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Abstract: Anomalous advection-diffusion in two-dimensional semiconductor systems with coexisting
energetic and structural disorder is described in the framework of a generalized model of multiple
trapping on a comb-like structure. The basic equations of the model contain fractional-order derivatives.
To validate the model, we compare analytical solutions with results of a Monte Carlo simulation of
phonon-assisted tunneling in two-dimensional patterns of a porous nanoparticle agglomerate and
a phase-separated bulk heterojunction. To elucidate the role of directed percolation, we calculate
transient current curves of the time-of-flight experiment and the evolution of the mean squared
displacement averaged over medium realizations. The variations of the anomalous advection-diffusion
parameters as functions of electric field intensity, levels of energetic, and structural disorder are presented.

Keywords: anomalous diffusion; hopping; fractional equation; dispersive transport; mesoporous
semiconductor; polymer blend; percolation

1. Introduction

The problem of transport in disordered semiconducting systems is important from fundamental as
well as from technological point of view. Anomalous (non-Fickian) diffusive behavior of charge carriers
is often observed in these materials [1–4] and can be attributed to various mechanisms, e.g., multiple
trapping of charge carriers into localized states with random energies, phonon-assisted tunneling or
hopping, percolation over the conduction states, and others. In most cases, disordered semiconducting
systems are characterized by the coexistence of energetic and structural disorder. There remains the
need for joint account of material morphology and energy disorder to describe charge carrier dynamics,
particularly in models of dye-sensitized solar cells (DSSC, the Grätzel cell) [5–8] or polymer bulk
heterojunction (BHJ) [9–12].

DSSCs traditionally include a highly porous metal oxide nanocrystalline semiconductors, such
as TiO2, on a transparent conductive electrode. The efficient electronic transport is responsible for
the overall performance of DSSC and disordered structure of porous anode affects essentially on
transport characteristics [7,8,13,14]. Electron transport in mesoporous TiO2 exhibits main features of
dispersive kinetics in disordered semiconductors [15]. The models of phonon-assisted hopping (PAH)
and multiple trapping (MT) are often used for the description of charge transport in DSSC. In the MT
model (see details in [16]), carriers are divided into mobile or free ( f ) and trapped (t) ones. First group,
being delocalized, is responsible for the charge transport. In the PAH model, carriers tunnel between
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localized states with absorption or generation of phonons. Organic photovoltaic (PV) devices based on
polymer blends (such as P3HT:PCBM) forming BHJ [9–12] are also characterized by strong structural
and energetic disorders. The idea of BHJ is based on the extension of the donor-acceptor interface on
the entire volume of the working (active) layer. The distributed border of large area between p- and
n-type domains significantly increases dissociation efficiency of photogenerated excitons.

Stochastic modeling plays a key role in studying charge carrier transport in these systems [17].
Random walk based simulations are often performed [1,18–20] to elucidate different transport features.
The seminal works on simulation of dispersive transport by Bässler [18] for organic semiconductors
and Nelson [15] for nanocrystalline TiO2 electrodes were followed by a great number of applications
of this approach to the modeling of solar cells (see review [21]).

To study combined the effect of energy and structure disorder, simulations of random walks in
mesoporous TiO2 were employed in [5,6,22]. Benkstein et al. [5] demonstrated that network topology
has a strong influence on the electron transport in mesoporous TiO2 samples. Their measurements and
simulations are described well by percolation theory. They studied DC conduction in mesoporous films
and obtained the power-law dependence of the electron diffusion coefficient D on the film porosity
P, D ∝ |P− Pc|µ, where Pc is the critical porosity (percolation threshold). They also noticed that the
fraction of terminating particles (dead ends) in the mesoporous TiO2 film increases essentially when P
increases. Cass et al. [6] studied the transient response of photoelectrons by means of a multitime-scale
Monte Carlo simulation, and also found that the morphology of the TiO2 samples has a considerable
impact on the transport characteristics.

There is a lack of analytical approaches considering the combined effect of energy disorder and
morphology. Apparently, such an approach can be developed as a generalization of dispersive transport
models (MT, PAH, CTRW), accounting for the geometry of the structure. As is known, there exist several
geometrical models to describe percolation in disordered media: the single-conductor network of Skal
and Shklovsky [23], the fractal model of Mandelbrot and Given [24], the Arcangelis-Redner-Coniglio
model [25], Stanley’s droplet model [26], and others. The popular model to study anomalous diffusive
transport in low dimensional percolation clusters is the so-called comb model introduced in [27,28].
The dynamic equation to describe transport on the continuous comb has been proposed by Arkhincheev
and Baskin [29] and studied in [30–35]. The advection-diffusion in the comb can be described in the
framework of the continuous time random walk (CTRW) concept [36,37]. Diffusion in a teeth could
be considered as a trapping event characterizing by a random waiting time; effective transport
is provided by motion along the backbone [35]. The CTRW model for TiO2 films was proposed
in [15]. Generalizations of the comb model consider trap-limited diffusion [35], multiple trapping [33]
or fractional Brownian motion [38] on combs, fractal comb-like geometry [32,34], multidimensional
generalization [39], and others. Assuming the coexistence of two subdiffusive processes: diffusion
on a fractal structure and heavy-tailed CTRW, Meroz et al. [40] have noticed the subordination of an
ergodic anomalous process to a nonergodic one. The resulting process is nonergodic—time averaged
and ensemble averaged mean squared displacements (MSDs) do not coincide.

In the present paper, we try to describe the combined effect of energetic and structural disorder for
phonon-assisted hopping in two-dimensional disordered systems in the framework of a generalized model
of multiple trapping on a comb-like structure. The basic equations of the model contain fractional-order
derivatives. To verify analytical predictions, we perform a series of kinetic Monte Carlo (KMC)
simulations of hopping in two types of inhomogeneous media: nanoparticle agglomerate and
two-component polymer blend. To elucidate the role of directed percolation in joint influence of
structural and energetic disorder, the evolution of mean squared displacement and transient current
curves in the time-of-flight method are calculated. The variations of the anomalous advection-diffusion
parameters as functions of electric field intensity, levels of energetic, and structural disorder
are presented.
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2. Multiple Trapping on a Comb-Like Structure

Here, we continue to develop the model of multiple trapping on a comb structure (MT-comb
model) proposed in [33] for dispersive transport in disordered nanostructured samples. The classic
comb model consists of ‘backbone’ coinciding with the x axis and regularly distributed perpendicular
‘teeth’ directed along the y axis [27,28]. The effective transport on the comb is possible only along
the x axis, and ‘teeth’ play role of traps in the CTRW interpretation. The comb geometry describes
approximately the effect of ‘dead ends’ of a percolation cluster [29,32,37]. To describe hopping on
such a structure, we consider the MT model, although applicability of this replacement is not ensured
a priori. It will be validated by comparison with Monte Carlo simulation results.

The most important features of PAH have been understood on the basis of the numerical
simulations for different densities of states (DoS) and spatial distributions of traps. Considering the
equilibrium conduction, authors of Reference [41] came to the conclusion that the main contribution to
conductivity is made by electrons, performing jumps near the characteristic energy level. An analytical
formula was obtained for the energy showing that it does not depend on the position of the Fermi level.
Independently of them, Monroe [42] considered the energy relaxation of electrons by hopping over
the band tail states. The author showed that the electrons starting from the mobility edge make a few
jumps and quickly relax in energy, but the type of relaxation changes when the characteristic energy
transport level εtr is reached. The hopping process near and below the transport level is similar to the
MT relaxation. The transport level can be considered as an analog to the mobility edge. Only states
with energies less than εtr should be interpreted as traps [3,43,44]. We extend this analogy for PAH in
a comb-like structure.

Consider the non-Markovian generalization of the Fokker-Planck equation (FP-equation) describing
dispersive advection-diffusion in disordered semiconductor [45–48],

∂

∂t

∫ t

0
p(x, τ) Φ(t− τ)dτ + L̂FP p(x, t) = G(x)Φ(t), (1)

where Φ(t) is a memory kernel defined by transport mechanism, DoS, distribution of distances between
hopping centers,

L̂FP p(x, t) =
∂

∂x

{
µEp(x, t)− D

∂

∂x
p(x, t)

}
,

E is an electric field intensity, µ and D are effective mobility and diffusion coefficient, respectively,
and G(x) = p(x, 0) is the initial concentration of generated carriers. Here, we consider constant and
homogeneous µ and D.

The Laplace transformation of the FP-Equation (1) leads to

sΦ̃(s) p̃(x, s)− L̂FP p̃(x, s) = G(x)Φ̃(s). (2)

In the continuous time random walk (CTRW) model [1], the Laplace transform Φ̃(s) of the kernel
is associated with the transform of survival probability P{θ > t} = Ψ(t) and density ψ(t) of waiting
times θ in traps by formula:

Φ̃(s) = Ψ̃(s)/ψ̃(s). (3)

As was mentioned in Introduction, the diffusion in the comb can be formulated in terms of the
CTRW model [36,37]. Similarly, MT-comb model can be also represented as CTRW. If l is a random
number of visited sites of a dead branch during one sojourn of the branch, localized states are in each
site and the corresponding waiting times are independent and identically distributed random variables
with pdf ψ(t), then the distribution of the sojourn time in dead ends (averaged over l) is

ψbr(t) =
∞

∑
l=0

ψ∗l(t)pl .
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Here, pl is a distribution of l. After the Laplace transformation, the convolution transforms into
the product of densities

ψ̃br(s) =
∞

∑
l=0

[ψ̃(s)]l pl ∼
∫ ∞

0
exp [l ln ψ̃(s)] p(l)dl = p̃ (− ln ψ̃(s)) .

For the transform of the integral kernel of the generalized FP-equation, we have

Φ̃(s) =
1− p̃ (− ln ψ̃(s))

sp̃ (− ln ψ̃(s))

In the case of a tempered power-law distribution of the number of visited states in dead ends,
we have

p̃(s) ∼ 1 + cβγβ − cβ (s + γ)β .

and taking expression − ln ψ̃(s) = − ln
[
1− sΨ̃(s)

]
∼ sΨ̃(s) into account at s → 0, we arrive at the

following expression

Φ̃(s) =
cβ

(
sΨ̃(s) + γ

)β − cβγβ

s
[
1 + cβγβ − cβ

(
sΨ̃(s) + γ

)β
] ∼ s−1[cβ

(
sΨ̃(s) + γ

)β − cβγβ]. (4)

For asymptotically large times, according to the Tauberian theorem [49], we can use asymptotic
transform of the FP-equation for s→ 0,

[cβ

(
sΨ̃(s) + γ

)β − cβγβ] p̃(x, s)− L̂FP p̃(x, s) = G(x)Φ̃(s). (5)

In the MT model [16,33]

Ψ(t) =
〈

exp
(
− ω0t

exp(ε/kT)

)〉
ε

=
∫ ∞

0
exp

{
−ω0te−ε/kT

}
ρ(ε)dε. (6)

Here, ρ(ε) is DoS, ω0 is a trapping rate. For exponential DoS ρ(ε) = ε−1
0 exp(−ε/ε0), we have the

power law distribution of waiting times in localized states [1,16]:

Ψ(t) =
∫ ∞

0
exp

{
−ω0t e−ε/kT

}
ε−1

0 exp(−ε/ε0)dε ∼ αΓ(α)
ωα

0
t−α, t→ ∞, α =

kT
ε0

.

For the non-tempered case (γ = 0) and for exponential DoS, we have

Φ̃(s) ∼ cβ

( πα

sin πα

)β
ω
−αβ
0 sαβ−1. (7)

As a result, we obtain the advection-diffusion equation containing the fractional derivative of
order αβ

0Dαβ
t p(x, t)− L̂∗FP p(x, t) = G(x)

t−αβ

Γ(1− αβ)
, (8)

where

L̂∗FP p(x, t) =
[

cβ

( πα

sin πα

)β
ω
−αβ
0

]−1
L̂FP p(x, t) =

∂

∂x

{
µ∗Ep(x, t)− D∗

∂

∂x
p(x, t)

}
is the redefined FP-operator,

0Dαβ
t p(x, t) =

1
Γ(1− αβ)

∂

∂t

∫ t

0

p(x, τ)

(t− τ)αβ
dτ

is the Riemann-Liouville derivative (RL-derivative) (see, e.g., [50]), α = kT/ε0 is related to energy
disorder (DoS width), and β is determined by the level of structural disorder.
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If α = 1 and γ 6= 0, we have the tempered fractional Fokker-Planck equation

0D
β,γ
t p(x, t)− L̂∗FP p(x, t) = G(x)

e−γtt−β

Γ(1− β)
, (9)

where

0D
β,γ
t f (x, t) =

[
e−γt

0Dβ
t eγt − γβ

]
f (x, t) =

1
Γ(1− β)

∂

∂t

t∫
0

e−γ(t−τ) f (x, τ)

(t− τ)β
dτ − γβ f (x, t)

is, so called, the tempered fractional RL-derivative [51]. In the case γ = 0, we have the standard
RL-derivative 0D

β,0
t = 0Dβ

t . If β = 1, 0D1,γ
t = ∂

∂t .
The generalized FP-Equation (5) is obtained under the assumption about negligibly small sojourn

times in the backbone between subsequent trapping into ‘dead ends’. In the more general case, the
transport is characterized by the composition of memory kernels, one of which accounts for walking
in ‘dead ends’ and another arises due to sojourn time in the backbone,[

cβ

(
sΨ̃(s) + γ

)β − cβγβ
]

p̃(x, s) + sΨ̃(s) p̃(x, s)− L̂FP p̃(x, s) = G(x)[Φ̃β(s) + Ψ̃(s)]. (10)

The set of considered kernels for different situations is represented in Table 1. In case I,
the advection-diffusion equation contains the fractional RL-derivative of order αβ. In case II, we
meet the tempered fractional RL-derivative of order β with truncation factor γ. Case III corresponds
to a particular type of distributed order fractional equation with two-component fractional operator
that leads to transient dispersive kinetics characterized by different dispersion parameters αβ and α at
different time scales.

Table 1. Asymptotic kernel transform Φ̃(s) of the generalized FP-equation.

Case Conditions Asymptotic Kernel Transform Φ̃(s)

I Exponential DoS, γ = 0 cβ (πα/ sin πα)β ω
−αβ
0 sαβ−1

II Finite mean waiting time in LS, γ 6= 0 s−1[cβ (s + γ)β − cβγβ]

III Conduction channel, γ = 0, exponential DoS cβ (πα/ sin πα)β ω
−αβ
0 sαβ−1 + (πα/ sin πα)ω−α

0 sα−1

3. Transient Current Curves

The main features of the dispersive transport have been established by means of time-of-flight
(ToF) experiments for amorphous semiconductors. In the ToF method, non-equilibrium charge carriers
are generated by a light pulse of short duration on the surface layer of a sample situated between two
electrodes. These carriers propagate under influence of the applied electric field, that results in a bias
current. The applied voltage is high enough to disregard the field of nonequilibrium charge carriers.
Non-Gaussian (e.g., dispersive) transport behavior could be identified by observation of the power
law decay of photocurrent I(t). Universal TC-curves are characterized by two power law sections,
I(t) ∝ t−1+α for t < tT and I(t) ∝ t−1−α for t > tT (α is the dispersion parameter), and power law
dependence of transient time on the sample thickness tT ∝ L1/α [1]. In [52], it has been shown that
such behavior of transient current indicates the specific self-similarity of charge carrier propagator,
which satisfies the advection equation containing the time derivative of fractional order α.

The ToF photocurrent can be found by integration of carrier concentration p(x, t),

I(t) =
1
L

∫ L

0
j(x, t)dx =

e
L

d
dt

∫ L

0
(x− L)p(x, t)dx. (11)

Function p(x, t) in its turn could be found by solving the corresponding transport equation.
The solution to Equation (9), under the ToF conditions, can be written in the subordinated

form [53]
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p̃(x, s) =
∫ ∞

0
dτ f (x, τ)q̃(τ, s), q̃(τ, s) = Φ̃(s) exp(−τsΦ̃(s)). (12)

Here, f (x, τ) is the solution of the classic FP equation (i.e., Equation (1) with first derivative on
operational time τ instead of integral operator), and q̃(τ, s) is the Laplace transform of the operational
time density.

Substituting (12) into the Laplace transformation of (11), after integration by parts and changing
the order of integration, we arrive at equation

I(t) =
∫ ∞

0
dτ IFP(τ)q(τ, t), (13)

where IFP(τ) = e
L

d
dτ

∫ L
0 (x − L) f (x, τ)dx is the transient current at normal transport, which can be

found by solution of classic FP-equation. As a result, we have

Ĩ(s) = ĨFP(sΦ̃(s)). (14)

If E is a homogeneous electric field, µ = const, D ≈ 0: IFP(t) = µEL−11(0,L/µE)(t).
The corresponding Laplace transform is ĨFP(s) = µEL−1s−1[1− exp(−sL/µE)]. Dispersive transient
current in this case has the form

Ĩ(s) =
µEL−1

[ p̃ (− ln ψ̃(s))]−1 − 1

{
1− exp

(
− [ p̃ (− ln ψ̃(s))]−1 − 1

µEL−1

)}
. (15)

Even in case, when waiting times in sites are characterized by the exponential distribution,
Ψ̃(s) = 1/(µ + s), the asymptotic (s → 0) term of integral kernel Φ̃(s) corresponds to a power law
memory kernel with exponent β < 1, Φ̃(s) ∼ cβµ−βsβ−1. So, the integral operator in the generalized
FP-Equation (1) becomes the RL fractional derivative in this case and dispersive transport with
parameter β < 1 should be observed.

In the case of kernel (7), we have the following Laplace transform of transient current for pure
advection in strong electric field

Ĩ(s) = (κsαβ)−1
[
1− exp

(
−κsαβ

)]
, κ =

L
µE

cβ

ωαβ

( πα

sin πα

)β
.

Inverse Laplace transformation of this expression leads to

I(t) =
αβ

κ
tαβ−1

∞∫
tκ−1/αβ

τ−αβg(αβ)
+ (τ)dτ ∼

{
[κΓ(αβ)]−1t−1+αβ, t < tT ;
[2κΓ(1− αβ)]−1t−1−αβ, t > tT ,

(16)

Here, g(η)+ (τ) is the one-sided Lévy stable density (subordinator), 0 < η ≤ 1; tT is a transient time
usually determined through the break on TC curve.

4. Kinetic Monte Carlo Simulation

To verify the model, we compare analytical predictions with results of a Monte Carlo
simulation of phonon-assisted hopping in porous nanoparticle agglomerate and phase-separated
bulk heterojunction.

4.1. Simulation of Phonon-Assisted Hopping

Considered samples are rectangular (S× L), where L is a sample length along the field direction
and S is a transverse size. Hopping is simulated using the Miller-Abrahams relation for the transition
rate between localized states with Gaussian or exponential DoS and arranged in square lattice points.
The DoS parameters depend on the local composition of the sample. For porous system, the lattice
points belonging to voids are excluded.
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An electron (or hole) makes a hop with the Miller-Abrahams rates

γjk = Γjk exp
(
−2

rjk

a

)
, Γjk = Γ0 exp(−∆Ujk/kBT), (17)

where rjk is a distance between states and a is a localization radius. Amplitude of hopping rates depends
on the difference between energies of localized states ∆Ujk = ε j − εk + eErjk and E is an electric field
intensity. During the computation, hopping rates are estimated according to (17). For a carrier in
the j-th localized state, γjk is calculated for all k in the square with center in rj and side l = 5a.
For each j 7→ k transition, the random time τj 7→k = −γ−1

jk ln U is generated. Here, U is the random
variable uniformly distributed in (0, 1). Transition occurs into the k-th state with minimal τj 7→k. Under
conditions of the ToF-method, carriers are initially generated near the left electrode. The carriers are
reflected from the left electrode, and absorbed by the opposite electrode.

4.2. Generation of Particle Agglomerate

We consider a simplified geometry of a mesoporous semiconductor to separate effects of
percolation and distribution in energy states on transient photocurrents. A two-dimensional pattern of
nanoparticles is generated as a set of Nn circles with centers randomly distributed over a square sample.
Each circle has a random radius from Gaussian distribution with the mean value R̄ and standard
deviation δR. Circles can overlap each other. Porosity of the obtained agglomerate is calculated as a
fraction of empty area. Localized states with a given DoS are distributed inside the particles. Hopping
rates between localized states depend on spatial separation and the energies of these states according
to (17). We consider samples of size 5× 5 µm 2 and particles with mean radius R̄ = 120 nm and relative
fluctuations of their size δR/R̄ = 0.5.

Note, that electron transport in the mesoporous TiO2 films in DSSC occurs by diffusion since
the macroscopic electric field across the sample is screened by an electrolyte [54]. Here, we consider
the mesoporous system without electrolyte and calculate transient currents under conditions of the
ToF method. Obtained here, results could not be directly applied to DSSC but provide important
understanding of the joint influence of structural and energetic disorder.

Electron trajectories of phonon assisted hopping in nanoparticle agglomerate with Nn = 800
for different electric field intensities are demonstrated in Figure 1. Localization of charge carriers in
topological traps is enhanced at increased field intensities. Irregularity of spatial distribution of these
traps is evident for higher electric fields.

Figure 1. Trajectories of phonon assisted hopping in 800 nanoparticle agglomerate (α = kT/ε0 = 0.75,
R̄ = 120 nm, δR = 70 nm) for different values of electric field intensity (indicated in figure).
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4.3. Generation of Spinodal Pattern of Two-Component Blend

Another considered system is BHJ. In theory, BHJ is often implemented as a result of spinodal
decomposition of a donor-acceptor semiconductor blend. Simulation of spinodal decomposition and
related phenomena is based on the solution of the Cahn-Hilliard equation [55,56]

∂u
∂t

= −4(ε24u + f (u)), D ⊂ Rn.

Here D is a bounded domain in Rn with sufficiently smooth boundaries, n = 2 in our
case, function − f is a derivative of double-well potential W, which is often chosen in the form
W(u) = (u2 − 1)2/4, and ε is a small positive parameter, characterizing length of interaction. Function
u is a concentration of one of the blend components. Extreme values−1 and 1 of function u correspond
to fractions 0 and 1 of chosen component. The solution to the Cahn-Hilliard equation satisfies the mass
conservation condition

∫
Ω udV = µ = const.

When we consider hopping on a two-dimensional (n = 2) spinodal, patterns of abstract
donor-acceptor polymer blend. Donor area is considered to be a set of domains in which u < 0.5, other
domains are considered to belong to the acceptor area. A charge carrier performs hopping over one
of these areas depending on carrier’s sign. We consider patterns corresponding to different µ-values
(ratio of components) and different annealing times, determining the morphology of the area accessible
for hopping.

4.4. Calculation of Transient Current, Mobility and Diffusion Coefficient

Transient current is calculated as a density of the generalized renewal process. The time axis
in log-scale is divided into a number of intervals. Each hop i → j, occurring at time tij, belonging
to the k-th time interval contributes to histogram of displacement current Ik. Mobility is defined by
µ = 〈vx〉/E, where drift velocity can be determined as 〈vx〉 = L/tT . Here L is a sample thickness and
tT is a transient time, or ‘time of flight’. The latter can be found through the break on the TC-curves,
or from the passage of coordinate L by the mean position of the packet. The coefficient of parallel
diffusion can be calculated as D‖ = t−1[〈x2(t)〉 − 〈x(t)〉2], t→ ∞. In this case, the sample is considered
as unbounded that is realized by application of periodic boundary conditions.

5. Results of Simulation

5.1. Transient Currents in 2D Porous Films

The calculated transient current curves for nanoparticle agglomerates were averaged over 100
realizations. We have chosen exponential DoS and energetic dispersion parameter α = kT/ε0 = 0.75.
For each realization we simulated the hopping of 1000 charge carriers. In all cases, we observed
universal transient current curves I(t) with slopes in log-log scale close to −1 + η and −1− η, before
and after the break, respectively. The slopes was determined by means of the least square method in
the log-log scale for 10 points before and after the break. Approximation error is of order 0.02. For the
homogeneous sample, we observed universal curves with slopes −0.25 and −1.75, that correspond to
the chosen α. The dispersion parameter of the structural disorder was determined from the simple
relation αβ = η according to (16). Results of calculations for different porosity and two values of
electric field intensity are presented in Figures 2 and 3, summarized in Table 2.

At increased electric field, we observe decreasing of the transient time tT, as expected, but the
dispersion parameter η also decreases that corresponds to amplification of the structural disorder
(β decreases). Trajectories and heat charts demonstrate that additional containment of carriers can
be induced by topological traps. This containment depends on electric field and porosity and can be
explained by peculiarities of directed percolation.
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Figure 2. Transient currents for different porosity of nanoparticle agglomerate.

Figure 3. Transient currents for two values of electric field intensity for $̄ = 28.3%. Lines are universal
currents calculated according to Equation (16) with η = 0.52 and 0.34.

Table 2. Determined dispersion parameters of structural disorder in 5× 5 µm2 sample of nanoparticle
agglomerate (α = kT/ε0 = 0.75, R̄ = 120 nm, δR = 70 nm) for two values of electric field intensity.

Nn $̄, % E, V/cm Slope 1 Slope 2 β− β+ E, V/cm Slope 1 Slope 2 β− β+

5000 0.8 −0.25 −1.74 1.0 0.987 −0.25 −1.75 1.0 1.0
2000 2.5 −0.27 −1.74 0.973 0.987 −0.27 −1.73 0.973 0.973
1200 8.5 −0.30 −1.71 0.933 0.946 −0.31 −1.69 0.920 0.920
800 18.7 6× 104 −0.42 −1.57 0.773 0.760 3× 105 −0.43 −1.56 0.760 0.747
700 23.4 −0.45 −1.53 0.733 0.706 −0.61 −1.38 0.520 0.507
600 28.3 −0.48 −1.52 0.693 0.693 −0.66 −1.34 0.453 0.453
500 36.5 −0.53 −1.40 0.627 0.615 −0.69 −1.31 0.413 0.413

Mean square displacements for hopping diffusion (without electric field) in nanoparticle
agglomerate with different porosity are presented in Figure 4. We can see that structural dispersion
parameter βd (at diffusion) determined from relation ∆ ∝ tαβd/2 is sufficiently closer to 1 than β for
directed percolation under applied electric bias.
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Figure 4. Mean square displacements for hopping diffusion in nanoparticle agglomerate with different porosity.

5.2. Transient Currents in 2D Spinodal Patterns

Figure 5 presents trajectories of hopping of 15 particles on the same spinodal pattern (µ = 0.1)
for three values of the electric field. With increasing E, trajectories are drawn. At the same time,
there are branches of carrier localization in topological traps not directly related to energy disorder.
Transient current curves of hopping in spinodal patterns for two values of mass ratio µ = 0.1 and
µ = 0.2 and Gaussian DoS ρ(ε) ∝ exp(−ε2/σ) (σ/kT = 3) are presented in Figure 6. Two samples
for each value of µ are obtained for different durations of spinodal decomposition (later realization
is denoted as ‘after annealing’). Correlation functions of two patterns are also presented. The first
minimum of these functions is a correlation length λ that determines the typical scale of p-n-domain
separation. Annealing of samples increases the separation of p- and n-domains. Results are summarized
in Table 3.

(a) (b) (c)

(d) (e) (f)

Figure 5. Trajectories (a–c) and two-dimensional histograms of visited sites (d–f) for 2D-hopping in
spinodal pattern for different electric fields (a,d) 2× 104 V/cm; (b,e) 6× 104 V/cm; (c,f) 3× 105 V/cm.
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(a) (b)

Figure 6. Transient current curves of hopping in spinodal patterns (a) µ = 0.1 and (b) µ = 0.2.
Two samples are obtained for different durations of spinodal decomposition (later realization is
denoted as ‘after annealing’). Inset: correlation functions of two patterns.

Table 3. Determined dispersion parameters of structural disorder in 5× 5 µm2 sample of spinodal
pattern for two values of electric field intensity (α = kT/ε0 = 0.75).

µ λ̄, nm E, V/cm Slope 1 Slope 2 β− β+ E, V/cm Slope 1 Slope 2 β− β+

0.1 90 −0.3 −1.55 0.733 0.333 −0.4 −1.4 0.8 0.53
0.1 170 6× 104 −0.25 −1.6 1.0 0.8 3× 105 −0.45 −1.25 0.733 0.333
0.2 95 −0.5 −1.5 0.678 0.678 −0.43 −1.49 0.760 0.653
0.2 150 −0.45 −1.65 0.733 0.867 −0.62 −1.43 0.773 0.573

6. Conclusions

We have described the combined effect of energetic and structural disorder for PAH in
two-dimensional disordered systems in the framework of the MT-mechanism on a comb-like structure.
Analytical predictions have been confirmed by a series of Monte Carlo simulations of hopping in two
types of inhomogeneous media: nanoparticle agglomerate and two-component polymer blend.

The equations derived in Section 2 can be used in the generalized one-dimensional bilayer model
of Barker et al. [57] accounting for charge photogeneration, injection, drift, diffusion, recombination,
and the effect of space charge on the electric field within the device. Their model utilizes the ordinary
FP equations and well describes the steady-state characteristics of BHJ solar cells. On the other hand,
dispersive kinetics usually observed in OPV materials cannot be adequately described by the standard
FP equation [3,16]. Fractional differential models have shown themselves effective in the theory of
dispersive transport [45,53]. The mentioned generalization requires the development of numerical
tools to solve the fractional FP-equations. Some steps in this direction have already been taken.
Choo et al. [58] proposed the numerical scheme for the system of fractional FP-equation with
RL-derivative and Poisson equation to account for the fluctuation of localized electric field due
to the evolution of charge carriers. Rekhviashvili and Alikhanov [59] numerically solve the fractional
FP-equation with an alternating electric field. These schemes could be generalized for the presented
dispersive transport equations for systems with coexisting energetic and structural disorder.

Monte Carlo simulation of charge carrier hopping in 2D mesoporous samples and spinodal
patterns have shown that topological traps play a crucial role in dispersion of charge propagation
for all values of electric field. These traps act independently of thermalization process. Due to this
structural disorder, dispersive transport can be observed even at small values of energy disorder, when
the DoS width is smaller than kT. Theoretical estimations based on MT-comb model confirm these
results. Topological traps can be responsible for the separation of particles into two groups of ‘fast’
and ‘slow’ carriers. This separation is deepened at higher fields.
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Transient current curves are sensitive to the realization of disordered samples. Some of them
demonstrate several breaks in a log-log-scale, the latter stage of TC-decay can slow down. The latter
behavior in measurements in some works (see, e.g., [60]) is interpreted as bipolar transport, but in our
case it arises due to trapping into topological traps. Ensemble averaged TC-curves look like typical
universal TC curves of dispersive transport. For the case of exponential DoS, the observed dispersion
parameter is equal to product of energy dispersion parameter α = kT/ε0 and structural dispersion
parameter β. For high levels of porosity, parameter β is very sensitive to electric field intensity.
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Abbreviations

The following abbreviations are used in this manuscript:

DT dispersive transport
BHJ bulk heterojunction
BHJSC bulk heterojunction solar cell
DSSC dye-sensitized solar cell
PSC perovskite solar cell
CTRW continuous time random walk
MT multiple trapping
PAH phonon-assisted hopping
P3HT Poly(3-hexylthiophene-2,5-diyl)
PCBM Phenyl-C61-butyric acid methyl ester
OPV organic photovoltaic
RL-derivative Riemann-Liouville derivative
FP-equation Fokker-Planck equation
DoS density of states
ToF experiment time-of-flight experiment
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