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Abstract: We study coupled quantum systems as the working media of thermodynamic machines.
Under a suitable phase-space transformation, the coupled systems can be expressed as a composition
of independent subsystems. We find that for the coupled systems, the figures of merit, that is the
efficiency for engine and the coefficient of performance for refrigerator, are bounded (both from
above and from below) by the corresponding figures of merit of the independent subsystems. We also
show that the optimum work extractable from a coupled system is upper bounded by the optimum
work obtained from the uncoupled system, thereby showing that the quantum correlations do not
help in optimal work extraction. Further, we study two explicit examples; coupled spin-1/2 systems
and coupled quantum oscillators with analogous interactions. Interestingly, for particular kind of
interactions, the efficiency of the coupled oscillators outperforms that of the coupled spin-1/2 systems
when they work as heat engines. However, for the same interaction, the coefficient of performance
behaves in a reverse manner, while the systems work as the refrigerator. Thus, the same coupling can
cause opposite effects in the figures of merit of heat engine and refrigerator.

Keywords: quantum heat engines; quantum refrigerators; coupled oscillators; coupled spins

1. Introduction

Study of thermodynamics in quantum regime can reveal new aspects of fundamental interests.
As an example, the statement of the second law of thermodynamics in the presence of an ancilla [1,2]
or, when the system has coherence [3,4], has been established in great details, from where the classical
version of the second law emerges under appropriate limits. The study of thermodynamics in quantum
domain can be approached from different directions such as information-theoretic point of view [5–10]
or resource-theoretic aspect [11–13]. Another important constituent, in this area of study, is the work
extraction from quantum systems [14–18]. Besides these, analyzing different models of thermodynamic
machines in the quantum domain can also provide new insight. Such a study helps us to understand
the special behavior of thermodynamic quantities like work, heat, and efficiency in the quantum
regime due to the presence non-classical features such as entanglement, quantum superposition,
squeezing, etc. [19–21]. The quantum heat devices can show interesting atypical behaviors such as
exceeding Carnot limit [19,21] when they act as heat engines. However, these apparent behaviors are
found to be compatible with the second law of thermodynamics when all the preparation costs are
considered [22]. Such machines also have practical importance in the realm of quantum computation
and refrigeration of small systems [23].

The performance of coupled quantum systems as heat engines have been studied widely in recent
past [24–30]. Work and efficiency are two important quantities to characterize the performance of a
heat engine. It has been shown that appropriate coupling can increase the efficiency of the system
compared to the uncoupled one [27]. In this work, we find an upper as well as a lower bound of the
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efficiency of the coupled system. We also show that the coupling and quantum correlations give no
advantage to obtain optimum work when the working medium consists of quantum systems with
quadratic coupling (to be specified later). The generality of these results are shown by considering
different heat cycles.

Further, we compare the performances of different coupled quantum systems when used as the
working medium of a heat device. For this purpose, we consider two extreme cases: coupled spin-1/2
systems (finite dimension) and coupled quantum oscillators (infinite dimension) as the working media
of heat devices. In the case of Otto cycle, when there is no coupling, both the system has the same
efficiency but the work output is higher for oscillator model. To compare the performance of the
coupled systems, an analogous coupling for both the systems is taken. We consider that two spin-1/2
systems are coupled via Heisenberg XX or XY model of interaction [31,32]. For harmonic oscillators,
we take quadratic interaction in both positions and momenta, which is analogous to the Heisenberg
exchange interaction in spin systems. For this interaction, the Hamiltonians for coupled spins and
coupled oscillators are similar in terms of ladder operators. The similar form of the free Hamiltonians
for both of the systems is also ensured.

Here it is important to note that very recently, the performance of coupled harmonic oscillators
as a heat engine is studied [30]. But, in contrast to the present work, there the interaction has been
considered only between the position degrees of freedom of two oscillators. Furthermore, the authors
in [30] have done the efficiency analysis for two different modes separately. But, the actual efficiency
of the system has to be defined by the ratio of total work (done by both the modes) to the total heat
which we analyze here. Therefore, our analysis provides a comprehensive picture of the efficiency of
the coupled system. The main results of our work are as follows:

(i) When the Hamiltonian of the coupled system (at all stages of the cycle) can be decoupled (as two
independent modes) in some suitably chosen co-ordinate system, then the efficiency of the coupled
system is bounded (both from above and below) by the efficiencies of the independent modes,
provided both the modes work as engines (Section 3.1).

(ii) The global efficiency (i.e., efficiency of coupled system) reaches the lower bound (mentioned in (i))
when the upper bound (mentioned in (i)) of the efficiency achieves Carnot efficiency. When one
of the modes is not working as an engine, the global efficiency is upper bounded by the efficiency
of the other mode (Section 4.1).

(iii) For the case of the engine, we compare the efficiencies in two extreme cases (coupled oscillators
and coupled spin-1/2 systems). Interestingly, the efficiency of coupled oscillators outperforms
the efficiency obtained from coupled spins (Sections 4.1 and 4.3).

(iv) We have also shown that the optimal work extractable from a coupled system is upper bounded
by the optimal work extractable from the uncoupled systems (Section 3.3).

For meticulous comparison, we also consider coupled oscillators and coupled spins as the working
medium of a refrigerator. The refrigeration cycle is similar to that of the heat engine. We find that:

(v) Like the efficiency, the global coefficient of performance (COP) is bounded (both from above and
below) by the COPs of the independent modes (Section 5).

(vi) Surprisingly, for similar interactions considered in the case of heat engine, the global COP of
coupled spins is higher than that of the coupled oscillators, which is contrary to the behavior
observed in the case of engines (Sections 5.1 and 5.2).

Organization of the paper goes as follows: In Section 2, we introduce the Otto cycle and illustrate
the performance of uncoupled spins and oscillators as the working substance. In Section 3, a general
form of quadratic coupling in harmonic oscillators and their characteristics are discussed when they
work as a heat engine. Further, we discuss similar forms of coupling found in spin systems, widely
known as Heisenberg XY model. In Section 4, we describe the performance of the engine for special
cases. Performances of the systems as refrigerators is discussed in Section 5. Section 6 is devoted to
discussions and future possibilities.
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2. Quantum Otto Cycle

Quantum Otto cycles are analogous to the classical Otto cycle, and the latter consists of two
isochoric processes (work, W = 0) and two adiabatic processes (heat, Q = 0). When the working
medium of the Otto cycle is classical ideal gas, the efficiency of the system is written as η = 1−
(V1/V2)

γ−1, where V1 and V2 are initial and final volumes (V1 < V2) of the adiabatic expansion process
and γ = Cp/Cv, is the ratio of the specific heats [33]. Similar to the classical cycle, the quantum
Otto cycle consists of two adiabatic processes and two thermalization processes [34,35]. The system
exchanges heat with the bath during the thermalization processes and the work is done when the
system undergoes adiabatic processes. Work and heat are calculated from the change in mean energies,
where mean energy, for a system represented by the state ρ and the Hamiltonian H, is defined as Tr[ρH].

Here, we consider a four-staged Otto cycle. As an example, harmonic oscillator as the working
medium of a quantum Otto cycle is pictorially described in Figure 1. The four stages of the cycle are:

Stage 1: In this stage, the system represented by the density matrix ρ′c (defined in Stage 4) and
the Hamiltonian H, is attached to a hot bath at temperature Th. During the process,
the Hamiltonian is kept fixed. At the end of this stage, the system reaches equilibrium
with the bath. Therefore, the final state is given as ρh = exp(−βh H)/Tr[exp(−βh H)], where
βh = 1/kBTh, with kB being the Boltzmann constant. Hence the amount of heat absorbed by
the system from the hot bath is Qh = Tr[H(ρh − ρ′c)].

Stage 2: The system is decoupled from the bath and the Hamiltonian is changed from H to H′ slowly
enough so that the quantum adiabatic theorem holds. Since there is no heat exchange
between the system and the bath, the change in mean energy is equal to the work. The work
done in this process is w1 = Tr[(ρh H − ρ′h H′)], where ρ′h = UIρhU†

I and UI is the unitary
associated with the adiabatic process, defined as UI = T exp [−(i/h̄)

∫ τ
0 H(t)dt]. Here T is

the time ordering operator, H(0) = H and H(τ) = H′.
Stage 3: The system is attached to the cold bath at inverse temperature βc = 1/kBTc. The system

reaches equilibrium with the cold bath at the end of the process and the state of the system
becomes ρc = exp(−βcH′)/Tr[exp(−βcH′)]. Therefore the heat rejected to the cold bath is
given as Qc = Tr[H′(ρc − ρ′h)].

Stage 4: The system is detached from the cold bath and the Hamiltonian is slowly varied from H′

to H. The work done in this process is equal to the change in the mean energy, which is
given as w2 = Tr[(ρcH′ − ρ′c H)], where ρ′c is the density matrix at the end of the adiabatic
process, defined as ρ′c = UI IρcU†

I I and UI I is given by UI I = T exp [−(i/h̄)
∫ τ

0 H(t)dt], so
that H(0) = H′ and H(τ) = H. Finally, the cycle is completed by attaching the system with
the hot bath.

The net work done by the system is W = w1 + w2 = Qh + Qc and the efficiency is defined as
η = W/Qh.

In references [36,37], a two-staged cycle is considered with two n-level systems. There, the coupling
between two n-level systems is only for a short time to perform SWAP like operations. This cycle is
equivalent to a cycle with single n-level system undergoing a four-staged Otto cycle. This type of cycle
is considered in Section 2.1. Our cycle is a four staged cycle, where the working medium consists
of two oscillators (or spins) coupled to each other throughout the cycle. Both the subsystems are
connected to one and the same bath at a time. Our primary aim is to find the effect of this coupling in
the performance of the engine or refrigerator. We analyze the performance of the system using internal
parameters such as bare mode frequencies and coupling strengths. Later in this paper, we consider
mean energy preserving co-ordinate transformations. We refer the subsystems after the co-ordinate
transformations as “independent subsystems” since they appear to be independent but they may not
represent the actual subsystems. Before discussing the coupled systems, we briefly review the case of
a single system as a heat engine.
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Figure 1. (color online) Pictorial representation of a quantum Otto cycle. The working medium of this
cycle is a harmonic oscillator. Stage 1 and Stage 3 are thermalization processes, in which the system
exchanges heat with the bath. Stages 2 and 4 correspond to adiabatic processes where the frequency of
the oscillator changes from ω to ω′ and back, by doing a certain amount of work.

2.1. Single System as a Heat Engine

Otto cycle with a single harmonic oscillator (or a spin system) constituting the working medium
of the engine is studied in different works [27,30,34,35,38,39]. Here we briefly review this. Consider a
harmonic oscillator with Hamiltonian

Hos =
p2

2m
+

mΩ2

2
x2 =

(
c†c +

1
2

)
Ω, (1)

where m is the mass and Ω is the frequency of the oscillator, and c† = x
√

mΩ/2− ip/
√

2mΩ and
c = x

√
mΩ/2 + ip/

√
2mΩ are the creation and the annihilation operators respectively. We set h̄ and

kB to unity. The cycle is constructed such that in Stage 2, the frequency is changed from Ω = ω to
Ω = ω′ and in Stage 4, ω′ is changed to ω. In Stages 1 and 3, thermalization occurs with the respective
heat baths as discussed above. The mean population of the thermal state of a harmonic oscillator
with frequency Ω and inverse temperature β is 〈c†c〉 = 〈n〉 = 1/(exp βΩ− 1). We also assume that
the adiabatic processes are slow enough (τ → ∞ in Stages 2 and 4), so that coherence is not created
between the eigenstates of the final Hamiltonian. Therefore, the mean population in the initial and the
final states of the adiabatic process are same. Under these assumptions, the heat absorbed from hot
reservoir is given by

Qos
h = Tr

[
Hos(ρh − ρ′c)

]
=

ω

2

(
coth

[
βhω

2

]
− coth

[
βcω′

2

])
, (2)

where Hos is obtained by substituting Ω = ω in Equation (1). Here ρ′c and ρh are respectively the initial
and the final density matrices in Stage 1. Similarly, the heat rejected to the cold reservoir is
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Qos
c = Tr

[
H′os(ρc − ρ′h)

]
= −ω′

2

(
coth

[
βhω

2

]
− coth

[
βcω′

2

])
, (3)

where H′os is calculated by substituting Ω = ω′ in Equation (1) and ρ′h and ρc are the initial and final
density matrices respectively for the thermalization process described in Stage 3. The net work done
by the system is given as Wos = Qos

h + Qos
c :

Wos =
(ω−ω′)

2

(
coth

[
βhω

2

]
− coth

[
βcω′

2

])
. (4)

The efficiency of the system is then given as

ηos ≡ Wos

Qos
h

= 1− ω′

ω
. (5)

The condition for the system to work as an engine is Wos ≥ 0 (with Qos
h ≥ 0) is satisfied when

βhω ≤ βcω′ and ω > ω′, so that we have ηos ≤ 1− βh/βc = ηc, where ηc is the Carnot efficiency.
The work output is zero when the system operates at Carnot value.

Now, consider a single spin-1/2 system, placed under a magnetic field Bz applied along the
z-direction. To get a similar form like oscillator, we need to add a term of the form µBz I2, where I2 is
the identity matrix and µ is a constant. Adding a constant term (µBz) with each energy eigenvalue
does not alter the characteristics of the engine. Thus we can write the corresponding Hamiltonian as,

Hsp = µBz(Sz + I) =
(

S+S− +
1
2

)
Ω, (6)

where Sz = σz/2, Ω = µBz and S+ and S− are raising and lowering operators respectively. This
Hamiltonian has a similar structure as the oscillator Hamiltonian given in Equation (1). Now consider
a cycle constructed such that frequency Ω varies from ω to ω′ in Stage 2 and returns to the initial value
(ω′ → ω) in Stage 4. The heat absorbed from the hot reservoir is

Qsp
h = Tr

[
Hsp(ρh − ρ′c)

]
=

ω

2

(
tanh

[
βcω′

2

]
− tanh

[
βhω

2

])
, (7)

where Hsp is obtained by substituting Ω = ω in Equation (6). We also have ρ′c = ρc and ρ′h = ρh, since
[UI I , ρc] = 0 in Stage 4 and [UI , ρh] = 0 in Stage 2. Similar as above, the net work done by the system
is given by

Wsp =
(ω−ω′)

2

(
tanh

[
βcω′

2

]
− tanh

[
βhω

2

])
. (8)

So we can calculate the efficiency of system as

ηsp =
Wsp

Qsp
h

= 1− ω′

ω
. (9)

Even though the dimensionality of spin and harmonic oscillators are different, we kept the same
energy level spacings in both the cases. Hence, both the cycles have the same efficiencies as shown
in Equations (5) and (9). From Equations (4) and (8), we have Wos ≥ Wsp. This inequality is true,
because, for positive real values of x and y (x ≡ βhω/2 < y ≡ βcω′/2), we have (coth [x]− coth [y]) ≥
(tanh [y]− tanh [x]).

Consider two single systems (oscillators or spins), which are uncoupled and undergoing the
cycle as discussed above. Then the work done by uncoupled oscillators is 2Wos is greater than the
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work done by the spins 2Wsp. However, the efficiency of the uncoupled oscillators is equal to that of
uncoupled spins, ηos = ηsp = 1−ω′/ω. Now, our interest is to compare the performances of spins
and oscillators when the analogous type of coupling is introduced.

3. Performance of Coupled System

In this section, we study the effect of coupling in the performance of joint systems as the working
media of Otto cycle. First, we consider two identical oscillators coupled via positions and momenta
and then we consider spins coupled though Heisenberg XY model.

3.1. Coupled Oscillators

Consider two oscillators (labeled as 1 and 2) with same mass and frequency, and consider that
they are coupled through their positions and momenta. The total Hamiltonian of the composite system
reads [40–42]:

Hos =
p2

1
2m

+
p2

2
2m

+
mΩ2

2
x2

1 +
mΩ2

2
x2

2

+2
(

mΩ
2

λxx1x2 +
1

2mΩ
λp p1 p2

)
, (10)

where λx and λp are the coupling strengths with same units as that of Ω. We can write this Hamiltonian
in terms of ladder operators (ci and c†

i , where i = 1, 2) as,

Hos =
(

c†
1c1 + c†

2c2 + 1
)

Ω +
(λx + λp)

2
(c†

1c2 + c1c†
2)

+
(λx − λp)

2
(c1c2 + c†

1c†
2). (11)

where c†
j = xj

√
mΩ/2− ipj/

√
2mΩ (j = 1, 2). For the quadratic coupling given in Equation (11), let us

consider the following co-ordinate transformation,

xA =
x1 + x2√

2
, xB =

x1 − x2√
2

; (12)

pA =
p1 + p2√

2
, pB =

p1 − p2√
2

. (13)

The Hamiltonian in terms of new coordinates reads,

Hos =
p2

A
2MA

+
MAΩ2

A
2

x2
A +

p2
B

2MB
+

MBΩ2
B

2
x2

B (14)

=

(
c†

AcA +
1
2

)
ΩA +

(
c†

BcB +
1
2

)
ΩB, (15)

where c†
k and ck, where k = A, B, are the creation and annihilation operators for the oscillators A and

B. Here ΩA and ΩB are eigenmode frequencies and MA and MB are the effective masses in the new
co-ordinate frame and the explicit expressions are given as,

MA/B =
mΩ

(Ω± λp)
, (16)

ΩA/B =
√
(Ω± λp)(Ω± λx). (17)

Note that, in the new frame, the modes (A and B) are uncoupled. Now consider the above mentioned
Otto cycle in which Ω is changed from its initial value ω to ω′ in the first adiabatic process.
Correspondingly, the eigenfrequency for the oscillator A changes from ωA to ω′A and similarly,
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frequency changes from ωB to ω′B in the case of oscillator B. The eigenfrequencies return to the
respective initial values in the second adiabatic process. Here one can consider that the working
medium consists of two independent oscillators. Hence the total work done by the system can be
considered as the sum of the contributions from independent oscillators. Note that ωA and ωB (ω′A and
ω′B ) are the effective frequencies of the subsystems after the co-ordinate transformation. Therefore they
are functions of actual frequencies ω (ω′) and coupling strengths. Hence ωA and ωB (ω′A and ω′B ) are
controlled by changing the frequencies of the actual subsystems. It can be done by changing potential
in the case of oscillators or by changing the external magnetic field for the spins (see Section 3.2).
We assume that there is no cross over of energy levels of the total Hamiltonian during the adiabatic
process. The density matrix may change during the adiabatic process. However, the process is slow
enough such that the populations at the instantaneous eigenstates of the Hamiltonian remain same
(quantum adiabatic theorem). As discussed in Section 2.1, the total amount of heat absorbed by the
system from hot reservoir is given by

Q =
ωA
2

(
coth

[
βhωA

2

]
− coth

[
βcω′A

2

])
+

ωB
2

(
coth

[
βhωB

2

]
− coth

[
βcω′B

2

])
. (18)

The first term denotes the heat absorbed by the system A (QA) and the second term represents the
heat absorbed by the system B (QB). Similarly, the total work is the sum of the work done by the
independent systems, W = WA + WB. Thus here

W =
(ωA −ω′A)

2

(
coth

[
βhωA

2

]
− coth

[
βcω′A

2

])
+

(ωB −ω′B)
2

(
coth

[
βhωB

2

]
− coth

[
βcω′B

2

])
. (19)

The efficiency of the individual system is given as ηk = 1−ω′k/ωk, where k = {A, B}. However, the
actual efficiency of the coupled system is defined as the ratio of total work over the total heat absorbed
by the system. So we can write

η =
WA + WB
QA + QB

=
ηAQA + ηBQB

QA + QB
. (20)

When both the systems are working in engine mode (i.e., QA > 0 and QB > 0), we can write the above
equation as

η = ηAα + ηB(1− α) (21)

where α = QA/(QA + QB) ≤ 1. Therefore we can write

min{ηA, ηB} ≤ η ≤ max{ηA, ηB}. (22)

Therefore, when both independent oscillators work as an engine, the actual efficiency of the engine is
bounded above and below by the efficiencies of the independent oscillators. For certain parameter
values (see Section 4.1), one of the independent oscillators can work as refrigerator. In that case,
the efficiency of the system is upper bounded by the efficiency of the other independent subsystem
working as the engine.

Generalization

Now consider an Otto cycle, where the global parameter λ (λx or λp or both) is externally
controlled and varied in the adiabatic branches, keeping Ω fixed (see Figure 2). Even in this case, using
the following analysis, one can show the existence of the non-trivial bounds for the efficiency. In this
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paper, we consider those quadratic couplings for which we can write the total Hamiltonian as the sum
of the Hamiltonians of two independent subsystems under some co-ordinate transformation. Let us
consider the Hamiltonian H = HA ⊕ HB at the end of Stage 1 and before the first adiabatic process
(Stage 2) and H′ = H′A ⊕ H′B be the Hamiltonian at the end of the first adiabatic process. Before the
starting of the adiabatic process, the system is in a thermal state and hence we can write the initial
state as ρ = ρA ⊗ ρB in the eigenbasis of H = HA ⊕ HB. Further, the adiabatic process ensures that
the populations in the instantaneous eigenstates of the Hamiltonian remain unchanged during the
process. Therefore, we can write the density matrix of the final state as ρ′ = ρ′A ⊗ ρ′B in the basis
of H′A ⊕ H′B. For example, consider the coupled spin systems after the first thermalization process.
Let us suppose E1

A and E2
A are the energy eigenvalues for the independent subsystem A with the

corresponding populations p1
A and p2

A (p1
A + p2

A = 1) respectively. Similarly, E1
B and E2

B are the energy
eigenvalues for the second spin B with populations p1

B and p2
B (p1

B + p2
B = 1) respectively. So the total

energy can be written as

2

∑
m=1

pm
AEm

A +
2

∑
n=1

pn
BEn

B =
2

∑
k=1

2

∑
l=1

(Ek
A + El

B)pk
A pl

B (23)

The terms {(Ek
A + El

B)} and {pk
A pl

B} in the right hand side represent the energy eigenvalues of the
composite system and the corresponding populations respectively. At the end of the adiabatic process,
the energy eigenvalues of the composite system changes but the Hamiltonian structure allows us
to write it as the sum of the contributions from two independent subsystems. Therefore the energy
eigenvalues at the end of the adiabatic process are given as {(E′kA + E′lB)}. However, the corresponding
populations remains fixed because of the quantum adiabatic theorem. Hence we can write

2

∑
k=1

2

∑
l=1

(E′kA + E′lB)pk
A pl

B =
2

∑
m=1

pm
AE′mA +

2

∑
n=1

pn
BE′nB (24)

Therefore the populations of the eigenstates of the independent subsystems are also unchanged during
the process. Similar characteristics can be observed in the second adiabatic process also. Hence the
total system can be considered as composition of two independent subsystems in the beginning as well
as at the end of each process in the cycle. So, the total heat (or work) is the sum of the heat (or work)
obtained from its independent subsystems. Therefore, the efficiency of the system will be bounded
above and below by the efficiencies of the independent systems (Equation (22)).

ω′
A,T

′
h

ω′
A,Tc

ωA,Th

ωA,T
′
c

❄

✻
(3)Tc Th(1)

✛

✲

λ′ ← λ

(2)

(4)

λ′ → λ

Figure 2. The coupling parameter λ is changed during the adiabatic process of quantum Otto cycle.

An isothermal process can be simulated by an infinite number of infinitesimal adiabatic and
isochoric processes [43]. As discussed above, in the adiabatic and isochoric processes, the work and the
heat contributions from individual subsystems can be identified separately. Therefore, the isothermal
process of the total system can be considered equivalent to the isothermal processes of two independent
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subsystems taken together. To understand the generality of the bounds of the efficiency observed in
Otto cycle, we can consider other cycles such as Carnot cycle consisting of two isothermal processes and
two adiabatic processes, and Stirling cycle consisting of two isothermal processes and two isochoric
processes [35,39,44] (see Figure 3). Like the Otto cycle, in the Stirling cycle, the global efficiency is
bounded by the efficiencies of independent subsystems because at any stage of the cycle, the total
system can be decomposed into two independent subsystems. This shows that the analysis on the
bounds of the efficiency represented in Equation (22) is a generic one and applicable to some of the
other cycles also. Using similar analysis, we can also show that for a quantum Carnot cycle, both
the independent subsystems work at Carnot efficiency, which is same as the global efficiency, i.e.,
η = ηA = ηB = 1− Tc/Th.

ω′′
A,Tc

ω′′′
A ,Tc

ω′
A,Th

ωA,Th

❄

✻Iso
th
erm

al

Iso
th
erm

al

(1)

✛

✲

Adiabatic

(3)

(2)

(4)

Adiabatic

(a) Carnot cycle

ω′
A,Tc

ωA,Tc

ω′
A,Th

ωA,Th

❄

✻Isth
erm

a
l

Iso
th
erm

al

(1)

✛

✲

Isochoric

(3)

(2)

(4)

Isochoric

(b) Stirling cycle

Figure 3. (a) Diagram represents a Carnot cycle undergone by one of the subsystems (say A). The cycle
consists of two isothermal processes and two adiabatic processes. Here, ωA, ω′A, ω′′A and ω′′′A are the
eigenmode frequencies at different stages of the cycle; (b) Diagram pictorially represents quantum
Stirling cycle, consisting of two isochoric and two isothermal processes.

3.2. Coupled Spin System

In order to compare the performance of the quantum Otto cycle with coupled oscillator and that
with coupled spin-1/2 system, let us now consider two spin-1/2 systems coupled via Heisenberg
exchange interaction, placed in a magnetic field applied along the z-direction. The Hamiltonian in
terms of spin operators are given by

Hsp = Ω(Sz
1 ⊗ I + I ⊗ Sz

2) + 2(JxSx
1 Sx

2 + JySy
1Sy

2), (25)

where Jx and Jy are the interaction constants along x and y directions. This model is generally known
as Heisenberg XY model. Adding an equal energy with each level, we can write the Hamiltonian in
terms of raising and lowering operators (S+

i and S−i , where i = 1, 2) as

Hsp = (S+
1 S−1 + S+

2 S−2 + 1)Ω

+
(Jx + Jy)

2
(S+

1 S−2 + S−1 S+
2 )

+
(Jx − Jy)

2
(S+

1 S+
2 + S−1 S−2 ). (26)

Equations (11) and (26) have the similar form. As we have seen in the case of oscillators, Equation (26)
can be written as the sum of the Hamiltonians of independent subsystems. Therefore, the efficiency of
the system is bounded from above and below by the efficiencies of independent subsystems as given
in Equation (22). In the following section (Section 4), we compare the performances of coupled spins
and coupled oscillators when they undergo separately the quantum Otto cycles for different values of
λx, λp, Jx, and Jy.
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3.3. Optimal Work

As we have seen in Equations (4) and (8), work is a function of ω and ω′. The optimal work can
be estimated by maximizing work with respect to ω and ω′. Now suppose that work is maximum at
ω = ω∗ and ω′ = ω′∗. Therefore, for two uncoupled oscillators, maximum work occurs when both the
system work with ω∗ and ω′∗. Now consider ΩA and ΩB are frequencies of the independent modes A
and B of the coupled oscillators respectively, before the first adiabatic process and Ω′A and Ω′B are the
frequencies of the independent modes A and B respectively, after the first adiabatic process. Then, ΩA
and ΩB (Ω′A and Ω′B) are functions of ω, λx and λp (ω′, λx and λp). Similar arguments can be made for
coupled spins too. Therefore, if the subsystem A provides optimal work, then the work obtained from
the subsystem B may not be optimal because ΩA and ΩB (Ω′A and Ω′B) are not independent. Therefore
we have

Wmax
λ ≤Wmax

0 , (27)

Wmax
λ and Wmax

0 , are the maximum values of work obtained from the coupled and uncoupled
systems respectively. The equality holds for the case where both independent subsystems have
the same frequency.

Generalization

Now consider a cycle in which the global parameters λx and λp or Jx and Jy are varied in the
adiabatic branches instead of varying Ω. Because of quadratic coupling, we can show that the total
system consists of two independent subsystems, throughout the cycle. Then the total work is the sum
of the contributions from its independent subsystems and therefore Equation (27) holds even when we
change global parameters to extract work.

In Stirling cycle and in Carnot cycle, for a working medium with quadratic interaction, we can
always write the total work as the sum of the contributions from its independent subsystems. Therefore,
using the argument mentioned above, we can say that Equation (27) holds in general.

In Sections 4 and 5, we discuss the Otto cycle in detail by considering certain special cases.

4. Special Cases

In this section, we discuss the performance of the Otto cycle when the coupled systems with
specific values of interaction constants constitute as the working medium. In Section 4.1, we take
Jx = Jy in the case of spin, which is known as Heisenberg XX model. Analogous interaction in
oscillators is achieved by setting λx = λp. Another interesting model is obtained with values Jx = −Jy

in spins and λx = −λp in oscillators, are discussed in Section 4.3.

4.1. XX Model

Let us consider the following case: λx = Jx = λp = Jy = λJ(say). For coupled oscillators, we can
write the Hamiltonian in Equation (11) in terms of ladder operators as

Hos =
(

c†
1c1 + c†

2c2 + 1
)

Ω + λJ(c†
1c2 + c1c†

2). (28)

From Equation (17), we get the frequencies of the independent modes as ΩA = Ω + λJ and ΩB =

Ω − λJ . Therefore, inside the Otto cycle where the value of Ω is varied from ω to ω′ during the
first adiabatic process, we have ωA/B = ω ± λJ and ω′A/B = ω′ ± λJ . In the new co-ordinates,
the oscillators are independent. Hence the total heat absorbed from the hot reservoir is the sum of the
heat absorbed by the independent subsystems A and B. Substituting the values of ωA, ω′A, ωB and ω′B
in Equations (18) and (19), we get the expressions for the heat and the work respectively. The explicit
expression for the work obtained from Equation (19) is given as
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Wos = C
(

coth
[
(ω− λJ)

2Th

]
− coth

[
(ω′ − λJ)

2Tc

])
+ C

(
coth

[
(ω + λJ)

2Th

]
− coth

[
(ω′ + λJ)

2Tc

])
, (29)

where C = (ω−ω′)/2. The efficiency of the independent subsystems are obtained as

ηA =
(ω−ω′)
(ω + λJ)

and ηB =
(ω−ω′)
(ω− λJ)

. (30)

So we have ηB > ηA. Interestingly, the upper bound ηB is analogous to the upper bound of the
efficiency obtained for the coupled spins with isotropic Heisenberg Hamiltonian [27]. Now we
calculate the global efficiency as the ratio of the total work (WA + WB) by the total heat (QA + QB).
We get the global efficiency by substituting the values of ωA, ω′A, ωB and ω′B in Equation (20). Now
we expand this efficiency for small coupling constant λJ up to the third order, and we get:

ηos = 1− ω′

ω
+

γ
(

Tccsch2
[

ω
2Th

]
− Thcsch2

[
ω′
2Tc

])
λ2

J

2
(

coth
[

ω
2Th

]
− coth

[
ω′
2Tc

])
+ O[λ4

J ], (31)

where γ = (ω−ω′)/(ThTcω2) and csch(x) ≡ cosech(x).
We need to compare the performance of the oscillator system with that of the coupled spin system

as a heat engine. For that, we consider two spin-1/2 systems coupled via Heisenberg XX Hamiltonian
(Jx = Jy). Representing this Hamiltonian in terms of ladder operators, it takes similar form of the
Hamiltonian that we considered in the case of oscillators (see below). Therefore we write,

Hsp = (S+
1 S−1 + S+

2 S−2 + 1)Ω + λJ(S+
1 S−2 + S−1 S+

2 ). (32)

Coefficient Ω of
(
c†

1c1 + c†
2c2 + 1

)
in Equation (28) is characteristically same as the coefficient Ω of

(S+
1 S−1 + S+

2 S−2 + 1) in Equation (32). Same is true with the coefficient λJ appeared in Equations (28)
and (32). To compare the performance of coupled spins and oscillators, we can diagonalize the
Hamiltonian for the coupled spins so that in the new basis, spins are uncoupled. So we can write

Hsp = (Ω + λJ)(S+
A S−A +

1
2
) + (Ω− λJ)(S+

B S−B +
1
2
). (33)

Therefore, the total heat exchanged between the system and the hot bath is the sum of contributions
from spins A and B. So we get the heat exchanged between system k (= A or B) and the hot bath as
(see Equation (7))

Qsp
k =

ωk
2

(
tanh

[
ω′k)
2Tc

]
− tanh

[
ωk
2Th

])
. (34)

The total heat exchange between the system and the hot bath is Qsp = Qsp
A + Qsp

B The total work done
by the system is the sum of the contributions from the individual spins defined in the new basis. So we get

Wsp = ηAQsp
A + ηBQsp

B

Wsp = C
(

tanh
[
(ω′ − λJ)

2Tc

]
− tanh

[
(ω− λJ)

2Th

])
+ C

(
tanh

[
(ω′ + λJ)

2Tc

]
− tanh

[
(ω + λJ)

2Th

])
, (35)

with C = (ω − ω′)/2. Here, ηA and ηB are same as that obtained in coupled oscillators given in
Equation (30). Therefore, the efficiency of the engine is given as

ηsp =
ηAQsp

A + ηBQsp
B

Qsp
A + Qsp

B
. (36)
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We can expand this efficiency for small values of λJ as

ηsp = 1− ω′

ω
+

γ
(

Thsech2
[

ω′
2Tc

]
− Tcsech2

[
ω

2Th

])
λ2

J

2
(

tanh
[

ω
2Th

]
− tanh

[
ω′
2Tc

])
+ O[λ4

J ]. (37)

The difference in the efficiencies obtained from coupled oscillators and coupled spins for small coupling
is calculated from Equations (31) and (37). When the coupling λJ = 0, both oscillator as well as spin
system yields the same efficiency as discussed in Section 2. By introducing a small coupling between
the systems, we can write the difference between the efficiencies of the oscillator model and the spin
model as

ηos − ηsp = γ

(
Tccsch

[
ω

Th

]
+ Thcsch

[
ω′

Tc

])
λ2

J

> 0, (38)

since ω > ω′ and γ > 0. Hence in this model, for small values of λJ , the efficiency achieved by coupled
oscillators is higher than the efficiency obtained from coupled spin model. Now we can see the behavior
of the efficiency as a function of λJ (see Figure 4). The characteristics of the efficiencies in Figure 4
remain the same with the choice of different values of Th, Tc, ω, and ω′. When ω′A/Tc ≥ ωA/Th
(ω′A < ωA) and ω′B/Tc ≥ ωB/Th (ω′B < ωB), both the independent systems work as engines. It is
interesting to note that when λJ = (ω′Th − ωTc)/(Th − Tc) = λc (say), the upper bound of the
efficiency, which is the efficiency of oscillator B, attains the Carnot value (ω′B/Tc = ωB/Th) with zero
work output. At this point, the global efficiency of the system is equal to the efficiency of oscillator A,
ηos = ηsp = ηA. When λJ > λc, oscillator B works as refrigerator, which in turn reduces the efficiency
of the engine. Hence the efficiency of the total system lies below the efficiency of oscillator A. Now we can
compare the performance in terms of work given in Equations (29) and (35). The terms on the right-hand
side of these equations are positive when both the independent systems work in the engine mode. In that
case, using the analysis made in Section 2 for uncoupled systems, we can show that Wos > Wsp.
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0.0
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Coupling(λJ)
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Figure 4. (color online) The two dotted curves show the upper bound (ηB) and lower bound (ηA) .
The continuous curve represents the efficiency of the coupled oscillator. The efficiency of the coupled
spin system is denoted by the dashed curve. Carnot value is represented by the horizontal line. When
the independent systems work in engine mode, the global efficiency of the coupled system lies inside
the bounds. The plot also shows that the global efficiency of the coupled oscillators is higher than
that of the coupled spins for small values of λJ (see Equation (38)). When the upper bound reaches
Carnot value, ηB = 1− Tc/Th = ηc for λJ = λc (represented by vertical dashed-dotted line), then we
get ηos = ηsp = ηA. Here we take Th = 2, Tc = 1, ω = 4 and ω′ = 3. Note that, when ηB > ηc, ηB does
not represent efficiency because the subsystem B works as a refrigerator.
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4.2. Optimal Work and Correlations

In the thermodynamic cycle, the origin of any correlation between the actual subsystems is due
to the coupling. When the system thermalizes at the end of stage 1 and stage 3, the state of the
system becomes a product state irrespective of the initial state, if there is no coupling present in the
system. The proof that the optimum work extractable from a coupled system is upper bounded by
the optimum work obtained from the uncoupled system (Equation (27)) implies that the presence
of quantum correlations do not have any advantage in optimal work extraction. To illustrate this
fact (see also Section 3.3) with an example, we analyze the behavior of work versus concurrence for
the coupled spin systems. The concurrence is a measure of entanglement of an arbitrary two qubit
state [45–47]. The concurrence has one to one correspondence with the entanglement of formation.
The concurrence of a state ρ is defined as

C = Max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} (39)

where λ1, λ2, λ3 and λ4 are the eigenvalues of the matrix R written in descending order. The Matrix R
is defined as R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) where σy is the Pauli matrix. We estimate the concurrences for
the thermal states at the end of Stage 1 and Stage 3 denoted as Ch and Cc respectively [26]. For the
numerical analysis shown in Figure 5, we fix the temperatures of the hot and the cold bath, then we
randomly choose the values of ω, ω′ and λJ = Jx = Jy such that system should work as an engine.
The optimum work is obtained only for zero concurrence and hence the numerical analysis shows that
our theoretically obtained bound for the work holds.

In Figure 5, the work decreases and then increases with the concurrence. This is due to the fact
that, for the coupled systems, the engine can work in two regimes, ω > ω′ as well as ω′ > ω as
discussed in [27]. The maximum work at given values of Ch and Cc is another interesting direction
to study.

Figure 5. The figure shows the behavior of work versus concurrence of the coupled spin systems
(XX model). In (a), the total work is plotted versus concurrence at the end of stage 3 (Cc) and
in (b) total work versus concurrence at the end of stage 1 (Ch) is plotted. The horizontal line
represents the maximum work for an uncoupled system which is only obtained for a zero concurrence.
The temperature of the hot and the cold baths are fixed at, Th = 2 and Tc = 1 respectively.
The parameters ω, ω′ and λJ = Jx = Jy are randomly chosen from [0, 10] such that the system
should work as an engine. Each point in the plot refers to a given values of ω, ω′ and λJ . There are
more than 105 points in the plot.

4.3. XY Model

Here we consider the case λx = Jx = −λp = −Jy = λJ (say). The Hamiltonian corresponding to
the coupled oscillators is now written as

Hos =
(

c†
1c1 + c†

2c2 + 1
)

Ω + λJ(c†
1c†

2 + c1c2). (40)
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In the new co-ordinate system (described by Equation (17)), both the independent oscillators have

the same frequency, which is given by ΩA = ΩB =
√
(Ω2 − λ2

J ). Therefore, in the cycle, we have

ωA = ωB =
√
(ω2 − λ2

J ) and ω′A = ω′B =
√
(ω′2 − λ2

J ). Hence, we get ηA = ηB = 1− ω′A/ωA and
from Equation (21), we obtain

ηos = ηA = 1−

√√√√ω′2 − λ2
J

ω2 − λ2
J

. (41)

On the other hand, in the spin case, the analogous Hamiltonian is an example of Heisenberg XY model.
In this case, the interaction Hamiltonian has the following form Hint = J(Sx

1 Sx
2 − Sy

1Sy
2), where J is the

interaction constant. This model is well studied as quantum Otto cycle [24,25]. In terms of raising and
lowering operators, we can write the spin Hamiltonian as

Hsp = (S+
1 S−1 + S+

2 S−2 + 1)Ω + λJ(S+
1 S+

2 + S−1 S−2 )

= ΩA(S+
A S−A +

1
2
) + ΩB(S+

B S−B +
1
2
), (42)

where ΩA = ΩB =
√

Ω2 + λ2
J . Therefore, we have two independent spins with the same frequency.

So one would expect the efficiency of this system is similar to that of a single system (or two uncoupled
systems) given in Equation (9). This is true only when Stage 2 and Stage 4 are done slow enough.
Because, in this case, the eigenvectors of the Hamiltonian are functions of Ω and λJ . Hence, when the
system works as Otto cycle, by changing the magnetic field associated with the system, internal friction
appears to be depending upon the rate at which magnetic field is changed [24,25]. This is due to the
non-commutativity of the Hamiltonian at different instances during the driving. Here the adiabatic
processes are done slow enough so that quantum adiabatic theorem holds. Since the energy level
spacings for both the independent subsystems are equal (ΩA = ΩB) in Equation (42), these subsystems
undergo identical cycles with the same efficiency. Therefore, the global efficiency is also equal to the
efficiency of the subsystem, which is given by

ηsp = 1−

√√√√ω′2 + λ2
J

ω2 + λ2
J

. (43)

Now comparing Equations (41) and (43), we get ηos ≥ ηsp, for a range of parameter such that the
systems work as engines (where |λJ | may be also large). For a small coupling, we can expand the
efficiencies of the coupled oscillators and coupled spin systems as

ηos = 1− ω′

ω
+

(ω2 −ω′2)λ2
J

2ω3ω′
+ O[λ4

J ] (44)

ηsp = 1− ω′

ω
−

(ω2 −ω′2)λ2
J

2ω3ω′
+ O[λ4

J ] (45)

Equation (44) shows that when the coupling is introduced, the efficiency of the coupled oscillators
goes above the efficiency of the uncoupled model ηuc = 1− ω′/ω (Equations (5) and (9)), while,
according to Equation (45), the efficiency of the spin system lies below that of the uncoupled model
ηos > ηuc > ηsp (see Figure 7). Interestingly, Equations (44) and (45) shows the symmetric behavior of
ηos and ηsp about ηuc. This behavior is obvious due to the fact that coupling reduces the frequencies
of the eigenmodes of the harmonic oscillators while it increases the energy level spacings of the
independent spin systems.
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5. Performance as a Refrigerator

The coupled spins and coupled oscillators can also work as a refrigerator [48,49]. In this section,
we consider the case where both the independent subsystems (of coupled oscillators and coupled spins
separately) work as refrigerators. The refrigeration cycle is same as the cycle described for engine
in Section 2, provided refrigerators absorb heat from the cold bath (Qc > 0) and transfer it into the
hot bath (Qh < 0). To transfer heat from the cold bath to the hot bath, work has to be done on the
system and hence, we have W = Qh + Qc < 0. The coefficient of performance (COP) is defined as
ζ = Qc/|W| [50,51].

If we consider a single spin or a single oscillator (See Section 2) such that the conditions on the
parameters during the cycle are: ω > ω′ and ω/Th > ω′/Tc, then these systems (spin or oscillator)
work as refrigerators. So we get the COP as

ζos = ζsp =
Qos(sp)

c

|Wos(sp)| =
ω′

ω−ω′
. (46)

Therefore, for uncoupled oscillators and spins, COPs are equal. Now, consider the COP for coupled
systems as described in Section 3. Suppose ωA and ωB are the frequencies of the subsystems (of coupled
oscillators or coupled spins) A and B respectively, before the first adiabatic process and ω′A and ω′B
are the frequencies of A and B at the end of the first adiabatic process. Then both the independent
subsystems work as refrigerator when ωA/Th > ω′A/Tc and ωB/Th > ω′B/Tc with the conditions
ωA > ω′A and ωB > ω′B. Therefore, the local COP is ζk = ω′k/(ωk −ω′k), where k = A, B. Further, the
global COP is written as

ζ =
ζA|WA|+ ζB|WB|
|WA + WB|

= α′ζA + (1− α′)ζB,

where α′ = |WA|/(|WA + WB|) < 1. Since WA < 0 and WB < 0, we have |WA|+ |WB| = |WA + WB|.
Hence we can write

min{ζA, ζB} ≤ ζ ≤ max{ζA, ζB}. (47)

The global COP is bounded by COPs of the subsystems when both the subsystems work as refrigerators.
Now our task is to understand the behavior of COPs for special cases as we have done for heat engine
in Section 4.

5.1. XX Model

Here we compare the COPs of coupled oscillators and coupled spins when the coupling in
each case is of XX type. The COPs of subsystems are obtained as ζA = (ω′ + λJ)/(ω − ω′) and
ζB = (ω′−λJ)/(ω−ω′) and hence we have ζA > ζB. We calculate the global COP as ζos = Qos

c /|Wos|.
Expanding for small values of λJ , we get

ζos =
ω′

(ω−ω′)
+

(
Thcsch2

[
ω′
2Tc

]
− Tccsch2

[
ω

2Th

])
λ2

J

2γ′
(

coth
[

ω
2Th

]
− coth

[
ω′
2Tc

])
+O[λ4

J ], (48)

where γ′ = ThTc(ω − ω′). Similarly, for the spin systems, the COP is ζsp = Qsp
c /|Wsp|. Further,

expanding ζsp, we get
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ζsp =
ω′

(ω−ω′)
+

(
Tcsech2

[
ω

2Th

]
− Thsech2

[
ω′
2Tc

])
λ2

J

2γ′
(

tanh
[

ω
2Th

]
− tanh

[
ω′
2Tc

])
+ O[λ4

J ] (49)

In each of the above two Equations (48) and (49), the first term on the right-hand side represents the
COP of the uncoupled system. To compare the effects of coupling in COPs, we calculate the difference
between ζsp and ζos, which is given by

ζsp − ζos =

(
Tccsch

[
ω
Th

]
+ Thcsch

[
ω′
Tc

])
λ2

J

γ′
> 0

(50)

This means that a small coupling (λJ) introduced between the subsystems makes the coupled spins
more efficient than the coupled oscillators in transferring heat from cold bath to hot bath, whereas a
reverse effect is observed in the case of the heat engine (ηsp < ηos) for small values of λJ . An example
is given in Figure 6. When both the subsystems work as refrigerators, the global COP is bounded by
the COPs of the independent systems. When λJ = (ωTc −ω′Th)/(Th − Tc) = λ′c (say), the refrigerator
A attains Carnot value with no heat transfer from the cold reservoir to the hot reservoir. Therefore, the
global COP reaches its lower bound. Further, for λJ > λ′c, the system A does not work as a refrigerator
and hence global COP is bounded from above by ζB.
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Figure 6. (color online) The upper bound (ζA) and the lower bound (ζB) are shown with the dotted
curves. The continuous curve represents the COP of the coupled oscillators while the COP of the
coupled spin system is denoted by the dashed curve. The horizontal line represents the Carnot value
for the refrigerator. When the independent subsystems work in refrigerator mode, the global COP of
the coupled system is bounded by ζA and ζB. The plot also shows that the global COP of the coupled
spins is higher than that of the coupled oscillators for small values of λJ as seen in Equation (50).
When the upper bound achieves Carnot value, ζA = Tc/(Th − Tc) = ζc for λJ = λ′c (shown by vertical
dashed-dotted line), thus we get ζos = ζsp = ζB. The inset shows the enlarged region near λJ = λ′c.
Here we take Th = 2, Tc = 1, ω = 5 and ω′ = 2. Note that, when ζA > ζc, ζA does not represent COP,
as the subsystem A works as an engine.

5.2. XY Model

Now we consider the COPs in the case of XY model as described in Section 4.3. In this model,
for coupled oscillators, we have ωA = ωB =

√
ω2 − λ2

J and ω′A = ω′B =
√

ω′2 − λ2
J . Since both the
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independent oscillators are identical and having equal frequencies at various stages of the cycle, the
COPs of the subsystems are equal to the global COP, which is given by

ζos =
1√

ω2−λ2
J

ω′2−λ2
J
− 1

. (51)

Similarly, in the case of coupled spins, we have ωA = ωB =
√

ω2 + λ2
J and ω′A = ω′B =

√
ω′2 + λ2

J .
Both the independent subsystems have same energy level spacings and hence the subsystems work as
refrigerators when ωA/Th > ω′A/Tc. Therefore the COPs of the subsystems are equal to the global
COP, given by

ζsp =
1√

ω2+λ2
J

ω′2+λ2
J
− 1

. (52)

Therefore, we have ζsp > ζos even for larger values of λJ . On the contrary, from Equations (41) and (43),
we have ηsp < ηos for the engine. Now we can expand the COPs of the coupled systems for small
values of λJ .

ζos =
ω′

(ω−ω′)
−

(ω + ω′)λ2
J

2ωω′(ω−ω′)
+ O[λ4

J ], (53)

ζsp =
ω′

(ω−ω′)
+

(ω + ω′)λ2
J

2ωω′(ω−ω′)
+ O[λ4

J ]. (54)

Since ω > ω′, by introducing the coupling, the COP of the coupled spins becomes higher than that
of of the uncoupled spins, ζuc = ω′/(ω−ω′) (Equaton (46)), while the COP of oscillators lies below
ζuc. It is interesting to note that exactly the opposite behavior is observed in the case of heat engine
(see Equations (44) and (45)) . This behaviour is shown in Figure 7.
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Figure 7. (a) The continuous and the dashed curves represent the efficiencies of coupled oscillators and
coupled spins respectively. The efficiency of the uncoupled oscillator (or spin) given in Equations (5)
and (9) is shown by the horizontal dotted line. The parameter values are Th = 2, Tc = 1, ω = 4 and
ω′ = 3; (b) The COPs of coupled oscillators and spins are shown by continuous and dashed curves
respectively. The horizontal dotted line represents COP of the uncoupled oscillator (or spin) given in
Equation (46). Here we used Th = 2, Tc = 1, ω = 5 and ω′ = 2.

6. Discussion and Future Direction

To conclude, we analyzed the performances of coupled oscillators and coupled spins as heat
engines and refrigerators. In both the cases, we choose suitable co-ordinate transformation to get
two independent subsystems. The global figure of merit is bounded by the figures of merit of the
independent subsystems. When the upper bound is Carnot value, the global figure of merit reaches
the lower bound. For the case of the heat engine, when one of the subsystems works as a refrigerator,
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the global efficiency falls below the lower bound. Similarly, for the case of the refrigerator, the global
COP falls below the lower bound when one of the subsystems work as a heat engine. The upper
bound is tighter than the Carnot bound. For the systems considered in this work, it is also shown
that the optimal work extractable from the coupled system is upper bounded by the optimal work
extractable from the uncoupled system. Whether this is a generic feature for arbitrary coupled systems
with quadratic coupling is a question of future interest. However, the figures of merit such as efficiency
or COP can have higher values in the presence of coupling. We point out the range of parameters and
some forms of interactions where the efficiency of the coupled oscillators is higher than that of the
coupled spins, whereas the global COP is higher for coupled spins compared to coupled oscillators.
Therefore, coupling causes opposite effects in the figures of merit of heat engine and refrigerator.

An interesting query is as to whether the entanglement between the coupled systems is responsible
for the gap in the efficiencies, i.e., the difference between the efficiencies obtained from coupled
oscillators and coupled spins. Our preliminary observation shows that the entanglement does not have
any role in creating this gap. On the other hand, we have shown that the quantum correlations do not
help in extracting optimal work. A recent study in optomechanical heat engine shows the reduction in
extractable work due to quantum correlations [52].

One may try to look at the efficiency η
sp
1 of coupled system of two spin-1 particles to look for

a possible ordering of the form η
sp
1/2 ≤ η

sp
1 ≤ ηos, where η

sp
1/2 is efficiency in the case of a coupled

spin-1/2 particles. In the case of coupled qutrits with XX coupling, the independent spins do not have
energy level spacings ω± λJ unlike in the case of coupled spin-1/2 systems and coupled oscillators as
discussed in Section 4.1 [53]. So the efficiency of the coupled qutrits may not exactly fall in between
the efficiency curves obtained for coupled spin-1/2 systems and coupled oscillators. Therefore,
an interesting future direction is to investigate the form of interaction for which a monotonic behavior
of the efficiency with the increment in the dimension of the system is exhibited.

As mentioned in Section 2, the adiabatic processes should be done slow enough to avoid creation
of coherence between the eigenstates of the Hamiltonian. These coherences create a frictional effect in
the system, which in turn reduces the extractable work. The second assumption is that the system is
attached to the respective baths for long enough time till the system attains equilibrium. Thermalization
of coupled oscillators can be modeled with coupled micro-cavities as described in Reference [41]. In this
model, one of the system (say system 1) is attached to a bath. Since the system 2 is coupled to the
system 1, the total system can equilibrate with the bath. When we diagonalize the Hamiltonian of the
coupled system, the independent systems A and B appear to be connected with the bath (see Figure 8).
This method is applicable even for very strongly coupled systems.

Bath

B

Bath

1 2 A

Figure 8. Pictorial representation of thermalization of coupled system.

Consider an example where the first oscillator of the coupled oscillators with XX interaction
(see Section 4.1), is connected to a bath of harmonic oscillators, characterized by an inverse temperature
β. The Hamiltonian for the bath and the system-bath interaction are respectively given as [41]

HB = ∑
i
(b†

i bi + 1/2)ωb
i , HSB = (c1 + c†

1)∑
i

gi(bi + b†
i ), (55)



Entropy 2017, 19, 442 19 of 21

where bi and b†
i are the ladder operators for the ith oscillator of the bath with frequency ωb

i and
{gi} are the coupling strengths. So the total Hamiltonian of the system and the bath is given as
Htot = Hos + HB + HSB. In the XX model, the unitary operation corresponding to the phase space
transformation (given in Equation (13)) is cA = (c1 + c2)/

√
2 and cB = (c1 − c2)/

√
2. Therefore, in

terms of the independent modes, the total Hamiltonian can be written as

Htot = (c†
AcA + 1/2)ΩA + (c†

BcB + 1/2)ΩB + ∑
i
(b†

i bi + 1/2)ωb
i

+
[
(cA + c†

A) + (cB + c†
B)
]
∑

i

gi√
2
(bi + b†

i ) (56)

Here it appears that both the modes are independently connected to the same bath. This will lead to a
master equation given in Reference [41]. Further by taking the evolution of Nk(t) = 〈c†

k ck〉 of the kth
mode (k = A,B), we get [30,41].

Nk(t) = (Nk(0)− Neq
k )e(−Γkt) + Neq

k (57)

ΓA = ΓB = Γ is the damping rate for a flat reservoir and Neq
k = 1/[exp(βΩk)− 1]. This shows that the

heat absorbed or rejected by the independent modes can be addressed separately even in finite-time
case. A similar approach is possible for the spin systems also.

Hence an interesting direction of enquiry is to study the finite-power characteristics of the engine
which is important from the practical point of view also [54]. This can be achieved by considering the
system being in contact with the reservoir only for a finite-time. In that case, one should also consider
fast adiabatic branches in the cycle. So in the adiabatic branches, the system will create coherence due
to fast changes of the external parameter and the thermalization processes suppresses theses coherence.
Now let us consider the time scale τadi for quantum adiabatic processes (Stage 2 and Stage 4), is to be
much smaller than the time scales τh

rel and τc
rel that the system is attached to the hot bath and the cold

bath respectively. In this approximation, we can define finite power for the engine without creating
coherences between the eigenstates of the Hamiltonian during the adiabatic processes. Therefore,
for finite-time cycles, we can show the existence of the bounds for the figures of merit, as given in
Equaitons (22) and (47) because the total heat absorbed or rejected is the sum of the contributions
from the independent subsystems. Another possibility is to study the performance of a hybrid-system,
where spin and harmonic oscillator are coupled. The Hamiltonian for such system is given as [55,56]

Hhyb = (S+S− +
1
2
)Ω +

(
c†c +

1
2

)
Ω + g(S+c + S−c†), (58)

where g is the coupling parameter. This system is studied as a heat engine in a recent work [57].
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