1, . . . , 2nRM} by choosing each symbol Uik,m in the codebook independently at
random according to pu ∈ P(U ), computed from p`(x)V(u|x) for every (x, u) ∈ X × U . We denote
the codebook as Ũ = {Un

k,m}(k,m)∈K×M.
For every ` ∈ L and every s ∈ S`, we define the following channels ΣX` : U → P(X ), ΣYs : U →

P(Y) and ΣXY s : U → P(X ×Y) that satisfy:

ΣX`(x|u) = p`(x)V(u|x)
∑x∈X p`(x)V(u|x) ,

ΣYs(y|u) =
∑x∈X V(u|x)Qs(x, y)

∑(x,y)∈X×Y V(u|x)Qs(x, y)
,

ΣXY s(x, y|u) = V(u|x)Qs(x, y)
∑(x,y)∈X×Y V(u|x)Qs(x, y)

,

for every (u, x, y) ∈ U ×X ×Y .

Appendix A.1.3. Encoding Sets

For every (k, m, `) ∈ K ×M×L, we define the encoding sets Ek,m,`(Ũ) ⊂ X n as follows:

Ek,m,`(Ũ) = T n
ΣX` ,δ′(U

n
k,m),

with δ′ > δ
|U | .

Remark 15. Note that, by the definition of δ′ and Lemma 2.10 in [27], if Un
k,m ∈ T n

pu ,δ′′′ with

δ′′′ = δ
|U | − δ′and xn ∈ T n

ΣX` ,δ′(U
n
k,m), then xn ∈ T n

p`,δ.

Appendix A.1.4. Decoding Sets

For every (k, m, `) ∈ K ×M×L, we define the decoding sets Dk(m(Ũ), `) ⊂ Yn as follows:

D′k(m(Ũ), `) :=
⋃

s∈S ˆ̀

T n
ΣYs ,δ′′(U

n
k,m),

Dk(m(Ũ), `) := D′k(m(Ũ), `) ∩
( ⋃

k′ 6=k
k′∈K

D′k′(m(Ũ), `)
)c,

with δ′′ > δ
|U | .
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Remark 16. One could consider sending some bits of the sequences Xn through the public channel, such that
the user at the authentication terminal can be able to estimate the actual source realization and so avoid the
complicated decoding strategy. However, this approach would violate the strong secrecy condition.

Appendix A.1.5. Encoder–Decoder Pair Sets

For every (k, m) ∈ K ×M, we define the encoder–decoder pair set Ck,m,`(Ũ) ∈ X n × Yn

as follows:

Ck,m,`(Ũ) = (Ek,m,`(Ũ)×Dk(m(Ũ), `)) ∩
( ⋃

s∈S ˆ̀

T n
ΣXYs ,δ̃(U

n
k,m)

)
,

with δ̃ > 0.

Appendix A.1.6. Error Analysis

For every ` ∈ L, assume that the marginal distribution was estimated correctly, i.e., ˆ̀ = `.
We analyze the probability of each error event separately. We denote the error at the enrollment
terminal given the codebook Ũ as εE,n(Ũ). An error occurs at the enrollment terminal if, for every
(k, m, `) ∈ K ×M×L, the observed sequence xn does not belong to Ek,m,`(Ũ), i.e.,

εE,n(Ũ) = pn
`

(( ⋃
(k,m)∈K×M

Ek,m,`(Ũ)
)c)

= pn
`

( ⋂
(k,m)∈K∈M

Ek,m,`(Ũ)c)
= ∏

(k,m)∈K∈M

[
1− pn

` (Ek,m,`(Ũ))
]
.

Averaging over all codebooks, from the independence of the random variables involved and from
Lemma 2.13 in [27], we have

EŨ(εE,n(Ũ)) = ∏
(k,m)∈K∈M

EUn
k,m

[
1− pn

` (T
n

ΣX` ,δ′(U
n
k,m))

]
≤ [1− (n + 1)−|U||X |(2−n(I(U`;X`)2ψ(δ′ ,|U ||X |)))]2

n(RK+RM)

≤ exp
(
− (n + 1)−|U||X |

)
exp

(
2n(RK+RM−I(U`;X`)−ψ(δ′ ,|U ||X |))). (A2)

The inequality (A2) follows from (1− x)r ≤ exp(−rx), which holds for every x, r > 0.
Letting n→ ∞ and choosing

RK + RM > I(U`; X`) + ψ(δ′, |U ||X |), (A3)

the right-hand side of (A2) goes doubly exponentially fast to zero. An error at the authentication
terminal occurs, when (k, m) was encoded at the enrollment terminal, but k′ 6= k was decoded at the
authentication terminal. The set of joint observations describing this event is given by

CEk,m,`
(Ũ)c = Ck,m,`(Ũ)c ∩

(
Ek,m,`(Ũ)×Dk(m(Ũ), `)c)

=
(
Ek,m,`(Ũ)×Dk(m(Ũ), `)c) ∪ ( ⋂

s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c).
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We denote the error probability of this event given the codebook Ũ for each correlated source Qt with
t ∈ S` as εt

n,k(Ũ).

εt
n,k(Ũ) = Σn

XY t
(CEk,m,`

(Ũ)c|Un
k,m)

= Σn
XY t

((
Ek,m,`(Ũ)×Dk(m(Ũ), `)c) ∪ ( ⋂

s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c)|Un
k,m
)

≤ Σn
XY t

(
Ek,m,`(Ũ)×Dk(m(Ũ), `)c|Un

k,m
)
+ Σn

XY t

( ⋂
s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c|Un
k,m
)

≤ Σn
Yt

(
Dk(m(Ũ), `)c|Un

k,m
)
+ Σn

XY t

( ⋂
s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c|Un
k,m
)

= Σn
Yt

(
D′k(m)c ∪

( ⋃
k′ 6=k
k′∈K

D′k′(m(Ũ), `)
)
|Un

k,m
)
+ Σn

XY t

( ⋂
s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c|Un
k,m
)

≤ Σn
Yt

(
D′k(m)c|Un

k,m
)
+ Σn

Yt

( ⋃
k′ 6=k
k′∈K

D′k′(m(Ũ), `)|Un
k,m
)
+ Σn

XY t

( ⋂
s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c|Un
k,m
)

= Σn
Yt

( ⋂
s∈S`

T n
ΣYs ,δ′′(U

n
k,m)

c|Un
k,m
)
+ Σn

Yt

( ⋃
s∈S`

⋃
k′ 6=k
k′∈K

T n
ΣYs ,δ′′(U

n
k′ ,m)|U

n
k,m
)
+ Σn

XY t

( ⋂
s∈S`

T n
ΣXYs ,δ̃(U

n
k,m)

c|Un
k,m
)

≤ Σn
Yt

(
T n

ΣYt ,δ(U
n
k,m)

c|Un
k,m
)
+ ∑

s∈S`
∑

k′ 6=k
k′∈K

Σn
Yt

(
T n

ΣYs ,δ′′(U
n
k′ ,m)|U

n
k,m
)
+ Σn

XY t

(
T n

ΣXY t ,δ̃(U
n
k,m)

c|Un
k,m
)
.

Averaging over all codebooks and applying Lemma 2.12 in [27], we have

EŨ(ε
t
n,k(Ũ)) ≤ εδ′′(n, |U ||Y|) + εδ̃(n, |U ||X ||Y|) + ∑

s∈S`
∑

k′ 6=k
k′∈K

EUn
k′ ,m

EUn
k,m

Σn
Yt

(
T n

ΣYs ,δ′′(U
n
k′ ,m)|U

n
k,m
)
,

with εδ′′(n, |U ||Y|) = (n + 1)|U ||Y|2−ncδ′′2 and εδ̃(n, |U ||X ||Y|) = (n + 1)|U ||X ||Y|2−ncδ̃2
.

For k′ 6= k and applying from Lemma 3.3 in [28], we can bound the second term of the last
inequality by

EUn
k,m

Σn
Yt

(
T n

ΣYs ,δ′′(U
n
k′ ,m)|U

n
k,m
)
≤

pn
Y,t
(
T n

ΣYs ,δ′′(U
n
k′ ,m)

)
pn

u(T n
pu ,δ′′′),

with δ′′′ = δ′ − δ
|U | , since Un

k′ ,m ∈ T
n

pu ,δ with probability one. For any t, s ∈ S`, we have

EUn
k,m

Σn
Yt

(
T n

ΣYs ,δ′′(U
n
k′ ,m)|U

n
k,m
)
≤ (n + 1)|U ||Y|

1− εδ′′′(n, |U |)2−n(I(U`;Ys)−φ(δ′′ ,|U |,|Y|)).

For every t, s ∈ S` and every k ∈ K, we have

EŨ(ε
t
n,k(Ũ)|Un

k,m) ≤ εδ′′(n, |U ||Y|) + ∑
s∈S`

∑
k′ 6=k
k′∈K

(n + 1)|U ||Y|

1− εδ′′′(n, |U |)2−n(I(U`;Ys)−φ(δ′′ ,|U |,|Y|))

+ εδ̃(n, |U ||X ||Y|)

≤ εδ′′(n, |U ||Y|) + (n + 1)|U ||Y|

1− εδ′′′(n, |U |) |S`|2
−n(mins∈S` I(U`;Ys)−RK−φ(δ′′ ,|U |,|Y|))

+ εδ̃(n, |U ||X ||Y|).
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There is an n(δ′′, δ′′′, δ̃, |U |, |X |, |Y|) such that for all n > n(δ, δ′′′, δ̃, |U |, |X |, |Y|) for which we have

EŨ(ε
t
n,k(Ũ)|Un

k,m)) ≤ |S`|2
−n(mins∈S` I(U`;Ys)−RK−φ(δ′′ ,|U |,|Y|)) (A4)

for all k ∈ K. By choosing
RK < I(U`; Ys)− φ(δ′′, |U |, |Y|) (A5)

and letting n → ∞, the right-hand side of (A4) tends to zero. Considering (A5) and (A3), the helper
data rate is lower bounded by

RM > I(U`; X`)− I(U`; Ys) + φ(δ′′, |U |, |Y|) + ψ(δ′, |U |, |X |). (A6)

Appendix A.1.7. Key Distribution

Besides reliability, a privacy secrecy rate pair has to fulfill three other conditions. One of them
is that the secret key distribution must be close to the uniform distribution. Here, we show that
this is indeed satisfied using the proof of [13]. For completeness, we introduce a sketch of the
proof shown in [13] for a sequential key distillation, which consists of two phases: reconciliation
and privacy amplification. The reconciliation step is equivalent to the reliability proved above. The
privacy amplification step consists on the construction of the key K from a common shared sequence
T = Un using an extractor function g : {0, 1}n × {0, 1}d → {0, 1}k with d, k, N ∈ N whose inputs
are the shared sequence T and a sequence of d uniformly distributed bits Ud and gives as output a k
nearly uniformly distributed sequence.

Lemma 1 ([7]). Let T ∈ {0, 1}n be the random variable that represents the common sequence shared by
both terminals and let E be the random variable that represents the total knowledge about T available to
the eavesdropper. Let e be a particular realization of E. If both terminals know the conditional min-entropy
H∞(T|E = e) ≥ γn for some γ ∈ (0, 1), then there exists an extractor

g : {0, 1}n × {0, 1}d → {0, 1}k

with
d ≤ nδ(n) and k ≥ n(γ− δ(n)),

with limn→∞ δ(n) = 0 and if Ud is a random variable with uniform distribution on {0, 1}d and both terminals
choose K = g(T, Ud) as their secret key, then

H(K|Ud, E = e) ≥ k− δ(n).

Sequential key distillation protocol: For every source realization s ∈ S , we have an ` = `(s) ∈ L
such that Qs ∈ QXY ,`. For every ` ∈ L, we perform the following protocol:

• Repeat i ∈ N times the reconciliation protocol creating i shared sequences T1, T2, . . . , Ti of
length n.

• Perform the privacy amplification phase based on an extractor with output size k, i.e.,
K = g(T1, T2, . . . , Ti, Ud) = g(Un

1 , Un
2 , . . . , Un

i , Ud) = g(UN , Ud) with N = in. Ud has to be
transmitted through the public channel together with the public message Mi.

• The total information available to the eavesdropper is E = (Mi, Ud, Θ), with Θ being a binary
random variable introduced for calculation purposes informing if Ti ∈ T n

pT ,δ.

In [13], it was shown that

H∞(Ti|Mi
` = mi, L̂ = `, Θ = 1, Ud) ≥NI(U`; Ys)− Nφ(δ,′′ |U |, |Y|)H(X`|U`)− 2i

− iφ(δ,′′ |U |, |Y|)− δε(i)− Nδ(N)−
√
(N), (A7)
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with limn→∞ δε(n) = 0 (see Lemma 1 in [13]). Using Lemma 1, we have

H(K`|Mi
` = mi, L̂ = `, Θ = 1, Ud) ≥ k− δ(N),

which implies that

H(K`|L̂ = `) ≥ H(K`|Mi
`, Θ, Ud, L̂ = `) ≥ k− δ(N). (A8)

Since this holds for every ` ∈ L, we have that

log |K| ≥ k

≥ H(K`)

≥ H(K`|L̂). (A9)

Furthermore, we have

H(K`|L̂) = ∑
˜̀∈L

Pr{L̂ = ˜̀}H(K`|L̂ = ˜̀)

= Pr{L̂ = `}H(K`|L = `) + ∑̃
` 6=`
˜̀∈L

Pr{L̂ = ˜̀}H(K`|L̂ = ˜̀)

= Pr{L̂ = `}H(K`|L̂ = `) + Pr{L̂ 6= `}H(K`|L̂ 6= `)

≤ Pr{L̂ = `}H(K`|L̂ = `) + Pr{L̂ 6= `}max
`∈L

H(K`|L̂ 6= `)

≤ Pr{L̂ = `}H(K`|L̂ = `) + εδ(n, |X |)i N log |X | (A10)

≤ H(K`|L̂ = `) + (n + 1)|X |i N log |X |2−Ncδ2

= H(K`|L̂ = `) + εδ(n, i, |X |), (A11)

where limi,n→∞ εδ(n, i, |X |) = 0 and (A10) follows from (A1). We then have that∣∣∣H(K`|L̂)− H(K`|L̂ = `)
∣∣∣ ≤ εδ(n, i, |X |), (A12)

showing that H(K`|L̂) approaches H(K`|L̂ = `) for increasing n or i or both at the same time.
Combining (A8),(A9) and (A12), we get

log |K| ≥ H(K`|L̂ = `)− εδ(n, i, |X |)
≥ k− δ(N)− εδ(n, i, |X |)
= log |K| − δ(N)− εδ(n, i, |X |). (A13)

Appendix A.1.8. Privacy Leakage

Another condition that has to be fulfilled by an achievable privacy secrecy rate pair is that the
information rate provided by the helper data about the sequence Xn is bounded. We show here that
this condition is fulfilled.

For every source realization s ∈ S , we have an ` = `(s) ∈ L such that Qs ∈ QXY ,`. For every
` ∈ L, we have

1
N

I(XN
` ; Mi

`, Θ, Ud, L̂) =
1
N

I(XN
` ; L̂) +

1
N

I(XN
` ; Mi

`, Θ, Ud|L̂)

≤ log |L|
N

+
1
N

I(XN
` ; Mi

`, Θ, Ud|L̂). (A14)
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We analyze the second term of the right-hand side of (A14):

1
N

I(XN
` ; Mi

`, Θ, Ud|L̂) ≤ Pr{L̂ = `} 1
N

I(XN
` ; Mi

`, Θ, Ud|L̂ = `) + Pr{L̂ 6= `} log |X |.

Similar to (A11), we have

1
N

I(XN
` ; Mi

`, Θ, Ud|L̂) ≤
1
N

I(XN
` ; Mi

`, Θ, Ud|L̂ = `) + εδ(n, |X |)i log |X |. (A15)

For every ` ∈ L and from (A6), it holds

1
N

I(XN
` ; Mi

`, Θ, Ud|L̂ = `) ≤ i log |M|
N

+
d + 1

N
≤ I(U`; X`|L̂ = `)− I(U`; Ys) + φ(δ′′, |U |, |Y|) + ψ(δ′, |U |, |X |) (A16)

+
d + 1

N
, (A17)

with φ(δ′′, |U |, |Y|) > 0 and ψ(δ′, |U |, |X |) > 0. Combining (A14), (A15) and (A17), it follows that

1
N

I(XN
` ; Mi

`, Θ, Ud, L̂) ≤ I(U`; X`|L̂ = `)− I(U`; Ys) +
log |L|

N
+ φ(δ′′, |U |, |Y|)

+ ψ(δ′, |U |, |X |) + εδ(n, |X |)i log |X |,

where the last three terms of the right-hand side of the inequality goes to zero for large enough n
and i.

Appendix A.1.9. Secrecy Leakage

The last condition that has to be fulfilled by an achievable privacy secrecy rate pair is that the
information rate provided by the helper data about the secret key is negligibly small. For every source
realization s ∈ S , we have an ` = `(s) ∈ L such that Qs ∈ QXY ,`. For every ` ∈ L, we have

I(K`; Mi
`, Θ, Ud, L̂) = I(K`; L̂) + I(K`; Mi

`, Θ, Ud, |L̂). (A18)

We first consider the first term of (A18). Using (A8) and (A12), we get that

I(K`; L̂) = H(K`)− H(K`|L̂) ≤ δ(N) + εδ(n, i, |X |).

We consider the second term of (A18). Using (A13), we get

I(K`; Mi
`, Θ, Ud|L̂) ≤ Pr{L̂ = `}I(K`; Mi

`, Θ, Ud|L̂ = `) + Pr{L̂ 6= `}N log |X |

≤ H(K`|L̂ = `)− H(K`|Mi
`, Θ, Ud, L̂ = `) + ε(n, |X |)i N log |X |2−Ncδ2

≤ log |K| − log |K|+ δ(N) + εδ(n, i, |X |)
= δ(N) + εδ(n, i, |X |). (A19)

Hence,
I(K`; Mi

`, Θ, Ud, L̂) ≤ 2δ(N) + 2εδ(n, i, |X |). (A20)

Note that the right-hand side of the inequality goes to zero for large enough N, showing that for every
source realization s ∈ S , the secret key information rate leaked by the helper is negligibly small.

Note that we showed that the rate pair can be achieved for large N = in, i.e., not for all N ∈ N.
To show the achievability for all blocklengths N ∈ N, we define the sequence Ni with i ∈ N with
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Ni = i2 . We showed that for the sequence Ni of blocklengths with i ∈ N, there exists a blocklength
Ni0 such that for all blocklengths Ni > Ni0 , we can find a code sequence that fulfills the achievability
conditions. For every Ni < N < Ni+1, one can rewrite N = Ni + ri with ri < Ni+1 − Ni. We use only
the first Ni symbols to generate the key and discard the rest ri. One can easily see that there is a ε(N)

such that, for δ = ε(N), all conditions are fulfilled. This completes the proof of achievability.

Appendix A.2. Converse of Theorem 3

For the converse, we consider a genie-aided enrollment and authentication terminal, i.e., the
user at the enrollment and authentication terminal has partial knowledge of the source, i.e., he knows
the actual state of the marginal distribution ` ∈ L but not the complete source state. The converse
follows from the corresponding result for a joint-source with perfect SSI shown in [11]. For a fixed
` ∈ L, s ∈ S` and V : X → P(U ), we define the region R(V, `, s) as the set of all (RPL, RK) ∈ R2

+

that satisfy

RK ≤ I(U`; Ys),

RPL ≥ I(U`; X`|L = `)− I(U`; Ys).

We start analyzing the secret key rate. For a fixed ` ∈ L and s ∈ S`, we have

H(K`) = H(K`|L = `)

= I(K`; M`Yn
s |L = `) + H(K`|M`Yn

s K̂, L = `),

where K̂ is a deterministic function of M, Yn and L = `, i.e., K̂ = f (M, Yn, L = `),

H(K`) ≤ I(K`; M`Yn
s |L = `) + H(K`|K̂)

≤ I(K`; M`Yn
s |L = `) + εn (A21)

= I(K`; M`|L = `) + I(K`M`; Yn
s |L = `) + εn

= I(K`; M`|L = `) +
n

∑
i=1

I(K`M`; Ys,i|Yi−1
s L = `) + εn

= I(K`; M`|L = `) +
n

∑
i=1

I(K`M`Yi−1
s ; Ys,i|L = `) + εn

≤ I(K`; M`|L = `) +
n

∑
i=1

I(K`M`Xi−1
` ; Ys,i|L = `) + εn (A22)

= I(K`; M`|L = `) + nI(U`; Ys|L = `) + εn, (A23)

where (A21) holds for εn = 1+ Pr{K̂ 6= K} log Kn and follows from Fano’s Inequality and (A22) from
Yi−1 − KMXi−1 −Yi forming a Markov chain. This comes from

PKMYi−1Xi−1Yi
(k, m, yi−1, xi−1, yi) = ∑

xn
i+1

∑
xi

p`(xi−1)p`(xi)p`(xn
i−1)PKM(k, m|xn)Ws(yi, xi)Ws(yi−1|xi−1)

= PXi−1KMYi
(xi−1, k, m, yi)Ws(yi−1|xi−1)

= p`(xi−1)Pr(k, m, yi|xi−1)Ws(yi−1|xi−1).
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We define U`,i = (K`M`Xi−1
` ). The Equality (A23) is obtained using a time-sharing variable

T uniformly distributed over {1, . . . , n} and independent of all other variables. Setting U = (U`,i),
X = X`,i and Y = Y`,i for T = i, we obtain

n

∑
i=1

I(K`M`Xi−1
` ; Ys,i|L = `) =

n

∑
i=1

I(U`,i; Ys,i|L = `)

= nI(U`,T ; Ys,T |T, L = `)

= nI((U`,T , T); Ys,T |L = `)

= nI(U`; Ys|L = `).

Dividing by n, we get

1
n

H(K`) ≤
1
n

I(K`; M`|L = `) + I(U`; Ys, L = `) +
1
n

ε

≤ I(U`; Ys, L = `) + λn,` +
1
n
+

1 + ε

n
,

where the last inequality holds with λn,` → 0 for n→ ∞ (see [11]).
Assuming the rate pair (RPL, RK) is achievable, we have that ε ≤ 1 + δ log Kn and obtain

RK − δ ≤ I(U`; Ys, L = `) + λn,` +
1
n
+

1 + δ log Kn

n
. (A24)

We continue with the privacy leakage. For a fixed s ∈ S` we have

I(Xn
` ; M`) = I(Xn

` ; M`|L = `)

= H(M`|L = `)− H(M`|Xn
` , L = `)

≥ H(M`|Yn
s , L = `)− H(K`M`|Xn

` , L = `)

= H(K`M`|Yn
s , L = `)− H(K|MYnK̂)− H(K`M`|Xn

` , L = `)

≥ H(K`M`|Yn
s , L = `)− H(K|K̂)− H(K`M`|Xn

` , L = `)

≥ H(K`M`|Yn
s , L = `)− εn − H(K`M`|Xn

` , L = `)

= I(K`M`; Xn
` |L = `)− I(K`M`; Yn

s |L = `)− ε)n

=
n

∑
i=1

I(K`M`; X`,i|Xi−1
` , L = `)−

n

∑
i=1

I(K`M`; Ys,i|Yi−1
` , L = `)− εn

=
n

∑
i=1

I(K`M`Xi−1
` ; X`,i, L = `)−

n

∑
i=1

I(K`M`Yi−1
s ; Ys,i, L = `)− εn

≥
n

∑
i=1

I(K`M`Xi−1
` ; X`,i, L = `)−

n

∑
i=1

I(K`M`Xi−1
` ; Ys,i, L = `)− εn

= nI(U`; X`|L = `)− nI(U`; Ys|L = `)− εn.

Dividing by n, we get

1
n

I(Xn
` ; M`) ≥ I(U`; X`|L = `)− I(U`; Ys|L = `) +

1
n

εn.

Assuming (RPL, RK) is achievable, we have that ε ≤ 1 + δ log Kn and obtain

RPL + δ ≥ I(U`; X`|L = `)− I(U`; Ys|L = `) +
1 + δ log Kn

n
. (A25)
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We have shown that CG(QXY ) ⊆
⋂
`∈L C`. This means that if (RPL, RK) ∈ CG(QXY ) holds, then

we have that (RPL, RK) ∈
⋂
`∈L C`. Equivalently, if (RPL, RK) /∈ ⋂`∈L C`, then (RPL, RK) /∈ CG(QXY ).

Assume (R∗PL, R∗K) /∈ ⋂
`∈L C`. This implies that there exists a ` ∈ L such that, for all auxiliary

channels V, we have that (R∗PL, R∗K) /∈ R(V, `), which implies that (R∗PL, R∗K) /∈ CG(QXY ). This
completes the converse and therewith proves the desired result.

It remains to derive the bound on the cardinality of the auxiliary random variables U. Let ` ∈ L
be arbitrarily but fixed and U be a random variable fulfilling PUXY,s(u, x, y) = V(u|x)Qs(x, y) for all
s ∈ S(`). We show that there is a random variable Ū with range |Ū | = |X |+ |S`|

I(Ū; Y) = I(U; Y),

I(Ū; X)− I(Ū; Y) = I(U; X)− I(U; Y), (A26)

for all s ∈ S`. We consider the following |X |+ |S`| real valued continuous functions on P(X )

fx(p) = p(x), for all x ∈ X but one,

gs(P) = H(pWs),

h(P) = H(p),

for all s ∈ S`. We have that ΣX`(·|u) ∈ P(X ) having µ-measure pu. Then, it holds that

∑
u

pu(u) fx(ΣX`(·|u)) = p(x),

∑
u

pu(u)gs(ΣX`(·|u)) = H(Y|U),

∑
u

pu(u)h(ΣX`(·|u)) = H(X|U),

for all s ∈ S`. According to (Lemma 15.4, [27]), there exists a random variable Ū fulfilling the Markov
condition with values in Ū = {1, · · · , |X |+ |S`|} and (A26) holds (see also Lemma 15.5 in [27]).

Appendix B. Proof of Theorem 4

Appendix B.1. Achievability of Theorem 4

The achievability proof of Theorem 4 is very similar to the achievability proof of Theorem 3,
where first the index of marginal distribution ` over X is estimated. The difference is that, in this
model, we use a generated secret key K`,g in a one-pad system to conceal the uniformly distributed
chosen key K over the set K; as in [11], it is additionally sent together with the generated helper
message M`,g and the index of the estimated marginal distribution L̂ over the public message, i.e., the
helper data is M′ = (M`,g, K⊕K`,g, L̂). The error analysis is similar to the error analysis for Theorem 3
and the key is already uniformly distributed; however, we should take a deeper look into the privacy
leakage and the secrecy leakage. We perform the privacy amplification step as in Appendix A to show
that the strong secrecy is fulfilled.

Appendix B.1.1. Privacy Leakage

Another condition that has to be fulfilled by an achievable privacy secrecy rate pair is that the
information rate provided by the helper data about the sequence Xn is bounded. We show here that
this condition is fulfilled.

For every source realization s ∈ S , we have an ` = `(s) such that Qs ∈ QXY ,`. We have

1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud, L̂) ≤ log |L|

N
+

1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂). (A27)
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We analyze the second term of the right-hand side of (A27)

1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂)

≤ Pr{L̂ = `} 1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `) + Pr{L̂ 6= `}N log |X |

N

≤ Pr{L̂ = `} × 1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `) + εδ(n, i, |X |) log |X |.

Similar to (A11), we have

1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂)

≤ 1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `) + εδ(n, i, |X |) log |X |. (A28)

In [11], the authors show that, for every ` ∈ L, it holds

1
N

I(XN ; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `)

≤ 1
N

I(XN ; Mi
`,g, Θ, Ud|L̂ = `‖Qs ∈ QXY ,`) +

1
N

H(K⊕ K`,g|L̂ = `‖Qs ∈ QXY ,`)

− 1
N

H(K⊕ K`,g|Xn, Mi
`,g, Θ, Ud, K`,g, L̂ = `)

≤ 1
N

I(XN ; Mi
`,g, Θ, Ud|L̂ = `‖Qs ∈ QXY ,`) +

1
N

log KN −
1
N

log KN

≤ 1
N

I(Xn; Mi
`,g, Θ, Ud|L̂ = `‖Qs ∈ QXY ,`)

≤ I(U; X|L̂ = `‖Qs ∈ QXY ,`)− I(U; Y‖Qs ∈ QXY ,`) + φ(δ′′, |U |, |Y|) + ψ(δ′, |U |, |X |)

+
d + 1

N
, (A29)

which proves the bound on the privacy leakage.

Appendix B.1.2. Secrecy Leakage

For every source realization s ∈ S , we have an ` = `(s) such that Qs ∈ QXY ,`. Following similar
steps as for the privacy leakage, it can be shown that the secrecy leakage is upper-bounded by

I(K; Mi
`,g, K⊕ K`,g, Θ, Ud, L̂) = I(K; Mi

`,g, K⊕ K`,g, Θ, Ud|L̂). (A30)

We analyze the right-hand side of (A30):

I(K; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂) = ∑

˜̀∈L
Pr{L̂ = ˜̀}I(K; Mi

`,g, K⊕ K`,g, Θ, Ud|L̂ = ˜̀)

= Pr{L̂ = `}I(K; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `) + Pr{L̂ 6= `}I(K; Mi

`,g, K⊕ K`,g, Θ, Ud|L̂ 6= `).

For every ` ∈ L, it holds

I(K; Mi
`,g, K⊕ K`,g, Θ, Ud|L̂ = `) ≤ log |K| − H(K`,g|L̂ = `) + I(K`,g; Mi

`,g, Θ, Ud|L̂ = `)

≤ log |K| − log |K|+ I(K`,g; Mi
`,g, Θ, Ud|L̂ = `). (A31)

The last inequality follows from (A13). Substituting K`,g with K, combining (A31) with (A19) and
letting i, n→ ∞, we obtain the desired result.
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Appendix B.2. Converse of Theorem 4

The converse of Theorem 4 can be shown using the same lines of arguments as for the converse
of Theorem 3.

Appendix C. Proof Lemma 1

For every channel V : X → P(U ), for every s1 ∈ S1 and s2 ∈ S2, we have the following
effective sources:

PUXY,s1(u, x, y) = V(u|x)Qs1(x, y),

PUXY,s2(u, x, y) = V(u|x)Qs2(x, y).

Let dH(QXY1 ,QXY2) ≤ ε then there exists a s1 ∈ S1 and s2 ∈ S2 such that
(V̄, s̄1, s̄2) = argmax dH(QXY1 ,QXY2). Then, we have that

‖PUXY,s̄1 − PUXY,s̄2‖TV = ∑
u∈U

∑
x,y∈X×Y

|PUXY,s̄1(u, x, y)− PUXY,s̄2(u, x, y)|

= ∑
u∈U

∑
x,y∈X×Y

|V(u|x)Qs̄1(x, y)−V(u|x)Qs̄2(x, y)|

= ∑
u∈U

∑
x,y∈X×Y

|V(u|x)(Qs̄1(x, y)−Qs̄2(x, y))|

= ∑
u∈U

∑
x,y∈X×Y

V(u|x)|Qs̄1(x, y)−Qs̄2(x, y)|

= ∑
x,y∈X×Y

(
|Qs̄1(x, y)−Qs̄2(x, y)| ∑

u∈U
V(u|x)

)
= ∑

x,y∈X×Y
|Qs̄1(x, y)−Qs̄2(x, y)|

≤ ε, (A32)

and

‖PU,s̄1 − PU,s̄2‖TV = ∑
u∈U
| ∑

x,y∈X×Y
PUXY,s̄1(u, x, y)− PUXY,s̄2(u, x, y)|

= ∑
u∈U
| ∑

x,y∈X×Y
V(u|x)(Qs̄1(x, y)−Qs̄2(x, y))|

≤ ∑
u∈U

∑
x,y∈X×Y

V(u|x)|(Qs̄1(x, y)−Qs̄2(x, y))|

≤ ε. (A33)

For every channel V : X → P(U ), for every s1 ∈ S1 and s2 ∈ S2, there is an `1 = `1(s1) and
`2 = `2(s2) the regionR(V, `i, si) with i = {1, 2} is rectangular. Therefore, to calculate the Hausdorff
distance between regions, we are only interested in the corner points:

RK,si = I(U`i
; Ysi ),

RPL,si = I(U`i
; X`i

)− I(U`i
; Ysi ).

Let V be arbitrary but fixed. Then, for every s1 ∈ S1 and s2 ∈ S2, we have

|I(U`1 ; Ys1 − I(U`2 ; Ys2)| = |H(U`1)− H(U`2) + H(Ys2 |U`2)− H(Ys2 |U`1)|
≤ |H(U`1)− H(U`2)|+ |H(Ys2 |U`2)− H(Ys2 |U`1)|.
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For V̄, s̄1 and s̄2, there is a ¯̀1 = ¯̀1(s̄1) and ¯̀2 = ¯̀2(s̄2). Using [27, Lemma 2.12] and
Using Lemma 1 in [22], we get

|I(U ¯̀1 ; Ys̄1 − I(U ¯̀2 ; Ys̄2)| ≤ 2ε log |Y|+ 2H2(ε)− ε log
ε

|U | . (A34)

Following the same line of arguments as for (A34), we get

|I(U ¯̀1 ; X ¯̀1 − I(U ¯̀2 ; X ¯̀2)| ≤ 2ε log |X |+ 2H2(ε)− ε log
ε

|U | . (A35)

Hence, for every channel V : X → P(U ), s̄1 and s̄2, we have

DH(R(V, ¯̀1, s̄1),R(V, ¯̀2, s̄2)) ≤ δ(ε), (A36)

with δ(ε) =
√

δ1(ε)2 + δ2(ε)2, where δ1(ε) = 2ε log |Y| + 2H2(ε) − ε log ε
|U | and

δ2(ε) = 2ε log |Y||X |+ 4H2(ε)− 2ε log ε
|U | .

For fixed `1 and `2, we denote

R(V, `1) =
⋂

si∈S1

R(V, `1, s1),

R(V, `2) =
⋂

si∈S2

R(V, `2, s2),

R(`1) =
⋃

V:X→P(U )
|U |≤|X |+|S`1

R(V, `1),

R(`2) =
⋃

V:X→P(U ),
|U |≤|X |+|S`2

R(V, `2).

We have

DH(R(V, `1),R(V, `2)) = DH
( ⋂

s1∈S1

R(V, `1, s1),
⋂

s2∈S2

R(V, `2, s2)
)

= DH
( ⋃

s1∈S1

R(V, `1, s1)
c,
⋃

s2∈S2

R(V, `2, s2)
c) (A37)

≤ DH(R(V̄, ¯̀1, s̄1)
c,R(V̄, ¯̀2, s̄2)

c) (A38)

≤ δ(ε).

Equation (A37) holds since the Hausdorff distance between two sets equals the Hausdorf distance
between the complements of each set. Inequation (A38) holds since V̄, s̄1, s̄2 is the index of the sets
that maximises the Hausdorf distance. It also holds that

DH(R(`1),R(`2)) = DH
( ⋃

V:X→P(U )
|U |≤|X |+|S`1

R(V, `1),
⋃

V:X→P(U )
|U |≤|X |+|S`2

R(V, `2)
)

≤ DH(R(V̄, ¯̀1, s̄1)
c,R(V̄, ¯̀2, s̄2)

c)
≤ δ(ε),
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and

DH(CG(QXY ,1),CG(QXY ,2)) = DH
( ⋂
`1∈L1

R(`1),
⋂

`2∈L2

R(`2)
)

= DH
( ⋃
`1∈L1

R(`1)
c,
⋃

`2∈L2

R(`2)
c)

≤ DH(R(V̄, ¯̀1, s̄1)
c,R(V̄, ¯̀2, s̄2)

c)
≤ δ(ε).
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