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Abstract: Why does the Maxwell-Boltzmann energy distribution for an ideal classical gas have
an exponentially thin tail at high energies, while the Kaniadakis distribution for a relativistic
gas has a power-law fat tail? We argue that a crucial role is played by the kinematics of the
binary collisions. In the classical case the probability of an energy exchange far from the average
(i.e., close to 0% or 100%) is quite large, while in the extreme relativistic case it is small. We compare
these properties with the concept of “saving propensity”, employed in econophysics to define the
fraction of their money that individuals put at stake in economic interactions.
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1. Introduction

In this work, we study with statistical methods a problem concerning the elastic scattering
of two particles in the relativistic regime and we discuss the similarities between this physical process
and the economic interactions occurring in the so-called wealth exchange models [1,2]. A unifying
element in this analysis is the generalized κ-distribution [3–6], which has proven to be helpful for
the description of both kinds of phenomena. We start from the familiar assumption of statistical
mechanics according to which the macroscopic distributions (of energy or income) are determined
by the microscopic interactions (between molecules or, respectively, individuals). Such interactions
can be of many different sorts, but we are mostly interested into properties which are independent
from the details of the specific system; namely we are interested into the conditions under which a
“fat” power-law tail can appear in the macroscopic distribution, instead of the thin exponential tail
typical of the Boltzmann distribution.

In our computation we shall suppose that all the permitted final states of a binary collision
(those compatible with conservation laws) have the same probability. For this reason we mention in the
title the “statistics of binary exchange”, and not the dynamics of this exchange. “Statistics” is meant
here in the same sense as in the term “Statistical Mechanics”. In fact, it is known from experimental
data on relativistic gases and cosmic rays that the fat tails in their energy distributions have some
universal features; it is also known that Pareto tails in income distributions have existed in various
epochs and in countries with very different economic systems. (For some very recent data and related
analysis see [7].) This suggests that the formation mechanism of the tails is essentially kinematical.
In [3] G. Kaniadakis has shown that the deformation of the distribution function introduced by the
parameter κ emerges naturally within Einstein’s special relativity, so that one can see the κ-deformation
as a pure relativistic effect. To this end, one first proves that the κ-deformed sum of the momenta of two
particles is the additivity law for the relativistic momenta (the κ-sum is used in a generalized entropy
minimization procedure leading to the κ-distribution). By considering, in the framework of special
relativity, the κ-statistics of an ensemble of identical particles, one therefore arrives at a distribution
with a power-law tail without any assumption on dynamics, but using only kinematics.
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From the physical point of view, what are the main differences between a “classical” collision
and a strongly relativistic collision? The answer is not unique. The techniques of relativistic kinetic
theory [8] allow us to write the Boltzmann equation in relativistic form and to conduct a similar
analysis as done in the classical theory. Nevertheless, the approach by Kaniadakis et al. shows that
there is still room for a better understanding of the basic concepts. In our opinion, it is important
to consider also quantities that are not Lorentz-invariant, and are therefore often disregarded in the
traditional relativistic kinetic theory. We will focus our attention on the non-invariant fraction R
of energy which is transferred from one particle to the other during a binary collision between identical
particles. If one looks at the collision in the center of mass system, R is trivially zero, because the
conservation laws of the total energy and momentum impose that the energy is equally distributed
between the two particles before and after the scattering. What changes in the collision, as seen from
the center of mass system, is only the direction of the momenta. Any other change is entirely due
to the choice of a different reference system.

Nevertheless, for a gas contained in a finite volume there exists a privileged reference system,
namely the system where the gas is, on average, at rest. If we look at a scattering process as the
analogue of an economic interaction, the fraction R of money exchanged by an individual is obviously
an important quantity. We point out that in any realistic income distribution the majority of the
individuals have low or middle income, therefore it is important to evaluate R for an interaction
between a poor individual (slow molecule) and a rich one (fast molecule). It has been suggested
by some authors [9] that Pareto tails are formed when the rich part of a population enacts an effective
policy for preserving its wealth in the interactions. This attitude can also be described as a high
“saving propensity”. In [10] we have argued that something similar happens in relativistic collisions,
but the technique employed did not allow us to carry the analogy very far. In this work we improve the
technique for the calculation of the R factor and we obtain further results. In Section 2 we evaluate the
probability distribution of energy transfer in an elastic collision. We solve numerically the conservation
law for energy and compute the integral over final states parametrized as a one-parameter line in phase
space. In Section 3 we give the results of agent-based simulations based on money exchange rules which
are the analogues of the energy balance in the collisions. Section 4 comprises our conclusions. The
Appendices contain some background material on relativistic energy and momentum (Appendix A)
and wealth exchange models in econophysics (Appendix B) that can be helpful for an interdisciplinary
audience.

The question raised at the beginning of the abstract of this paper is therefore answered in two
steps. In the first step (Section 2) we show that the probability of final states of a binary collision
is different in the case of a low-energy and high-energy collision. In the second step (Section 3) we
pass “from micro to macro” by simulating a large number of collisions occurring with this probability,
and we look at what kind of equilibrium distribution they lead to in a large population of molecules.

2. Energy Transfer in an Elastic Collision

2.1. General Expression

In this Section we consider the relativistic scattering of two identical particles of mass m and
compute the probability distribution of the fraction R of kinetic energy transferred in the collision,
supposing that all final states are equally probable. The incoming particle is labelled as “Particle 1”
and the other, which is initially at rest, as “Particle 2”. The initial velocity of Particle 1 is directed
along x and is denoted simply as v. The reference system can be chosen in such a way that the
final momenta of the particles have components only along x and y, denoted as p1x, p1y, p2x, p2y.
Momentum conservation in the directions x and y imposes that

p2y = −p1y; (1)

p2x = p− p1x, (2)
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where p is the initial momentum of Particle 1: p = mv/
√

1− v2/c2 ≡ mvγ. In the following we use
units such that c = 1. Energy conservation requires that

E = E1 + E2 =
√

m2 + p2
1x + p2

1y +
√

m2 + p2
2x + p2

2y, (3)

where E is the total energy E =
√

m2 + p2 and E1 and E2 are the energies of the particles after the
collision. The collision is supposed to be elastic. The fraction R of the initial kinetic energy of Particle 1
which is transferred to Particle 2 after the collision is

R =
E2 −m
E−m

=

√
m2 + p2

2x + p2
2y −m√

m2 + p2 −m
(4)

The conservation laws (1)–(3), taken together, make up a system with 4 unknowns and 3
equations, which has infinite solutions dependent on one parameter, say t. It is convenient to choose as
parameter p1x, the final momentum of Particle 1 along x. The value of this momentum spans a finite
interval, because the minimum it can take is 0 (when the full momentum of the incoming particle is
transferred to Particle 2, like in a frontal billiard scattering), and the maximum is p (when there is no
momentum transfer at all). In the four-dimensional Euclidean vector space of the final momenta of the
two particles (p1x, p1y, p2x, p2y), the one-parameter subset of the solutions of Equations (1)–(3) can be
written as 

p1x = t
p1y ≡ g(t)
p2x ≡ h(t) = p− t
p2y = −g(t)

, (5)

where t ∈ [0, p] and g(t) is the solution of Equation (3), which is now rewritten as√
m2 + p2 =

√
m2 + t2 + [g(t)]2 +

√
m2 + (p− t)2 + [−g(t)]2. (6)

The subset (5) is a path whose invariant length is given by

L =
∫ p

0

√
1 + [g′(t)]2 + [h′(t)]2 + [−g′(t)]2 dt. (7)

In order to evaluate the average value in the final state of any quantity F depending
on p1x, p1y, p2x, p2y, according to the ensemble averaging procedure familiar from statistical mechanics,
we must compute the weighted integral

〈F〉 =
∫

dp1x
∫

dp2x
∫

dp1y
∫

dp2y P(p1x, p1y, p2x, p2y)F(p1x, p1y, p2x, p2y)∫
dp1x

∫
dp2x

∫
dp1y

∫
dp2y P(p1x, p1y, p2x, p2y)

, (8)

where P is the appropriate probability density distribution. In this case, since we suppose that all
possible final states of the scattering process are equiprobable, the function P is a constant function
with support along the path (5). Therefore the four-dimensional integrals reduce to line integrals
and we obtain

〈F〉 = 1
L

∫ p

0

√
1 + [g′(t)]2 + [h′(t)]2 + [−g′(t)]2 F dt, (9)

where F is evaluated, through the momenta, as a function of t:

F → F
[
p1x(t), p1y(t), p2x(t), p2y(t)

]
. (10)
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In particular, we shall take as F the energy ratio R defined in (4). Note that L and 〈F〉 do not
depend on the choice of the parameter t. The factor which multiplies F in the integral (9) is the
parameter-invariant infinitesimal length ds of the path. This implements the physical intuition that any
infinitesimal invariant interval of possible final states with the same length ds has the same probability.

Note that Equation (4) can be seen as interpolating between the purely non-relativistic case
for which R is given by p2

2/p2, and the purely massless relativistic case for which R depends on
the square root of the non-relativistic ratio. This transition in the effective functional dependence
of R on p2

2 and p2 (as compared with the classical case) reflects the role of mass as a form of “savings”
in the relativistic mass shell constraint. (We thank an anonymous referee for this remark.)

2.2. Numerical Solution of the Conservation Laws

Our strategy is to use the conservation laws (1)–(3) to express the final momenta p1y, p2x, p2y
as functions of p1x. So p1x becomes our integration parameter t. However, the energy conservation
relation (3) cannot be solved analytically. We thus transform it into a first-order differential equation
by taking the total differential of Equation (3), which gives

0 =

(
∂E1

∂p1x
− ∂E2

∂p2x

)
dp1x +

(
∂E1

∂p1y
− ∂E2

∂p2y

)
dp1y. (11)

From this, with some straightforward algebraic steps, we obtain

dp1y

dp1x
= − 1

p1yE

[
p1x

√
m2 + (p− p1x)2 + p2

1y − (p− p1x)
√

m2 + p2
1x + p2

1y

]
. (12)

With the notation introduced in Equation (5) this can be rewritten in a form which is
mathematically more transparent, recalling that m and p are fixed constants:

g′(t) = − 1
g(t)

√
m2 + p2

[
t
√

m2 + (p− t)2 + g2(t)− (p− t)
√

m2 + t2 + g2(t)
]

. (13)

In the following, however, we shall denote the parameter t by p1x, according to its physical meaning.
We are interested into the numerical solution of this equation via a Runge-Kutta algorithm

in the interval p1x ∈ [0, p]. It can be shown that the right hand sidediverges when p1x → 0+ or
p1x → p−, so it is impossible to use the points p1x = 0 or p1x = p to set the the initial conditions of
the numerical integration. It is possible, however, to impose the initial conditions at the value of p1x
which solves Equation (3) in the special case p1x = p1y ≡ ξ. In this case Equation (3) or its equivalent
(6) become √

m2 + p2 =
√

m2 + 2ξ2 +
√

m2 + (p− ξ)2 + ξ2 (14)

and can be solved numerically, thus finding appropriate initial conditions for the differential equation.
The solution of the latter can then be extended on the whole interval [0, p] by considering that:
(1) The solution is symmetric with respect to p/2. (2) The solution in the restricted interval [ε, p− ε]

converges when ε→ 0. (One obtains numerical evidence of this property using small values of ε; the
convergence follows from the fact that for any fixed ε the derivative g′ behaves as 1/εα, with 0 < α < 1,
when p1x = ε or p1x = p− ε.)

An example of the solution, which we shall denote as g(p1x), is given in Figure 1.
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Figure 1. The function g(p1x) obtained by numerical solution of the differential Equation (12),
for a strongly relativistic case (p/m = γv = 100 ' γ; v ' 1). We use units c = 1 throughout
the paper, and in this plot we also take m = 1 for graphical reasons.

2.3. Monte Carlo Evaluation of the Integral on Final States

The line integral (9) can be now computed through a Monte Carlo technique, since we
have a numerical relation between p1x and p1y, while p2x and p2y can be obtained through the
momentum conservation laws (1) and (2). For any function F of the final momenta, the average
value 〈F〉 will only depend on the initial momentum p. We can therefore study the dependence
of 〈F〉 on p distinguishing between the classical limit (γ→ 1+, v� 1 in our units) and the strongly
relativistic limit (γ� 1, v→ 1−). If we take F = R, it turns out that 〈R〉 is actually independent
from p and is always equal to 1/2. This is due to the symmetry of the function g(p1x)

(compare Figure 1). It is more interesting to consider the probability distribution of R in the interval
I1 = {p1x ∈ [p/2, p]}. This corresponds to collisions in which Particle 2 has obtained from Particle 1
a kinetic energy between 0 and 1/2 of its initial kinetic energy (the values 0 and 1/2 being respectively
obtained when p1x = p and p1x = p/2). The complementary interval in the possible final states,
namely I2 = {p1x ∈ [0, p/2]}, represents the complementary cases of energy re-distribution, but since
the two particles are identical, those cases are not distinguishable from the corresponding cases in I1,
as far as their effect on the income distribution is concerned.

Let us make a numerical example with reference to Figure 2, which represents the probability
distribution of R in a collision with low energy; then we shall compare this to the distribution in the
extreme-relativistic case. The distribution in Figure 2 is obtained as follows:

1. A numerical value of p/m is chosen, in this example p/m = 0.01, and Equation (12) is solved
numerically, obtaining p1y as a function g of p1x: p1y = g(p1x).

2. A large number of random values of p1x (typically 106 or 107) is generated in the interval I1.
3. The corresponding value of R is calculated from the definition (4) using the function g(p1x) and

Equations (1) and (2).

4. Each value of R is multiplied by the weight
√
(p′1x)

2 + (p′1y)
2 + (p′2x)

2 + (p′2y)
2.

5. In the graph, which is actually a histogram, the vertical axis represents, for 50 discretized values
of R in the interval 0 ≤ R ≤ 1/2, the weighted number of counts, i.e., the number of times R
has taken that value, multiplied by the weight. The part of the histogram for 1/2 ≤ R < 1 is
symmetrical, and not shown.

For instance, in the almost-classical case of Figure 2 (p/m = 0.01), the probability that
R = 0.4 = 40%, i.e., Particle 1 has lost to Particle 2 the 40% of its initial kinetic energy, is approximately
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1/3 of the probability that R = 0.05 = 5%. Note that the probability of R = 60% is equal to the
probability of R = 40% and in both cases the collision will have the same effective result, with one
of the particles having 60% of the initial energy and the other 40%.

On the other hand, in the extreme relativistic case (Figure 3) the probability of R turns out
to be almost independent from R. In other words, there will not be a majority of collisions with
very small or very large energy exchange like in Figure 2, but each rate of energy redistribution has
approximately the same probability. This marks a clear difference between low energy and high energy
regimes. In Section 3 we shall use an agent-based simulation to see how this affects the equilibrium
distribution in an analogous economic system.

R

Counts

10 20 30 40 50

50000

100000

150000

200000

250000

300000

350000

Figure 2. Plot of the distribution of R in a Monte Carlo simulation of 5× 106 almost classical collisions
(p/m = γv = 0.01, γ ' 1, v ' 10−2). R is expressed in % and is the fraction of kinetic energy
transferred from Particle 1 to Particle 2. When p/m becomes even smaller, in the fully classical case,
the peak for R→ 0 (corresponding to a symmetric peak for R→ 1) becomes higher. The dot at R = 51%
is not meaningful.
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Figure 3. Plot of the distribution of R in a Monte Carlo simulation of 5× 106 collisions, in a fully
relativistic case (p/m = γv = 1000 ' γ, v ' 1). R is expressed in % and is the fraction of kinetic energy
transferred from Particle 1 to Particle 2. The dot at R = 51% is not meaningful.
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3. Agent-Based Simulations and Saving Propensity

The analogies between the energy distribution in a gas and the income distribution in a society
have been one of the main subjects of econophysics, since the pioneering works of the 1990s [9].
In several works, agent-based simulations have been employed to investigate the relation between
the rules of the microscopic interactions and the resulting equilibrium income distribution. A well
established result is that a fixed saving propensity in the interactions gives rise to a distribution of the
Gamma-kind, namely P(E) = kEβe−E/T , where E is here the income and T an effective temperature.
This distribution does not have a flat tail. (P(E) is the probability density distribution of energy
or money, in the econophysics analogy. The probability that an individual chosen at random has
income in the infinitesimal interval (E, E + dE) is given by P(E)dE. The “temperature” T corresponds
essentially, in the analogy, to the average wealth, whereby the Boltzmann constant is set by convention
equal to 1.)

The saving propensity, usually denoted with λ, is the fraction of its income that each individual
“hedges” in the economic interactions, or in other words, individuals put at stake in the interactions
a fraction (1− λ) of their income. It is relatively straightforward to reproduce some of the mentioned
result. For instance, Figure 4 shows the income distribution we have obtained from a simulation with
105 agents exchanging energy/money according to the rule [11]

E′i = λEi + ξ(1− λ)(Ei + Ej),

E′j = λEj + (1− ξ)(1− λ)(Ei + Ej) (15)

(i and j label two agents randomly chosen at each step; ξ is a random variable in the interval (0, 1)).
The system has been evolved to equilibrium with a series of 108 binary exchanges, and the whole
procedure averaged for 50 times in order to minimize the effect of fluctuations.

More in detail, we define, in a suitable programming language (Mathematica in our case)
a vector E with 105 components. The component Ei represents the wealth of the i-th agent of
our idealized society. At the beginning all agents have the same wealth, e.g., Ei = 20 units for
any i in our simulation. Then the simulation algorithm choses at random two integer indices i, j
between 1 and 105. These are the agents who are currently interacting. Their wealths are changed
according to Equation (15). The random choice of agents and the modification of their wealths
is repeated for 108 times. This means that, on average, each agent has interacted with others for
103 times. (Thermalization times larger than 108 steps are found to give no changes in the final results.)
A histogram of the wealth distribution is generated by rounding the wealth of each agent to the
nearest integer and then using a counting function to define the frequency, for instance in Mathematica
in our case with the code frequency = Table[Count[X,n],{n,0,120}], where X is the rounded
income vector and 120 is a safe maximum value for the income. The frequency vector is the one whose
components are shown in the histograms in Figures 4 and 5. Next we average the frequency vector over
many realizations, in order to reduce the fluctuations, we normalize it by dividing each component
by the sum of all components, and we use a FindFit function to fit it to the κ-distribution (16).
This function employs a least-squares method and returns the best fit values of the three parameters
in the κ-distribution. When the fit fails to show a power-law tail, it is because it returns negative values
for α and β, which are not admissible for a κ-distribution.

A fit of the resulting distribution with the κ-distribution

P(E) =
αβEα−1 expκ(−βEα)√

1 + β2κ2E2α
; (16)

expκ(t) =
(√

1 + κ2t2 + κt
)1/κ

(17)

fails, and this confirms that no Pareto tail is present. Similar results can be obtained with other values of λ.
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Now let us run a simulation with microscopic exchange rules corresponding to the extreme
relativistic case of Section 2.3. We set the energies of two particles after a collision as

E′i = ξ(Ei + Ej),

E′j = (1− ξ)(Ei + Ej) (18)

This means that, as found in Section 2.3, all energy exchange rates are equally probable,
and as a consequence there is no fixed saving propensity. The result of a simulation with 105 agents,
108 thermalization steps and 100 averages is given in Figure 5. The curve can be fitted by a κ-distribution
with a ratio α/κ ' 1.75, thus with a Pareto tail of exponent 2.75.

Income

Agents

0

100000

200000

300000

400000

Figure 4. Income distribution from an agent-based simulation (see details in text) where agents
exchange money with a fixed saving propensity. A fit with the κ-distribution confirms that there is no
Pareto tail.

Income
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0

200000

400000

600000

800000

Figure 5. Income distribution from an agent-based simulation (see details in text) with agents which
exchange money in analogy with the behavior of relativistic particles, i.e., all exchange rates being
equiprobable. The distribution has a Pareto tail proportional to 1/E2.75, where E is the income.
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4. Conclusions

Pursuing an analogy between physics and economics, we have computed the probability that
in a relativistic collision between two identical particles the fraction R of energy exchanged is equal
to a given value in the interval (0, 1), thus obtaining a distribution for R. This is accomplished under
the assumption that all the possible final states of the collision are equiprobable, i.e., considering only
kinematical constraints. The evaluation is done in the reference system where one of the particles
is at rest; this choice is motivated by an economic analogy and by the fact that the privileged reference
frame for a gas is the frame where most molecules have velocity close to zero.

We have represented the possible final states as a one-parameter line in the 4D space of the
final momenta. A Monte Carlo algorithm then generates states uniformly distributed along this line,
weighted by the invariant length element of the line. This allows us to obtain a histogram of the values
of R. In the non-relativistic limit the histogram has a sharp peak for R → 0+ (and symmetrically
for R → 1−). By contrast, in the relativistic case, when the incoming particle has a large γ factor,
the histogram is essentially flat. This means that, from the kinematical point of view, in strongly
relativistic collisions particles can easily exchange any fraction of their total energy.

The analogue of a relativistic collision in economic interactions is therefore a money exchange
without a fixed saving propensity. We have checked through agent-based simulations that interactions
of this kind lead to an income distribution with a Pareto tail. This confirms and extends the results
of [10], albeit with the limitation inherent to the analogy employed and to the specific physical process
and reference frame considered. Moreover, the present results hold for collisions between identical
particles, while in [10] the particles were considered to be distinguishable.
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Project COMPLAB.
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final manuscript.
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Appendix A. Relativistic Energy and Momentum

The energy and momentum of a particle in Special Relativity are given by the expressions

p =
mv√
1− v2

c2

(A1)

E =
mc2√
1− v2

c2

(A2)

E =
√

p2c2 + m2c4 (A3)

where v is the velocity of the particle and c is the velocity of light. In the non-relativistic limit
v � c the expression for the momentum reduces to the non-relativistic expression p = mv, while
the expression for the energy can be approximated as E = mc2 + 1

2 mv2. The quantity mc2 is called
“rest energy” of the particle. In elastic collisions in which the initial and final particles are the same,
the rest energy does not play any role. By “relativistic kinetic energy” we mean the difference E−mc2

between the total energy and the rest energy. The total energy can also be written as E = γmc2, where
γ is the relativistic time-dilation factor γ = (1− v2/c2)−1/2. The high energy limit for a relativistic
particle is characterized by values of γ� 1 (total relativistic energy much bigger than the rest energy).
In this case the velocity of the particle is very close to c. Clearly, in the opposite non-relativistic limit
v� c, one has γ ' 1 and the total relativistic energy is close to the rest energy.
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Appendix B. Wealth Exchange and “Yard Sale” Models in Econophysics

For accessible reviews on this subject we refer to [9,12]. Within the so-called “econophysics”
approach to economy as a complex system [13,14], wealth exchange models depict a society
as an ensemble of individuals (possibly heterogeneous, like in a network [15,16]) which at any
given time possess a well-defined amount of money and constantly interact with each other paying
or receiving fixed or variable amounts. The money paid may represent expenses for the purchase
of goods and services, while the money received may represent the profit from sales, a salary received
etc. No distinction is made, at this level, between money as pure “cash” and other forms of wealth,
like assets and properties, although in certain versions of the model such aspects have been considered,
as well as the possibility that some individuals contract debts. This is clearly an over-simplification
with respect to real economic interactions, but has the merit, from a complex systems perspective,
to allow a micro-to-macro derivation of the income distribution starting from assumptions on the
interactions between individuals, and not from the concept of rational representative individual and
from the maximization of interest functionals like in classical economics theory. Boghosian [17,18]
has extensively analyzed the mathematics of the Yard Sale model. In [19] he also gives an alternative
economic interpretation: When two agents exchange a commodity, they may do so for a price that
is different from the intrinsic value. This difference may be due to the agents’ own personal utility
functions–that is, their own senses of the value of the commodity. When this difference is nonzero,
intrinsic wealth changes hands.

There are further reasons to believe that kinetic models capture the “game-theoretical” strategies
of the interacting agents much more than their physical origin could suggest. In fact, it was shown
in [20] for game-theoretical models, that their large-numbers averages are equivalent to those of certain
statistical mechanics systems. This suggests that some models of statistical mechanics originally
developed to describe ensembles of inanimated atoms or spins are suitable also for the description
of ensembles of individuals following a strategy, because in both cases the system tends to minimize
some objective function.

A straightforward way of computing the average outcome of the elementary interactions
in a wealth exchange model is to use an agent-based simulation [1,2]. This is a tool widely employed
in economics, also for models which comprise more sophisticated interactions. Each individual is
defined as a variable in a programming code, which records its wealth and possibly other features.
While executing a large number of discrete time-steps, an algorithm picks at each step two individuals
at random and updates their wealth according to certain rules which simulate the interaction.
A concrete example is given in Section 3 of this paper.

For a recent comparison of the results of an agent-based model with real data see [21].
Saving propensity. In the simplest models of money transfer [9] the amount of money transferred

at each encounter is typically independent from the money balances of the agents involved.
The simulation usually proceeds by selecting two agents at random, choosing at random which of the
two will be the payer and which the receiver, ad then transferring the fixed amount. This elementary
step is repeated until the income distribution does not change. A different model, called the
multiplicative asset exchange model, was introduced by Ispolatov et al. in 1998 [12]. In this model the
transferred amount is a fixed fraction γ of the payer’s money. The stationary distribution of money
in this model is similar, but not exactly equal, to the Gamma distribution density P(E) = cmβe−E/T .
Using a Boltzmann kinetic equation, Ispolatov et al. have derived a relation between the parameters β

and γ. Angle [22] connected the proportionality law heuristically introduced by Ispolatov et al. with
the surplus theory of social stratification. Angle also considered a model where groups of agents have
different values of γ, simulating the effect of education and other “human capital”. Another model
with an element of proportionality was proposed in Ref. [11]. In this model the agents save some
fraction λ of their money, whereas the rest becomes available for random exchanges. The exchange
rules then become as in Equation (15) above. The coefficient λ is called the saving propensity and
corresponds essentially to (1− γ), where γ is the coefficient introduced in [12].
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