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Abstract:



This paper introduces and studies a model in which two relay channels interfere with each other. Motivated by practical scenarios in heterogeneous wireless access networks, each relay is assumed to be connected to its intended receiver through a digital link with finite capacity. Inner and outer bounds for achievable rates are derived and shown to be tight for new discrete memoryless classes, which generalize and unify several known cases involving interference and relay channels. Capacity region and sum capacity for multiple Gaussian scenarios are also characterized to within a constant gap. The results show the optimality or near-optimality of the quantize-bin-and-forward coding scheme for practically relevant relay-interference networks, which brings important engineering insight into the design of wireless communications systems.
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1. Introduction


Two of the fundamental building blocks of network information theory are the interference channel (IC) and the relay channel (RC). Despite the fact that the capacity of each channel is still unknown, the use of relays in interference networks is an interesting research topic and has been part of wireless networks design, e.g., [1] (Chapter 18). In this paper, we study a specific channel model which accounts for a particular interaction between the interference channel and the relay channel, and establish the capacity region or approximate capacity region for several classes of these channels.



Consider a network as illustrated in Figure 1. In this network, a relay channel consisting of transmitter [image: there is no content], relay [image: there is no content], and receiver [image: there is no content] interferes with a neighboring relay channel consisting of transmitter [image: there is no content], relay [image: there is no content], and receiver [image: there is no content]. Specifically, the signal sent by [image: there is no content] is also received by [image: there is no content] and [image: there is no content], for [image: there is no content], [image: there is no content]. Further, each relay [image: there is no content] is connected to its intended receiver [image: there is no content] via a digital link of finite capacity [image: there is no content]. This network model characterizes certain key components of heterogeneous wireless access networks, an important part of the current and future wireless architectures. For example, in the context of dual connectivity [2], [image: there is no content], [image: there is no content], and [image: there is no content] can respectively act as a mobile terminal, a pico base station, and the macro base station in a cell i neighboring a cell j within a multi-cell cellular network. The pico base station and the macro base station are connected over a dedicated finite-rate backhaul link. In such heterogeneous network setting, there can be multiple groups of relay channels active at the same time within the wireless transmission range, causing interference to each other, e.g., the inter-cell interference. As a basis for understanding their effects, we study the specific case of two interfering relay channels. We call the network in Figure 1 the interfering relay channels (IRC) to emphasize the fact that each relay is meant to help only one receiver. The IRC can also be used as an abstraction for many other settings in wireless ad-hoc networks, sensor networks, and device-to-device (D2D) communications. The digital link between each relay and its intended receiver models the scenario in which the relay-receiver link is a wireless link operating at an orthogonal frequency to the underlying interference channel (e.g., a microwave link) or the scenario in which the relay-receiver link is a wireline link.


Figure 1. Interfering relay channels (IRC). Dashed lines depict interference. [image: there is no content] and [image: there is no content], [image: there is no content], denote a message and its estimate, respectively.
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1.1. Related Work


The channel under investigation is clearly a special case of the general interference channel with multiple relays. Each relay not only can relay the intended signal but also can forward the unintended signals for the purpose of interference mitigation. The IRC is also an extension of the interference channel with a single relay [3], which was thoroughly studied in many contexts, e.g., [4,5,6,7,8,9]. The most relevant setting among these references is the interference channel with a degraded broadcasting relay [8]. Specifically, if [image: there is no content] coincides with [image: there is no content] in Figure 1 we recover the channel studied in [8]. Another closely related problem is the interference channel with limited receiver cooperation in [10], where each receiver also acts as a relay. Particularly, in the special case when [image: there is no content] coincides with receiver [image: there is no content], i,j∈{1,2},i≠j, we recover the channel in [10]. In subsequent sections we will draw connections between our results and the results in [8,10]. At the same time, it is easy to recognize that the IRC is a generalization of the primitive relay channel, studied by Cover and Kim in [11]. A key difference is the presence of interference, which may require new ingredients in the optimal coding strategy. We will later show that a coding scheme that is an extended version for the scheme proposed in [11] can achieve the capacity region of several types of IRC which have similar relationship between the channel output to the relay, the channel input from the transmitter, and the channel output to the receiver as the primitive relay channel has. We also note that the type of relays considered in the IRC (as well as in [8,9,11]) belongs to the type of in-band reception and out-of-band transmission relays categorized in [5].



Although the capacity for the general interference channel and relay channels are unknown, due to their practical relevance, there exist several recent studies investigating fundamental performance bounds of specific settings of both interference and relaying. In particular, in a Gaussian interference channel with a causal relay, outer bounds are derived for strong and very strong interference cases [12]. For an interference channel with a relay a layered quantize-and-forward scheme is shown to achieve a constant gap to the capacity region under certain conditions [13]. New cut-set bounds for causal discrete memoryless relay networks are derived and achieved by a simple amplify-and-forward scheme in a causal vector Gaussian relay channel and the two-way relay channel [14]. For the multi-antenna Gaussian interference channel with a relay, inner and outer bounds are established on the degrees of freedom [15]. A novel relay-aided interference management strategy can achieve the optimal degrees of freedom performance even with limited channel knowledge in a massive antenna setting [16]. The degrees of freedom of interference channels with a cognitive relay under delayed feedback is considered in [17]. Lastly, a new cooperative transmit scheme is proposed for the multi-way relay channel, building upon a distributed compute-and-forward strategy [18].




1.2. Summary of Results and Contributions


In this paper, we study several classes of discrete memoryless and Gaussian IRC. The main results are summarized as follows.

	
We propose an inner bound for the capacity region of the discrete memoryless IRC. The coding technique is based on rate splitting at the transmitters and quantize-bin-forward [10] (Note that in the literature of relay channels, the term binning and hashing often have the same meaning, see, e.g., [19]) or extended hash-forward [20].



	
We characterize the capacity region of a class of discrete memoryless channels, namely the semi-deterministic IRC which includes several known interference and relay channels as special cases.



	
We derive an outer bound for the Gaussian IRC and use it to show constant-gaps to the capacity region or to the sum capacity in multiple scenarios: When the interference is strong, we characterize the capacity region of the real-valued Gaussian IRC to within [image: there is no content] bit. For the Gaussian IRC with high-capacity relay-receiver links, we characterize the capacity region to within [image: there is no content] bits. For other regimes of channel parameters, we show that the inner bound and outer bound are within a bounded gap as long as the interference that each transmitter induces at the neighboring relay is not unboundedly stronger than the interference induced at the neighboring receiver. Moreover, for the Gaussian IRC in the so called weak interference-relay regime, we characterize the sum capacity to within 1 bit.



	
We also study a closely related channel model, the compound multiple access relay channel. We characterize capacity region of a class of the semi-deterministic compound multiple access relay channel and the capacity region of a class of Gaussian compound multiple access relay channels to within [image: there is no content] bit.








The achievable scheme in this paper is a combination of common-private rate splitting [21,22] and quantize-bin-forward [10]. As noted in Section 1.1, related problems have also been studied by combining rate splitting with generalized hash-forward [8,9] or with noisy network coding [23,24]. By focusing on the particular model of IRC and based on the insights learned from proving the inner bound, we are able to prove capacity and approximate capacity results for new types of discrete memoryless and Gaussian channels. For the discrete memoryless channel, the newly established capacity regions in this paper generalize and unify the capacity results of several relay and interference channels. The main technical contribution of the paper is the various outer bounds that help characterize the exact or approximate capacity regions. Further, unlike [8,10] which study only Gaussian channels, we study both discrete memoryless and Gaussian channels. The results of our study show that a “simple” combination of rate splitting with the quantize-bin(or hash)-forward protocol is optimal or nearly optimal for such a complex interference networks like the IRC. This has an important engineering implication because such a relaying scheme, which does not require intermediate nodes in the network to decode messages, is highly appealing in real-world systems.




1.3. Organization


The paper is organized as follows: Section 2 presents an achievable rate region for the discrete memoryless IRC. Section 3 presents examples of discrete memoryless channel for which the achievable rate region in Section 2 is the capacity region. Section 4 studies the Gaussian IRC, wherein a general outer bound to the capacity region is derived and used to show the capacity region or sum capacity to within a constant number of bits for different types of channels. This section also characterizes the capacity region of a class of Gaussian compound multiple access relay channel to within a constant number of bits. Conclusions are presented in Section 5 and long proofs are relegated to the appendices.




1.4. Notation and Definition


We follow the notation of [25]. In particular, we use [image: there is no content] to denote the set of [image: there is no content]-typical n-sequences as defined in [25] (Chapter 2), and use [image: there is no content] to denote the set [image: there is no content], where [image: there is no content] is the smallest integer [image: there is no content]. We define [image: there is no content] and [image: there is no content] for a real number x. All log’s in this paper are to the base 2. [image: there is no content] means a equals b by definition. Throughout the paper the random variable Q denotes the time-sharing variable, with a finite support set [image: there is no content] having cardinality [image: there is no content]. We will make use of the notion of the gap between certain achievable rate regions and the capacity regions of different channels, whose definition is given below.



Definition 1 (k-bit gap).

Let [image: there is no content]and [image: there is no content]denote two sets of nonnegative rate pairs [image: there is no content]. The set [image: there is no content]is said to be within k bits of the set [image: there is no content]if for any [image: there is no content]we have [image: there is no content].







2. Discrete Memoryless IRC and A General Achievability


2.1. Problem Formulation


Refer again to the IRC as depicted in Figure 1. Transmitter [image: there is no content] wants to send a message [image: there is no content] to receiver [image: there is no content], [image: there is no content]. Relay [image: there is no content] helps receiver [image: there is no content] decode its desired message by sending aid signals via a digital link with finite capacity of [image: there is no content] bits. The channel is memoryless in the sense that


[image: there is no content]



(1)







A [image: there is no content] code, where n denotes the codeword length, for the discrete memoryless IRC consists of the following elements, for each [image: there is no content]:

	
a message set [image: there is no content];



	
an encoding function [image: there is no content] that assigns a sequence [image: there is no content] to each message [image: there is no content];



	
a relaying function [image: there is no content] that maps [image: there is no content] to a symbol [image: there is no content] for all [image: there is no content], where [image: there is no content] denotes the received sequence at the relay k up to and including the [image: there is no content]th symbol and [image: there is no content] denotes the ith symbol sent via the digital link of capacity [image: there is no content];



	
a decoding function [image: there is no content] that produces a guess [image: there is no content] from the received sequence [image: there is no content] and an index from the set [image: there is no content].








The average probability of error is defined as follows


[image: there is no content]



(2)







A rate pair [image: there is no content] is said to be achievable if there exists a sequence of [image: there is no content] codes, indexed by n, such that [image: there is no content] as [image: there is no content]. The capacity region of the network is the closure of the set of achievable rate pairs.




2.2. An Achievable Rate Region for the Discrete Memoryless IRC


Motivation of the achievable scheme: as note in Section 1, the IRC is related to both the primitive relay channel [11], the interference channel with limited receiver cooperation [10], and the interference channel with a degraded broadcasting relay [8]. The hash-forward coding scheme that achieves the capacity of the primitive relay channel [11] under a constraint of channel input and outputs was generalized to include a quantization stage at the relay in [20] and coined extended hash-forward. Interestingly, in [8,10] a similar relaying scheme combined with rate-splitting encoding at the transmitters, called quantize-bin-forward or generalized hash-forward, was shown to achieve the capacity region of the respective channels to within a constant number of bits. These facts have motivated us to propose a coding strategy based on the quantize-bin-forward scheme to our current problem, which leads to the following inner bound.



Theorem 1 (Inner bound for DM-IRC).

Let us define


[image: there is no content]



(3)






[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)




and define [image: there is no content]by exchanging indices [image: there is no content]everywhere in (3)–(11). Q is drawn from some finite set [image: there is no content]. Let [image: there is no content]denote the collection of joint distributions P of the form


[image: there is no content]



(12)







For a fixed [image: there is no content], let [image: there is no content]denote the set of non-negative rate pairs [image: there is no content]satisfying


[image: there is no content]



(13)






[image: there is no content]



(14)






[image: there is no content]



(15)






[image: there is no content]



(16)






[image: there is no content]



(17)






[image: there is no content]



(18)






[image: there is no content]



(19)






[image: there is no content]



(20)






[image: there is no content]



(21)







The convex hull of the set [image: there is no content]is an achievable region for the DM-IRC.





Sketch of proof.

(Details are presented in Appendix A.) Consider [image: there is no content] and [image: there is no content]. We employ Han–Kobayashi common-private rate splitting at the transmitters and quantize-bin-forward in [10] at the relays as follows: Transmitter i splits its message [image: there is no content] into a common part [image: there is no content] of rate [image: there is no content] and a private part [image: there is no content] of rate [image: there is no content]. A superposition codebook is generated, with codewords [image: there is no content] and [image: there is no content] generated independently with distributions [image: there is no content] and [image: there is no content], respectively. Relay i’s codebook has [image: there is no content] codewords [image: there is no content]’s, each generated independently according to the marginal distribution [image: there is no content]. Each codeword in the quantization codebook is assigned to one of [image: there is no content] bins by a uniformly generated random mapping.



Encoding: transmitter i sends out a codeword [image: there is no content] corresponding to its message index. Relay i quantizes its received sequence [image: there is no content] by choosing a quantization codeword [image: there is no content] jointly typical with [image: there is no content], and then sends out the corresponding bin index to receiver i via the digital link of rate [image: there is no content].



Decoding: receiver i finds a unique message pair [image: there is no content] such that the sequences [image: there is no content], [image: there is no content] ([image: there is no content]), and [image: there is no content] are jointly typical for some [image: there is no content] and some [image: there is no content] whose bin index matches the index that receiver i received from relay i.



Error analysis: error analysis follows standard techniques, see e.g., [10]). We obtain the following constraints on the partial rates so that the error probability vanishes when [image: there is no content]:


[image: there is no content]



(22)






[image: there is no content]



(23)






[image: there is no content]



(24)






[image: there is no content]



(25)






[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)






[image: there is no content]



(29)







Applying Fourier–Motzkin elimination to the above constraints and removing redundant inequalities we obtain (13)–(21). ☐





Remark 1.

Following the same techniques of [23,24], one can show that the above rate region can also be achieved by noisy network coding [26], which does not use explicit binning, and by generalized hash-forward [27]. However, for the channel under consideration which has digital links, we find it is easier to gain insights into the meaning of each term in the rate constraints by employing the quantize-bin-forward strategy, see Remark 2 below. Such insights are useful in establishing approximate capacity results as will be shown in Section 4.





Remark 2.

Observe that each constraint in (22)–(29) is the minimum of two terms. The second term corresponds to the case when [image: there is no content], [image: there is no content]is large enough to convey the quantization [image: there is no content]correctly to receiver i. The first term corresponds to the case when the limited [image: there is no content]allows receiver i to identify only a list of candidates of [image: there is no content]. In this case, [image: there is no content]plays the role of a “rate loss”, similar to [image: there is no content]in [10], whose value depends on the quantization distortion at the relay [image: there is no content].





Remark 3.

If we replace [image: there is no content](resp. [image: there is no content]) in (3)–(11) by [image: there is no content](resp. [image: there is no content]), for i,j∈{1,2},i≠j,and plug them into (22)–(29) we recover the achievable rates for the interference channel with limited receiver cooperation [10] (one-round conferencing). On the other hand, by setting [image: there is no content]in (3)–(11) (and symmetrically for [image: there is no content]) we recover the achievable rate region for the IC with one degraded broadcasting relay in [8].







3. Capacity Region of Some Classes of Discrete Memoryless IRCs


In this section, we give some examples of discrete memoryless IRC for which the inner bound in Theorem 1 is the capacity region. These channels have a common feature that the output at the relay [image: there is no content] is a function of the input at transmitter [image: there is no content] and the output at receiver [image: there is no content]. To the best of our knowledge, these are first known capacity regions of interference channels with two relays. The capacity results in this section generalize and unify the capacity regions of a class of semi-deterministic relay channels [11,28], the strong interference channel [29], and a class of deterministic interference channels [30].



3.1. Semi-Deterministic IRC


Consider the semi-deterministic discrete memoryless IRC as depicted in Figure 2, which has the following properties:

	
[image: there is no content]: There exist deterministic functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] (not necessary invertible) such that:

	–

	
[image: there is no content]: [image: there is no content], [image: there is no content],




	–

	
[image: there is no content]: [image: there is no content], [image: there is no content].









	
[image: there is no content]: [image: there is no content] depends only on [image: there is no content] and [image: there is no content], via the conditional distribution [image: there is no content]. Similarly for [image: there is no content] and [image: there is no content].



	
[image: there is no content]: For all positive integers N and all distributions of the form [image: there is no content], the following conditions hold:


[image: there is no content]



(30a)






[image: there is no content]



(30b)











Figure 2. Semi-deterministic interfering relay channels.
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The main result of this section is in the following theorem.



Theorem 2.

The capacity region of the semi-deterministic IRC is the union of the set of non-negative rate pairs [image: there is no content]satisfying


[image: there is no content]



(31)






[image: there is no content]



(32)






R1+R2≤min{I(X1;Y1|T1,T2,Q)+C1,I(X1;Y1,Yr1|T1,T2,Q)}+min{I(X2,T1;Y2|Q)+C2,I(X2,T1;Y2,Yr2|Q)}



(33)






R1+R2≤min{I(X1,T2;Y1|T1,Q)+C1,I(X1,T2;Y1,Yr1|T1,Q)}+min{I(X2,T1;Y2|T2,Q)+C2,I(X2,T1;Y2,Yr2|T2,Q)}



(34)






R1+R2≤min{I(X1,T2;Y1|Q)+C1,I(X1,T2;Y1,Yr1|Q)}+min{I(X2;Y2|T1,T2,Q)+C2,I(X2;Y2,Yr2|T1,T2,Q)}



(35)






2R1+R2≤min{I(X1;Y1|T1,T2,Q)+C1,I(X1;Y1,Yr1|T1,T2,Q)}+min{I(X1,T2;Y1|Q)+C1,I(X1,T2;Y1,Yr1|Q)}+min{I(X2,T1;Y2|T2,Q)+C2,I(X2,T1;Y2,Yr2|T2,Q)}



(36)






R1+2R2≤min{I(X1,T2;Y1|T1,Q)+C1,I(X1,T2;Y1,Yr1|T1,Q)}+min{I(X2;Y2|T1,T2,Q)+C2,I(X2;Y2,Yr2|T1,T2,Q)}+min{I(X2,T1;Y2|Q)+C2,I(X2,T1;Y2,Yr2|Q)}



(37)




over all probability distributions of the form [image: there is no content], with [image: there is no content].





Proof. 

The achievability and converse proofs are deferred to Appendix B. ☐





Remark 4.

Property [image: there is no content]in the definition of the semi-deterministic IRC resembles a property of the semi-deterministic interference channel with common information [31]. One can interpret (30a, 30b) as partially strong interference condition: knowing [image: there is no content], receiver k together with relay k can deduce more information about one part of the message sent by transmitter l (conveyed by [image: there is no content]) than receiver l and relay l can, [image: there is no content], [image: there is no content]. In Appendix B we show that choosing [image: there is no content]to represent the common message of transmitter k is capacity achieving.





Remark 5.

We can easily obtain the capacity region of the semi-deterministic IRC when only one transmitter causes interference to its unintended relay and receiver, simply by setting [image: there is no content]or [image: there is no content]in Theorem 2. In a more extreme case, when there is no interference in the channel, namely [image: there is no content], the capacity region of the channel will reduce to the capacity region of two parallel deterministic relay channels of the type in [11]:


[image: there is no content]



(38)






[image: there is no content]



(39)







This is because in this case we are employing the capacity achieving hash-forward coding technique [11] in two separate channels.





To illustrate further the connection of the semi-deterministic IRC to previously known channels we will focus on two special cases in the sequel.



3.1.1. Semi-Deterministic IRC with Strong Interference


We observe that in the case when [image: there is no content], [image: there is no content], the condition (30a, 30b) is an immediate generalization of the strong interference channel [29]. As such, let us consider a discrete memoryless IRC which satisfies the following conditions:

	
[image: there is no content][image: there is no content] and [image: there is no content] for some functions [image: there is no content] and [image: there is no content],



	
[image: there is no content][image: there is no content] and [image: there is no content] for all product distributions on [image: there is no content] (Note that due to [image: there is no content] we can rewrite [image: there is no content] as [image: there is no content] and [image: there is no content].).








Note that, by the lemma in [29], the second condition [image: there is no content] above implies


[image: there is no content]



(40)






[image: there is no content]



(41)







Consequently, it can be readily verified that the channel under consideration belongs to the class of the semi-deterministic IRC. Specifically, the former channel is the latter channel with [image: there is no content] and [image: there is no content]. Therefore we call the channel under consideration the semi-deterministic IRC under strong interference. Naturally, the capacity region of this channel can be deduced from Theorem 2, given as follows.



Corollary 1.

The capacity region of the semi-deterministic strong IRC is formed by the union of nonnegative rate pairs [image: there is no content]satisfying


[image: there is no content]



(42)






[image: there is no content]



(43)






[image: there is no content]



(44)






[image: there is no content]



(45)




over all probability distributions of the form [image: there is no content], with [image: there is no content].





Obviously, in the special case when there is no relay, Corollary 1 reduces to the capacity region of the interference channel with strong interference [29].




3.1.2. Deterministic IRC


Consider a discrete memoryless IRC which has the following properties:

	
[image: there is no content]: There exist deterministic functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] (not necessary invertible) such that:

	–

	
[image: there is no content]: [image: there is no content], [image: there is no content],




	–

	
[image: there is no content]: [image: there is no content], [image: there is no content].









	
[image: there is no content]: [image: there is no content] depends only on [image: there is no content] and [image: there is no content] via deterministic function [image: there is no content]. Similarly, [image: there is no content]. Moreover there exist functions [image: there is no content] and [image: there is no content] such that [image: there is no content] and [image: there is no content]. In other words, function [image: there is no content] is invertible given [image: there is no content], [image: there is no content]








We name this channel the deterministic IRC of El Gamal–Costa type, depicted in Figure 3. It can be verified that the deterministic IRC satisfies all the properties of the semi-deterministic IRC in Figure 2. In particular, property [image: there is no content] of the semi-deterministic IRC is satisfied because [image: there is no content] is a function of [image: there is no content] and [image: there is no content] (and [image: there is no content] is a function of [image: there is no content] and [image: there is no content]). As a result, the capacity region of the deterministic channel can be deduced from Theorem 2. What is more, due to the existence of [image: there is no content] and [image: there is no content], the capacity region of the deterministic IRC remains unchanged if we replace the condition [image: there is no content] (respectively [image: there is no content]) by [image: there is no content] (respectively [image: there is no content]), for some functions [image: there is no content], [image: there is no content]. It is also easy to recognize that the deterministic IRC is in turn a generalization of the El Gamal–Costa deterministic interference channel [30]. In this sense the deterministic IRC includes the channel studied in [32], in which the two relays coincide, as a special case.


Figure 3. Deterministic IRC of El Gamal–Costa type.



[image: Entropy 19 00441 g003]








3.2. Compound Semi-Deterministic Multiple Access Relay Channel


Note that in the proof of Theorem 1 each receiver can decode (non-uniquely) the common message sent by the interfering transmitter. This motivates us to study an akin channel which has the same physical setting as in Figure 1 but each of the receivers is required to decode uniquely both messages from the transmitters. We name this new channel setup compound semi-deterministic multiple access relay channel (CS-MARC). We further assume that the following relations [image: there is no content] and [image: there is no content] hold for some deterministic functions [image: there is no content] and [image: there is no content], similar to a property of the semi-deterministic channels studied in Section 3.1. It can be shown that the achievability in Theorem 1, adapting to the special case of no private message, is capacity achieving for the CS-MARC. Moreover, by removing either [image: there is no content] and [image: there is no content] or [image: there is no content] and [image: there is no content] in CS-MARC one can recover the capacity region of a class of MARC with orthogonal receive components established in [33]. Details are omitted for brevity.





4. Gaussian Interfering Relay Channels


The focus of this section is on the Gaussian IRC. We aim at giving some non-trivial examples where the inner bound in Theorem 1 can characterize the capacity region or sum capacity to within a bounded number of bits. The key to this task is deriving tight outer bounds and tuning the right parameters affecting the inner bound.



Consider the Gaussian IRC as depicted in Figure 4. The received signals at the receiver [image: there is no content] (denoted by [image: there is no content]) and at the relay [image: there is no content] (denoted by [image: there is no content]), [image: there is no content] are given by


[image: there is no content]



(46)






[image: there is no content]



(47)






[image: there is no content]



(48)






[image: there is no content]



(49)






Figure 4. Gaussian interfering relay channels.
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The noise processes [image: there is no content]’s are independent and identically distributed ∼[image: there is no content], [image: there is no content]. Without loss of generality we assume an average unit power constraint at each transmitter, namely [image: there is no content], where n is the block length. For simplicity we only consider real-valued channel gains and input/output symbols, and assume that channel gains are known to all nodes in the network. For for the convenience of notation, we define the following quantities, which will be used extensively hereafter:


SNR1=h112,INR1=h212,SNRr1=h1r2,INRr1=h2c2,SNR2=h222,INR2=h122,SNRr2=h2r2,INRr2=h1c2,η12=1−h1rh21h2ch112,η22=1−h2rh12h1ch222.











In the following, we will first derive an outer bound to the capacity region, adapt the inner bound for the discrete memoryless IRC in Theorem 1 to the Gaussian channel, and quantify the gaps between the bounds. The connection to previously known results are drawn where appropriate.



4.1. An Outer Bound to the Capacity Region


An outer bound to the capacity region of the Gaussian IRC is stated below.



Theorem 3.

The following set of non-negative rate pairs [image: there is no content]forms an outer bound to the capacity region of the Gaussian IRC:


[image: there is no content]



(50)






[image: there is no content]



(51)






[image: there is no content]



(52)






[image: there is no content]



(53)






[image: there is no content]



(54)






[image: there is no content]



(55)






[image: there is no content]



(56)






[image: there is no content]



(57)






[image: there is no content]



(58)






2R1+R2≤CSNR1+SNRr11+INR2+INRr2+CINR2+INRr2+SNRr2+SNR2(1+η22INRr2)1+INR1+INRr1+C(INR1+SNRr1+INRr1+SNR1(1+η12INRr1))



(59)






[image: there is no content]



(60)






[image: there is no content]



(61)






[image: there is no content]



(62)






[image: there is no content]



(63)






[image: there is no content]



(64)






[image: there is no content]



(65)






[image: there is no content]



(66)






2R1+R2≤CINR2+SNR21+INR1+INRr1+C(SNR1(1+η12INRr1)+SNRr1+INR1+INRr1)+CSNR1+SNRr11+INR2+C2



(67)






[image: there is no content]



(68)






[image: there is no content]



(69)




together with 6 constraints on [image: there is no content]obtained by exchanging indices [image: there is no content]in the 6 constraints on [image: there is no content].





Remark 6.

By setting [image: there is no content]and [image: there is no content], which, in [image: there is no content]and [image: there is no content]sense, is similar to letting the two relays in Figure 4 coincide, the above outer bound reduces to the outer bound for the IC with one degraded broadcasting relay in [8].





Sketch of proof of the outer bound.

(The detailed proof is given in Appendix C.) The bounds are proven by first giving different types of side information to the decoders (genie-aided bounds). We then leverage the outer bounds for the multiple input multiple output interference channel (MIMO IC) established by Telatar and Tse in [34], and the outer bound for the Gaussian MIMO IC [35] (which is equivalent to [34] for the current channel) to simplify the derivation. In fact, the outer bound in Theorem 3 is the intersection of 7 regions, each of which corresponds to a group of constraints whose interpretations and outline of the proofs are given below.

	
Group 1: The bounds on individual rates in (50) and (51) are cut-set bounds.



	
Group 2: The bounds in (52)–(55) are obtained by first upper bounding the sum capacity gain due to the relays by [image: there is no content]. The remaining part is derived by optimizing the bounds established in [34] or directly applying [35] (Lemma 1).



	
Group 3: The bounds in (56)–(59) are genie-aided bounds. First we give [image: there is no content] to decoder i, [image: there is no content], to turn the channel into a single input multiple output (SIMO) IC with two antennas at each receiver. Then we apply the bounds for MIMO IC in [34,35].



	
Group 4: The bounds in (60)–(63) are genie-aided bounds. We upper bound the sum capacity gain due to relay [image: there is no content] by [image: there is no content] and give [image: there is no content] to decoder 2 to turn the channel into a SIMO IC. Then we apply the bounds for MIMO IC in [34,35].



	
Group 5: The bounds in (64)–(67) are similarly derived as the bounds in Group 4, by symmetry.



	
Group 6: The bound in (68): A genie gives [image: there is no content] to one of the two decoders 1, and give [image: there is no content] to decoder 2, where [image: there is no content], [image: there is no content]. We also bound the sum capacity gain due to the relays by [image: there is no content]. The rest follows from the facts that conditioning does not increase entropy, the chain rule, and that Gaussian distribution maximizes differential entropy and conditional differential entropy subject to covariance constraint.



	
Group 7: The bound in (69): A genie gives [image: there is no content] to one of the two decoders 1, and gives [image: there is no content] to decoder 2. We also bound the sum capacity gain due to one of the relays [image: there is no content]’s by [image: there is no content].





☐






4.2. Achievability


We can extend the inner bound for the DM-IRC in Theorem 1 to obtain an inner bound for the Gaussian channel. Specifically, we choose the following method to generate codebooks: First we set [image: there is no content]. Transmitter i, [image: there is no content], generates superposition Gaussian codebooks [image: there is no content] and [image: there is no content] with [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content]. The random variable used to generate the quantization codebook at relay [image: there is no content] is specified by: [image: there is no content] where [image: there is no content], independent of everything else; [image: there is no content] is given in (48) or (49). The quantization distortion [image: there is no content] will be specified later, depending on which interference regime the channel belongs to. We also define the following quantities:


SNR1p=h112P1p,SNR2p=h222P2p,



(70)






INR1p=h212P2p,INR2p=h122P1p,



(71)






SNRr1p=h1r2P1p,SNRr2p=h2r2P2p,



(72)






INRr1p=h2c2P2p,INRr2p=h1c2P1p.



(73)







As demonstrated in [10], the key parameters that determine the tightness of the inner bound for the Gaussian IC with limited receiver cooperation are: (i) power allocation for common and private messages at each transmitter, and (ii) quantization level at each relay. Reference [10] shows that the power allocation rule of [36] together with a new rule for designing the quantization distortion achieve the capacity region within a constant gap. In the remaining subsections of the current section, we will show the approximate optimality of such rules for several classes of Gaussian IRC. Especially, the results in Section 4.5 are obtained from the insights gained from the proof of the general achievability in Theorem 1. Before that, in the next subsection we will show that a slightly different method for allocating power achieves a bounded gap to the capacity region of the Gaussian IRC under a condition.




4.3. Capacity Region within a Bounded Gap for General Interference Condition


In this subsection we look for a power allocation and quantization scheme that can guarantee a bounded gap to the capacity region. We make no assumption on the interference regime the channel belongs to, except for an assumption of the finiteness of two ratios of channel gains. In later subsections we will present stronger results, namely constant gaps to the capacity region or the sum capacity, for several interference conditions.



To begin with, instead of directly applying the power allocation and quantization scheme of [10], we use a similar strategy as in [8], i.e., we fix the power allocation and optimize the quantization level at each relay. Specifically, following the insights of [10,36], each transmitter allocates power to its private message such that the corresponding interference induced at the unintended receiver is below the noise level, i.e.,


P1p=min1,1/h122,P2p=min1,1/h212.



(74)







[image: there is no content], [image: there is no content] is optimized accordingly to minimize the gap between inner and outer bounds.



With the above choice of power allocation we have the following bounded-gap result.



Theorem 4 (Bounded gap to the capacity region).

For a given Gaussian IRC satisfying


[image: there is no content]



(75)




the inner bound in Theorem 1, when extended to the Gaussian channel and with the power allocation specified in (74), is within a bounded gap of the capacity region. The gap is given by


[image: there is no content]



(76)




and is obtained with quantization distortion [image: there is no content]at both relays.





Proof. 

See Appendix D. ☐





The astute reader may notice that this gap is similar to the gap derived in [8] (Theorem 3) for the IC with a degraded broadcast relaying. However, our gap depends only on how much interference each transmitter causes to the neighboring relay channel (via parameter θ), not on the channel gain between the transmitter and its intended relay. We emphasize that this is in strong contrast to [8] where each interference-relay link carries both desired signal (with respect to one receiver) and interference (with respect to the other receiver). The bounded gap established above is useful in understanding the capacity behaviour of the channel at asymptotic regions, e.g., via generalized degrees of freedom analysis. Albeit bounded, the gap in the stated form can be arbitrarily large and therefore not very informative. In the next subsections we characterized different interference regimes of the channel within which the gap to the capacity region of sum capacity can be shown to be a constant of bits.




4.4. Capacity Region within [image: there is no content] Bit for Strong Interference


Let us focus on a class of Gaussian IRC in the strong interference regime. Recall that for the semi-deterministic IRC under strong interference in Section 3 we had the following conditions:


[image: there is no content]











We now consider the Gaussian counterpart. The Gaussian IRC is said to be in the strong interference regime if


[image: there is no content]











Let [image: there is no content] denote the achievable region obtained by: specializing the general inner bound in Theorem 1 to the Gaussian IRC, as specified in Section 4.2; setting the whole message at each transmitter to be the common message, and setting the quantization distortion at each relay to be 1. Then we have the following results.



Proposition 1.

[image: there is no content]is within [image: there is no content]bit to the capacity region of the Gaussian IRC with strong interference.





Proof. 

The proof consists of deriving [image: there is no content] and comparing it with the outer bound in Theorem 3. Details are in Appendix E. ☐






4.5. Capacity Region within [image: there is no content] Bits for IRC with High-Capacity Relay-Receiver Links


As we noted in Remark 2 in Section 2, each constraint in (22)–(29) is the minimum of two terms. The second term corresponds to the situation when the digital link has a high enough rate to describe the quantization codeword precisely to the receiver. This invokes a question of whether the coding strategy can guarantee a constant gap to the capacity region of the Gaussian channel in such a situation. The answer is positive, as we show below.



Definition 2 (IRC with high-capacity relay-receiver links).

Consider the Gaussian IRC as in Figure 4, the channel is said to have high-capacity relay-receiver links if the following conditions are satisfied:


[image: there is no content]



(77)






[image: there is no content]



(78)









Proposition 2.

For the Gaussian IRC with high-capacity relay-receiver links the quantize-bin-forward scheme can achieve to within [image: there is no content]bits of the capacity region.





Proof. 

The detailed proof is in Appendix F. The proof also includes the derivation of the high-capacity relay-receiver links condition as stated in Definition 2. The key elements of the proof are as follows:

	
Choosing a quantization distortion at each relay such that the rate loss terms [image: there is no content] are bounded so that one can characterize the conditions on [image: there is no content], [image: there is no content] for the second terms in the min in the RHS of (22)–(29) to be active.



	
Choosing the suitable outer bounds among the ones in Theorem 3.



	
Choosing a proper power allocation scheme at the transmitters such that the resulting achievable rates are within constant gaps to the corresponding chosen outer bounds.








Note that in order to achieve the above goals we use the following intuition: In the regime we are considering, we can think of receiver [image: there is no content] and relay [image: there is no content] collectively as a single receiver with output [image: there is no content] for the inner bound and output [image: there is no content] for the outer bound. ☐






4.6. Sum Capacity within 1 Bit in the Weak Interference-Relay Regime


In Section 4.4 we have seen that when the interference is strong, it is nearly optimal to set the whole message at each transmitter to be common. A relevant question is: When is it optimal or nearly optimal to treat interference as noise? In this section, we characterize the conditions under which one can achieve to within 1 bit of the sum capacity of the Gaussian IRC by treating interference as noise, i.e., by setting the whole message at each transmitter to be private. First, we need two lemmas, whose proofs are both given in Appendix G.



Lemma 1.

For the Gaussian IRC, if


[image: there is no content]



(79a)






[image: there is no content]



(79b)




then the sum capacity is lower bounded by


Clbw=12log1+SNR11+INR1+C1−12log1+11+INRr11+INRr11+INR1++12log1+SNR21+INR2+C2−12log1+11+INRr21+INRr21+INR2+.



(80)







Further, [image: there is no content]is achieved by treating interference as noise at each decoder.





The next lemma establishes an upper bound on the sum rate.



Lemma 2.

For the Gaussian IRC that satisfies


[image: there is no content]



(81)




the sum capacity is upper bounded by


[image: there is no content]



(82)









The above two lemmas lead us to the main result.



Proposition 3 (Sum capacity within 1 bit).

For the Gaussian IRC satisfying (79) and (81), called the weak interference-relay regime, the sum capacity [image: there is no content]is bounded by


[image: there is no content]



(83)




where [image: there is no content]is given in (82).





Proof. 

The proof follows directly from Lemma 1 and Lemma 2 and the fact that


[image: there is no content]








☐





Our characterization of the weak interference-relay regime can be considered as a generalization of the characterization of the low-interference of noisy-interference regime of the Gaussian IC [37,38,39]. In particular, in the extreme case of [image: there is no content] the lower and upper bounds in (80) and (82) meet, and therefore we recover the exact sum capacity of the Gaussian interference channel in the low-interference regime, established in [37,38,39]. Proposition 3 shows that: when the interference is weak and the capacities of the digital links are limited, a very simple coding scheme, where each relay quantizes the received signal and sends the bin index and each decoder treats the unintended signal is noise, is approximately sum-capacity optimal. This is a reasonable setup in multicell communication where the interference from the neighboring base stations is weak and the intra-cell backhaul link between a pico base station and the main base station is capacity-limited.



Figure 5 shows numerical examples for a Gaussian IRC under weak interference-relay condition. The plots use the following channel parameters [image: there is no content], where α is a parameter called the channel scaling factor. We plot the achievable sum rate in (80), the sum rate upper bound in (82) for different values of α and [image: there is no content] that satisfy the conditions (79) and (81). We also plot the sum capacity of the IC without relays. As expected, one can see that the gap between the sum rate upper bound and the lower bound (achievable sum rate) is always less than one bit for each fixed [image: there is no content]. When [image: there is no content] and [image: there is no content] decrease, the two bounds move closer to the sum capacity without relay. When [image: there is no content] they both coincide with the sum capacity of the IC without relay.


Figure 5. Sum capacity upper and lower bounds in the weak interference-relay regime.



[image: Entropy 19 00441 g005]







4.7. Capacity Region within [image: there is no content] Bit for the Compound Multiple Access Relay Channel


We now turn to a Gaussian channel that does not belong to the family of the IRC but is very closely related. As can be seen in Section 3.2, the coding strategy for the discrete memoryless IRC can be adapted to achieve the capacity region of the discrete memoryless compound semi-deterministic MARC. We are drawing the same analogy here for the Gaussian channels. Consider the same physical channel as the Gaussian IRC but each decoder is required to recover both messages. We call this model the compound multiple access relay channel (C-MARC). Using the cut-set bound we can establish the following outer bound to the capacity region of the Gaussian C-MARC.



Lemma 3 (Outer Bound for the Gaussian C-MARC).

The capacity region of the Gaussian C-MARC is contained in the region [image: there is no content]defined as the set of non-negative rate pairs [image: there is no content]satisfying


[image: there is no content]



(84)






[image: there is no content]



(85)






[image: there is no content]



(86)






[image: there is no content]



(87)






[image: there is no content]



(88)






[image: there is no content]



(89)






[image: there is no content]



(90)






[image: there is no content]



(91)









We can derive an inner bound [image: there is no content] for the Gaussian C-MARC from Theorem 1 by assigning the whole message at each transmitter as the common message and then follow the procedure in Section 4.2. Comparing [image: there is no content] with [image: there is no content] yields the following constant-gap result.



Proposition 4.

The inner bound [image: there is no content]for the Gaussian C-MARC is within [image: there is no content]bit of the capacity region of the channel.





Proof. 

See Appendix H. ☐







5. Conclusions


In this paper, we proposed and studied an important setup which stemmed from practical heterogeneous wireless systems, in which a relay can be used as a means to both relaying the desired signal and mitigating the interference. A general inner bound and multiple outer bounds are derived and shown to be tight or approximately tight for different classes of channels. The obtained results generalize and unify the capacity results for a number of relay and interference channels. The results establish the optimality or near optimality of the quantize-bin/hash-forward relaying scheme, in combination with the rate-splitting encoding technique, for a new type of interference network with multiple relays. This in turn has an important engineering value because such a coding strategy, which does not require the intermediate nodes in the network to decode any messages, is appealing for implementation in real-world systems. For future work, it would be interesting to investigate further the optimality of the scheme to other types of interference networks. Another direction would be to characterize the tradeoff between rate improvements and the cost of having the relays, e.g., in terms of computational and transmission resources.
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Appendix A. Proof of Theorem 1.


Codebook generation: Codebook for transmitter k, [image: there is no content]: Each message [image: there is no content] is split into a common part [image: there is no content] and a private part [image: there is no content]: [image: there is no content], [image: there is no content], [image: there is no content]. Randomly and independently generate [image: there is no content] codewords [image: there is no content], each according to [image: there is no content]. For each [image: there is no content], randomly and conditionally independently generate [image: there is no content] codewords [image: there is no content], each according to [image: there is no content]. Codebook for relay k, [image: there is no content]: independently generate [image: there is no content] quantization codewords [image: there is no content], each according to the distribution [image: there is no content], where the marginal distribution [image: there is no content] is obtained by the marginalization of (12). Uniformly partition the quantization codewords into [image: there is no content] bins.



Encoding: Transmitter k sends out a codeword [image: there is no content] corresponding to its message index [image: there is no content]. Relay k chooses a quantization codeword [image: there is no content] which is jointly typical with its received sequence [image: there is no content], and then sends out the bin index [image: there is no content] corresponding to the chosen quantization codeword, i.e., [image: there is no content], where [image: there is no content] is the binning function.



Decoding: We describe the decoding at receiver [image: there is no content]. Decoder 1 looks for a unique index pair [image: there is no content] such that


[image: there is no content]



(A1)




for some [image: there is no content] and some [image: there is no content] with [image: there is no content], where l is the bin index received via the digital link from relay 1. If such a unique pair [image: there is no content] is found, the decoder declares it as the transmitted codeword, otherwise it declares an error.



Error analysis: we will do analysis for the receiver 1, the analysis for the receiver 2 follows immediately by symmetry. In the following we use [image: there is no content] to denote a message triple [image: there is no content] and [image: there is no content] to denote the corresponding codeword triple. [image: there is no content] denotes a vector whose entries are 1’s, with appropriate length.



Without loss of generality, assume that [image: there is no content], i.e., [image: there is no content], was sent.



By the covering lemma [25], the encoding at the relay succeeds with high probability if [image: there is no content]. By the law of large number, the transmitted codeword, the truly selected quantization codeword, and the received sequence are jointly typical as [image: there is no content].



Let K denote the index of the truly chosen quantization codeword by the relay 1, and L denotes its bin index. We identify the following error events:



E1:=∃(m1c,m1p)≠(1,1),m2c∈[1:2nR2c] and ∃y^r1n(k),k∈[1:2nR^1],k≠K such that [image: there is no content] and the corresponding sequences are jointly typical with [image: there is no content], as specified in (A1).



E2:=∃(m1c,m1p)≠(1,1),m2c∈[1:2nR2c] such that the corresponding sequences and [image: there is no content] are jointly typical with [image: there is no content], as specified in (A1).



Conditioned on the successful encoding at the relay, the decoding error at the decoder 1 can be bounded by:


[image: there is no content]



(A2)







Next we bound [image: there is no content] and [image: there is no content].



First note that the decoder 1 is not required to decode [image: there is no content] correctly. Hence, following the same argument as in [40] we have


[image: there is no content]



(A3)




where [image: there is no content] is defined and bounded in the sequel, and [image: there is no content]. We also define [image: there is no content]. Further, let [image: there is no content] denote the messages whose indices are given by S, and [image: there is no content].


P(E1(S)):=∑m̲:m̲S≠1̲,mS˜=1̲∑k≠KP(Xn(m̲),Y^r1n(k),Y1n)∈Tϵn,B(Y^r1n(k))=L=(a)2−nC1∑m̲:m̲S≠1̲,mS˜=1̲∑k≠KP(Xn(m̲),Y^r1n(k),Y1n)∈Tϵn≤2−nC12nRS∑k≠KP(Xn(m̲),Y^r1n(k),Y1n)∈Tϵn,



(A4)




where [image: there is no content] follows due to the uniform binning. As an example, let us consider the case [image: there is no content]. For this case we have


∑k≠KP(Xn(m̲),Y^r1n(k),Y1n)∈Tϵn=∑k≠KP(X1cn(1),X1n(1,m1p),X2cn,Y^r1n(k),Y1n)∈Tϵn=∑k≠K∑(x1cn,x1n,x2cn,y^r1n,y1n)∈Tϵnp(x1cn,x1n,x2cn,y^r1n,y1n)≤(a)2nR^1∑(x1cn,y1n)∈Tϵnp(x1cn,y1n)∑x1n∈Tϵn(X1|x1cn,y1n)p(x1n|x1cn)·∑x2cn∈Tϵn(X2c|x1cn,x1n,y1n)p(x2cn)∑y^r1n∈Tϵn(Y^r1|x1cn,x1n,x2cn,y1n)p(y^r1n)










[image: there is no content]



(A5)




where [image: there is no content] as [image: there is no content]. [image: there is no content] follows due to the fact that [image: there is no content] and [image: there is no content] are independent of [image: there is no content] for [image: there is no content] and [image: there is no content]; [image: there is no content] follows from the properties of jointly typical sequences [25]. Substitute (A5) back to (A4) we conclude that for [image: there is no content], [image: there is no content] as [image: there is no content] if


[image: there is no content]



(A6)







On the other hand, we can also bound [image: there is no content] as follows:


P(E1(S))=∑m̲:m̲S≠1̲,mS˜=1̲∑k≠KP(Xn(m̲),Y^r1n(k),Y1n)∈Tϵn,B(Y^r1n(k))=L≤∑m̲:m̲S≠1̲,m̲S˜=1̲P(Xn(m̲),Y1n)∈Tϵn·P∃k≠K,B(Y^r1n(k))=L,X1n(m̲),Y^r1n,Y1n∈Tϵn|(Xn(m̲),Y1n)∈Tϵn≤2nRSP(Xn(m̲),Y1n)∈Tϵn.



(A7)







Similar to the derivation of (A5) we can bound the probability in (A7) and show that for [image: there is no content], [image: there is no content] as [image: there is no content] if


[image: there is no content]



(A8)







Combining (A6) and (A8) we conclude that for [image: there is no content], [image: there is no content] as [image: there is no content] if


R1p+R2c<I(X1,X2c;Y1|X1c)+(I(Y^r1;X1,X2c,Y1)+C1−R^1)+=(a)I(X1,X2c;Y1|X1c)+(C1−I(Y^r1;Yr1|X1,X2c,Y1))+=I(X1,X2c;Y1|X1c)+(C1−ξ1)+,



(A9)




where [image: there is no content] follows from [image: there is no content] and the Markov chain [image: there is no content].



For [image: there is no content]: Similar to (A3) we have


[image: there is no content]








where


[image: there is no content]











Notice that in this case the quantization codeword is the true one chosen by the relay. Hence, to bound [image: there is no content]’s we can consider [image: there is no content] as a single channel output sequence. The bounds then follow directly from the properties of the jointly typical sequences [25]. In particular, for [image: there is no content], [image: there is no content] as [image: there is no content] if


[image: there is no content]



(A10)







Combining (A9) and (A10) we have: For [image: there is no content], [image: there is no content] and [image: there is no content] as [image: there is no content] if (23) is satisfied. Applying the same analysis for other [image: there is no content], we conclude that [image: there is no content] and [image: there is no content], and therefore [image: there is no content] in (A2) vanishes as [image: there is no content] if the constraints in (22)–(25) are satisfied. ☐




Appendix B. Proof of Theorem 2.


Appendix B.1. Achievability


Since [image: there is no content], [image: there is no content], we can choose [image: there is no content] in the general inner bound in Theorem 1. Furthermore, we set [image: there is no content], i.e., we only do hash-forward. Using the properties of the channel we have:


a1=I(X1;Y1|T1,T2,Q)a1′=I(X1;Y1,Yr1|T1,T2,Q)b1=I(X1,T2;Y1|T1,Q)b1′=I(X1,T2;Y1,Yr1|T1,Q)c1=I(X1;Y1|T2,Q)c1′=I(X1;Y1,Yr1|T2,Q)d1=I(X1,T2;Y1|Q)d1′=I(X1,T2;Y1,Yr1|Q)ξ1=I(Yr1;Yr1|X1,T2,Y1,Q)=(a)0,








where [image: there is no content] follows because [image: there is no content] is a function of [image: there is no content]. By symmetry we easily obtain [image: there is no content]. Substituting the above quantities into the inner bound in Theorem 1 we obtain an inner bound for the semi-deterministic IRC, which consists of the inequalities in Theorem 2 plus the following two inequalities, emanating from (14) and (16):


R1≤min{I(X1;Y1|T1,T2,Q)+C1,I(X1;Y1,Yr1|T1,T2,Q)}+min{I(X2,T1;Y2|T2,Q)+C2,I(X2,T1;Y2,Yr2|T2,Q)}



(A11)






R2≤min{I(X2;Y2|T1,T2,Q)+C2,I(X2;Y2,Yr2|T1,T2,Q)}+min{I(X1,T2;Y1|T1,Q)+C1,I(X1,T2;Y1,Yr1|T1,Q)}



(A12)







In the sequel we prove the redundancy of (A11) and (A12). First note that,


I(T2;Y2,Yr2|X1,Q)=H(T2|X1,Q)−H(T2|Y2,Yr2,X1,Q)=(a)H(T2|Q)−H(T2|Y2,Yr2,X1,T1,Q)≥H(T2|T1,Q)−H(T2|Y2,Yr2,T1,Q)=I(T2;Y2,Yr2|T1,Q),



(A13)




where [image: there is no content] follows because [image: there is no content] is a function of [image: there is no content], and [image: there is no content] is independent of [image: there is no content] given Q. By symmetry we have


[image: there is no content]



(A14)







Next, we have


min{I(X2,T1;Y2|T2,Q)+C2,I(X2,T1;Y2,Yr2|T2,Q)}≥I(X2,T1;Y2|T2,Q)≥I(T1;Y2|X2,T2,Q)=(c)I(T1;Y2|X2,Q)=(d)I(T1;Y2,Yr2|X2,Q)≥(e)I(T1;Y1,Yr1|X2,Q)≥(f)I(T1;Y1,Yr1|T2,Q),



(A15)




where:

	
[image: there is no content] is because [image: there is no content] is a function of [image: there is no content], and [image: there is no content] depends only on [image: there is no content];



	
[image: there is no content] is because [image: there is no content];



	
[image: there is no content] is due to (30a) with [image: there is no content], [image: there is no content];



	
[image: there is no content] is due to (A14).








Inserting (A15) into the right hand side (RHS) of (A11) gives:


RHSof(A11)≥min{I(X1;Y1|T1,T2,Q)+C1,I(X1;Y1,Yr1|T1,T2,Q)}+I(T1;Y1,Yr1|T2,Q)≥min{I(X1;Y1|T2,Q)+C1,I(X1;Y1,Yr1|T2,Q)}=RHSof(31).











Therefore (A11) is redundant. By symmetry (A12) is redundant. ☐




Appendix B.2. Converse


Before upperbounding the achievable rates we will prove some useful inequalities. Consider a sequence of [image: there is no content] codes with vanishing error probability. Note that since the messages [image: there is no content] and [image: there is no content] are independent, [image: there is no content] is independent of [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content]. Hence we have


[image: there is no content]



(A16)




whose proof is similar to the proof of (A13), by replacing each random variable with the corresponding random n-sequence, and [image: there is no content].



Let us denote the sequence that receiver k receives from relay k (via the digital link) by [image: there is no content], [image: there is no content]. We have


[image: there is no content]



(A17)






[image: there is no content]



(A18)






[image: there is no content]



(A19)






[image: there is no content]



(A20)






[image: there is no content]



(A21)






[image: there is no content]



(A22)




where: [image: there is no content] follows from the nonnegativity of entropy, and conditioning does not increase entropy; [image: there is no content] is because [image: there is no content] is independent of [image: there is no content]. We also have


I(X1n;Y1n,V1n)≤I(X1n;Y1n,Yr1n,V1n)=(b1)I(X1n;Y1n,Yr1n)



(A23)






I(X1n;Y1n,V1n)≤(b2)I(X1n;Y1n,Yr1n|T2n)≤I(X1n,T1n;Y1n,Yr1n|T2n)



(A24)






[image: there is no content]



(A25)




where: [image: there is no content] is because [image: there is no content] is a function of [image: there is no content]; [image: there is no content] is because [image: there is no content] is independent of [image: there is no content]. On the other hand, from (A18),


I(X1n;Y1n,V1n)≤I(X1n;Y1n)+H(V1n)=I(X1n,T2n;Y1n)−I(T2n;Y1n|X1n)+H(V1n)=(c1)I(X1n,T2n;Y1n)−I(T2n;Y1n,Yr1n|X1n)+H(V1n)≤(c2)I(X1n,T2n;Y1n)−I(T2n;Y2n,Yr2n|X1n)+H(V1n)≤(c3)I(X1n,T2n;Y1n)−I(T2n;Y2n,Yr2n|T1n)+H(V1n)



(A26)




where: [image: there is no content] is because [image: there is no content] is a function of [image: there is no content] and [image: there is no content]; [image: there is no content] is due to (30a, 30b) with [image: there is no content], [image: there is no content]; [image: there is no content] follows from (A16). Furthermore, using (A23)


I(X1n;Y1n,V1n)≤I(X1n;Y1n,Yr1n)=I(X1n,T2n;Y1n,Yr1n)−I(T2n;Y1n,Yr1n|X1n)≤(d1)I(X1n,T2n;Y1n,Yr1n)−I(T2n;Y2n,Yr2n|X1n)≤(d2)I(X1n,T2n;Y1n,Yr1n)−I(T2n;Y2n,Yr2n|T1n),



(A27)




where: [image: there is no content] is due to (30a, 30b); [image: there is no content] follows from (A16).



By symmetry we obtain the following inequalities, which are the duals of (A26) and (A27):


[image: there is no content]



(A28)






[image: there is no content]



(A29)







We are now ready to bound the achievable rates.



Proof of (31): by Fano’s inequality,


n(R1−ϵn)≤I(W1;Y1n,V1n)≤I(X1n;Y1n,V1n)≤(e1)I(X1n;Y1n|T2n)+H(V1n)≤(e2)∑i=1n[I(X1i;Y1i|T2i)+H(V1i)]≤∑i=1n[I(X1i;Y1i|T2i)+C1],



(A30)




where: [image: there is no content] is due to (A19); [image: there is no content] is because conditioning does not increase entropy, and because [image: there is no content] depends only on [image: there is no content].



Next


n(R1−ϵn)≤I(X1n;Y1n,V1n)≤(f1)I(X1n,T1n;Y1n,Yr1n|T2n)≤(f2)∑i=1nI(X1i,T1i;Y1i,Yr1i|T2i),



(A31)




where: [image: there is no content] follows from (A24); [image: there is no content] is because [image: there is no content] is a function of [image: there is no content] and [image: there is no content], and [image: there is no content] depends only on [image: there is no content].



We define a random variable Q, uniformly distributed over [image: there is no content] and independent of everything else. Further, for [image: there is no content] we define [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Then (A30) and (A31) become


[image: there is no content]








where [image: there is no content] as [image: there is no content], which proves (31).



The bound on [image: there is no content] in (32) follows from (31) by symmetry.



Proof of (33): again, starting with Fano’s inequality,


(A32)n(R1+R2−2ϵn) ≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n) ≤(g1)min{I(X1n;Y1n|T1n,T2n)+I(T1n;Y1n,Yr1n|T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)+I(T1n;Y1n,Yr1n|T2n)} +min{I(X2n,T1n;Y2n)−I(T1n;Y1n,Yr1n|T2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T1n;Y1n,Yr1n|T2n)} =min{I(X1n;Y1n|T1n,T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)} +min{I(X2n,T1n;Y2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)} ≤(g2)min{∑i=1n[I(X1i;Y1i|T1i,T2i)+H(V1i)],∑i=1nI(X1i;Y1i,Yr1i|T1i,T2i)} +min{∑i=1n[I(X2i,T1i;Y2i)+H(V2i)],∑i=1nI(X2i,T1i;Y2i,Yr2i)} ≤min{∑i=1n[I(X1i;Y1i|T1i,T2i)+C1],∑i=1nI(X1i;Y1i,Yr1i|T1i,T2i)}(A33) +min{∑i=1n[I(X2i,T1i;Y2i)+C2],∑i=1nI(X2i,T1i;Y2i,Yr2i)},








where: we use (A22), (A25), (A28), and (A29) in [image: there is no content]; [image: there is no content] is because conditioning does not increase entropy, [image: there is no content] depends only on [image: there is no content], [image: there is no content] is a function of [image: there is no content], and similar conditions for [image: there is no content] and [image: there is no content].



The bound on [image: there is no content] in (35) follows from (33) by symmetry.



Proof of (34): by Fano’s inequality,


n(R1+R2−2ϵn) ≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n) ≤(h1)min{I(X1n,T2n;Y1n)−I(T2n;Y2n,Yr2n|T1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)−I(T2n;Y2n,Yr2n|T1n)} +min{I(X2n,T1n;Y2n)−I(T1n;Y1n,Yr1n|T2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T1n;Y1n,Yr1n|T2n)} =min{I(X1n,T2n;Y1n)−I(T1n;Y1n,Yr1n|T2n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)−I(T1n;Y1n,Yr1n|T2n)} +min{I(X2n,T1n;Y2n)−I(T2n;Y2n,Yr2n|T1n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n|T1n)} ≤(h2)min{I(X1n,T2n;Y1n)−I(T1n;Y1n,Yr1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)−I(T1n;Y1n,Yr1n)} +min{I(X2n,T1n;Y2n)−I(T2n;Y2n,Yr2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n)} ≤min{I(X1n,T2n;Y1n)−I(T1n;Y1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)−I(T1n;Y1n,Yr1n)} +min{I(X2n,T1n;Y2n)−I(T2n;Y2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n)} =(h3)min{I(X1n,T1n,T2n;Y1n)−I(T1n;Y1n)+H(V1n),I(X1n,T1n,T2n;Y1n,Yr1n)−I(T1n;Y1n,Yr1n)} +min{I(X2n,T1n,T2n;Y2n)−I(T2n;Y2n)+H(V2n),I(X2n,T1n,T2n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n)} =min{I(X1n,T2n;Y1n|T1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n|T1n)} +min{I(X2n,T1n;Y2n|T2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n|T2n)} ≤(h4)min{∑i=1n[I(X1i,T2i;Y1i|T1i)+C1],∑i=1nI(X1i,T2i;Y1i,Yr1i|T1i)} +min{∑i=1n[I(X2i,T1i;Y2i|T2i)+C2],∑i=1nI(X2i,T1i;Y2i,Yr2i|T2i)}



(A34)




where: we use (A26), (A27), (A28), and (A29) in [image: there is no content]; [image: there is no content] is because [image: there is no content] and [image: there is no content] are independent; [image: there is no content] is because [image: there is no content] is a function of [image: there is no content], [image: there is no content] is a function of [image: there is no content]; [image: there is no content] holds due to the same reasons that make [image: there is no content] hold.



Proof of (36):


n(2R1+R2−2ϵn) ≤I(X1n;Y1n,V1n)+I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n) ≤(t1)min{I(X1n;Y1n|T1n,T2n)+I(T1n;Y1n,Yr1n|T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)+I(T1n;Y1n,Yr1n|T2n)} +min{I(X1n,T2n;Y1n)−I(T2n;Y2n,Yr2n|T1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)−I(T2n;Y2n,Yr2n|T1n)} +min{I(X2n,T1n;Y2n)−I(T1n;Y1n,Yr1n|T2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T1n;Y1n,Yr1n|T2n)} =min{I(X1n;Y1n|T1n,T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)} +min{I(X1n,T2n;Y1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)} +min{I(X2n,T1n;Y2n)−I(T2n;Y2n,Yr2n|T1n)+H(V2n),I(X2n,T1n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n|T1n)} ≤(t2)min{I(X1n;Y1n|T1n,T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)} +min{I(X1n,T2n;Y1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)} +min{I(X2n,T2n,T1n;Y2n)−I(T2n;Y2n)+H(V2n),I(X2n,T2n,T1n;Y2n,Yr2n)−I(T2n;Y2n,Yr2n)} =min{I(X1n;Y1n|T1n,T2n)+H(V1n),I(X1n;Y1n,Yr1n|T1n,T2n)} +min{I(X1n,T2n;Y1n)+H(V1n),I(X1n,T2n;Y1n,Yr1n)} +min{I(X2n,T1n;Y2n|T2n)+H(V2n),I(X2n,T1n;Y2n,Yr2n|T2n)}≤(t3)min{∑i=1n[I(X1i;Y1i|T1i,T2i)+C1],∑i=1nI(X1i;Y1i,Yr1i|T1i,T2i)}+min{∑i=1n[I(X1i,T2i;Y1i)+C1],∑i=1nI(X1i,T2i;Y1i,Yr1i)}+min{∑i=1n[I(X2i,T1i;Y2i|T2i)+C2],∑i=1nI(X2i,T1i;Y2i,Yr2i|T2i)},



(A35)




where: we use (A22), (A25), (A26), (A27), (A28), and (A29) in [image: there is no content]; [image: there is no content] holds since [image: there is no content] is a function of [image: there is no content], [image: there is no content] and [image: there is no content] are independent, and due to chain rule and the nonnegativity of entropy; [image: there is no content] holds due to the same reasons that make [image: there is no content] hold.



The bound on [image: there is no content]in (37) follows from (36) by symmetry.



The bound on the cardinality of Q follows from the application of the Support Lemma [41] (Lemma 3.4, p. 310).





Appendix C. Proof of Theorem 3.


Throughout the proofs we use [image: there is no content] to denote the output of the digital relay link at receiver i, [image: there is no content]. In the inequalities below we utilize the following facts: [image: there is no content][image: there is no content] is independent of [image: there is no content], [image: there is no content][image: there is no content] is a function of [image: there is no content], [image: there is no content], [image: there is no content] i.i.d Gaussian distribution maximizes the differential entropy and the conditional differential entropy subject to covariance constraints.



Bounds on individual rates in (50) and (51):



By Fano’s inequality we have


n(R1−ϵn)≤I(X1n;V1n,Y1n)≤I(X1n;V1n,Y1n,X2n)=(a)I(X1n;V1n,Y1n|X2n)=I(X1n;Y1n|X2n)+I(X1n;V1n|Y1n,X2n)≤I(X1n;Y1n|X2n)+H(V1n).



(A36)







We have


I(X1n;Y1n|X2n)=h(Y1n|X2n)−h(Y1n|X1n,X2n)=h(h11X1n+Z1n)−h(Z1n)≤(c)n2log(1+SNR1),



(A37)




and


H(V1n)≤nH(V1)≤nC1.



(A38)







Putting (A37) and (A38) back to (A36) we have


[image: there is no content]



(A39)




where [image: there is no content] as [image: there is no content]. We also have


n(R1−ϵn)≤I(X1n;V1n,Y1n)≤(b)I(X1n;Yr1n,Y1n)=(a)I(X1n;Yr1n,Y1n|X2n)=I(X1n;Y1n|X2n)+I(X1n;Yr1n|Y1n,X2n)=h(h11X1n+Z1n)−h(Z1n)+h(h1rX1n+Zr1n|h11X1n+Z1n)−h(Zr1n)≤(c)n2log(1+SNR1+SNRr1).



(A40)







Next, to prove the outer bounds on the sum rate and weighted sum rate, we will first transform the genie aided channel into a MIMO IC plus some bounded terms. We will then leverage the outer bounds for the MIMO IC which are developed by Karmakar and Varanasi in [35] (Lemma 1), which can be shown to be the same as the bounds introduced by Telatar and Tse in [34] for the channel under consideration.



Bounds on [image: there is no content] in (52)–(54).



By Fano’s inequality we have


n(R1+R2−2ϵn)≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)=I(X1n;Y1n)+I(X1n;V1n|Y1n)+I(X2n;Y2n)+I(X2n;V2n|Y2n)≤I(X1n;Y1n)+I(X2n;Y2n)+H(V1n)+H(V2n)≤I(X1n;Y1n)+I(X2n;Y2n)+nC1+nC2.











At this point we can use the bounds on [image: there is no content] established in [34] or [35] (Lemma 1) to end up with the bounds in (56)–(58).



Bounds on [image: there is no content] in (55). By Fano’s inequality we have


n(2R1+R2−3ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤2I(X1n;Y1n)+I(X2n;Y2n)+2H(V1n)+H(V2n)≤2I(X1n;Y1n)+I(X2n;Y2n)+2nC1+nC2.











Applying the bounds on [image: there is no content] in [34,35] we complete the proof.



Bounds on [image: there is no content] in (56)–(58). By Fano’s inequality we have


n(R1+R2−2ϵn)≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)I(X1n;Y1n,Yr1n)+I(X2n;Y2n,Yr2n).











By defining [image: there is no content], [image: there is no content], we can apply the bounds in [34,35] to obtain (56)–(58).



Bounds on [image: there is no content] in (59). By Fano’s inequality we have


n(2R1+R2−3ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)2I(X1n;Y1n,Yr1n)+I(X2n;Y2n,Yr2n).











Then we define [image: there is no content], [image: there is no content], and apply the bounds on [image: there is no content] in [34,35].



Bounds on [image: there is no content] in (60)–(62). By Fano’s inequality we have


n(R1+R2−2ϵn)≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)I(X1n;Y1n)+H(V1n)+I(X2n;Y2n,Yr2n)≤I(X1n;Y1n)+I(X2n;Y2n,Yr2n)+nC1.











At this point we can use the bounds on [image: there is no content] in [34,35] to end up with the bounds in (60)–(62).



Bound on [image: there is no content] in (63) By Fano’s inequality


n(2R1+R2−3ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)2I(X1n;Y1n)+2H(V1n)+I(X2n;Y2n,Yr2n)≤2I(X1n;Y1n)+I(X2n;Y2n,Yr2n)+2nC1.











Then we can use the bound on [image: there is no content] in [34,35] to obtain (63).



Bounds on [image: there is no content] in (64)–(66). These bounds follow readily from the bounds in (60)–(62) by symmetry.



Bound on [image: there is no content] in (67) By Fano’s inequality


n(2R1+R2−3ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)2I(X1n;Y1n,Yr1n)+I(X2n;Y2n)+H(V2n)≤2I(X1n;Y1n,Yr1n)+I(X2n;Y2n)+nC2.











Then we can use the bound on [image: there is no content] in [34,35].



Bounds on [image: there is no content] in (68): Let [image: there is no content], [image: there is no content]. We see that [image: there is no content], [image: there is no content]. Using Fano’s inequality, conditioning does not increase entropy, chain rule we have that if a rate pair [image: there is no content] is achievable, then


n(2R1+R2−3ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)I(X1n;Y1n,Yr1n)+I(X1n;Y1n)+I(X1n;V1n|Y1n)+I(X2n;Y2n)+I(X2;V2n|Y2n)≤I(X1n;Y1n,Yr1n,S1n,X2n)+I(X1n;Y1n)+H(V1n)+I(X2n;Y2n,S2n)+H(V2n)=(a)I(X1n;Y1n,Yr1n,S1n|X2n)+I(X1n;Y1n)+H(V1n)+I(X2n;Y2n,S2n)+H(V2n)≤I(X1n;S1n|X2n)+I(X1n;Y1n,Yr1n|S1n,X2n)+I(X1n;Y1n)+h(Y2n,S2n)−h(Y2n,S2n|X2n)+nC1+nC2=h(S1n)−h(Z2n)+h(Y1n,Yr1n|S1n,X2n)−h(Z1n,Z1rn)+h(Y1n)−h(S2n)+h(Y2n,S2n)−h(S1n,Z1n)+nC1+nC2=h(S1n)−h(Z2n)+h(Y1n,Yr1n|S1n,X2n)−h(Z1n,Z1rn)+h(Y1n)+h(Y2n|S2n)−h(S1n)−h(Z1n)+nC1+nC2=h(Y1n,Yr1n|S1n,X2n)−h(Z1n,Z1rn)+h(Y1n)−h(Z1n)+h(Y2n|S2n)−h(Z2n)+nC1+nC2=h(h11X1n+Z1n,h1rX1n+Zr1n|h12X1n+Z2n)−h(Z1n,Z1rn)+h(h11X1n+h21X2n+Z1n)−h(Z1n)+h(h22X2n+h12X1n+Z2n|h21X2n+Z1n)−h(Z2n)+nC1+nC2≤(c)n(RHSof(68)).








Bounds on [image: there is no content] in (69): We define [image: there is no content], [image: there is no content] as above. Again, using Fano’s inequality, conditioning does not increase entropy, chain rule we have that if a rate pair [image: there is no content] is achievable, then


n(2R1+R2−ϵn)≤2I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤(b)I(X1n;Y1n,Yr1n)+I(X1n;Y1n)+I(X1n;V1n|Y1n)+I(X2n;Y2n,Yr2n)≤I(X1n;Y1n,Yr1n,S1n,X2n)+I(X1n;Y1n)+H(V1n)+I(X2n;Y2n,Yr2n,S2n)≤h(S1n)−h(Z2n)+h(Y1n,Yr1n|S1n,X2n)−h(Z1n,Z1rn)+h(Y1n)−h(S2n)+nC1+I(X2n;Y2n,Yr2n,S2n).



(A41)







The last term in (A41) can be bounded as follows:


I(X2n;Y2n,Yr2n,S2n)=I(X2n;S2n)+I(X2n;Y2n,Yr2n|S2n)=h(S2n)−h(Z1n)+h(Y2n,Yr2n|S2n)−h(Y2n,Yr2n|X2n,S2n)≤h(S2n)−h(Z1n)+h(Y2n,Yr2n|S2n)−h(Y2n|X2n,S2n)−h(Yr2n|X2n,S2n,Y2n,X1n)=h(S2n)−h(Z1n)+h(Y2n,Yr2n|S2n)−h(S1n)−h(Zr2n).



(A42)







Putting (A42) back to (A41) we have


n(2R1+R2−ϵn)≤h(Y1n,Yr1n|S1n,X2n)−h(Z1n,Z1rn)+h(Y1n)−h(Z1n)+h(Y2n,Yr2n|S2n)−h(Z2n)−h(Zr2n)≤(c)n(RHSof(69)).



(A43)







☐




Appendix D. Proof of Theorem 4.


Before proving Theorem 4 we need two lemmas, whose proofs follow in the sequel.



Lemma A1.

Given the power allocation in (74), we have:


SNR1p≥SNR11+INR2,SNRr1p≥SNRr11+INR2,



(A44)






INR1p≤1,INRr1p≤|h2c|2/|h21|2.



(A45)









Proof. 

Since we choose [image: there is no content] and [image: there is no content],


SNR1p=|h11|2P1p=|h11|2min1,1|h12|2≥|h11|21+|h12|2=SNR11+INR2.











Similarly we can show that [image: there is no content]. Next,


INR1p=|h21|2P2p=|h21|2min1,1|h21|2≤1,








and


INRr1p=|h2c|2P2p=|h2c|2min1,1|h21|2≤|h2c|2|h21|2.











☐





Lemma A1 enables us to prove Lemma A2 below.



Lemma A2.

Let us define:


[image: there is no content]



(A46)






[image: there is no content]



(A47)




Given the power allocation in (74) we have


[image: there is no content]



(A48)






[image: there is no content]



(A49)






[image: there is no content]



(A50)






[image: there is no content]



(A51)






[image: there is no content]



(A52)






[image: there is no content]



(A53)






[image: there is no content]



(A54)






[image: there is no content]



(A55)






[image: there is no content]



(A56)







Similar inequalities hold for [image: there is no content]by symmetry.





Proof. 

The proof is similar to the proof of [8] (Lemma 1). We will use the results of Lemma A1, indexed as follows: (a) [image: there is no content], (b) [image: there is no content], (c) [image: there is no content], and (d) [image: there is no content].



First, for the term related to the quantization at each relay:


ξ1=I(Y^r1;Yr1|X1,X2c,Y1)=12log1+1Δ11+INRr1p1+INR1p≤12log1+1Δ11+INRr1pINR1p=12log1+1Δ11+|h2c|2|h21|2.











For other quantities in Lemma A2:


a1=I(X1;Y1|X1c,X2c)=12log1+SNR1p1+INR1p≥(c)12log1+SNR1p−12≥(a)12log1+SNR11+INR2−12.a1′=I(X1;Y1,Y^1r|X1c,X2c)=12log(1+Δ1)(1+SNR1p+INR1p)+SNRr1p+INRr1p(1+η12SNR1p)(1+Δ1)(1+INR1p)+INRr1p=12log(1+Δ1)(1+SNR1p+INR1p)+SNRr1p+INRr1p(1+η12SNR1p)−12log(1+Δ1)(1+INR1p)+INRr1p≥(c,d)12log1+SNR1p+SNRr1p)−f1(Δ1)≥(a,b)12log1+SNR1+SNRr11+INR2−f1(Δ1).











In the same way we can show that


b1=I(X1,X2c;Y1|X1c)=12log1+SNR1p+INR11+INR1p≥12log1+INR1+SNR11+INR2−12.b1′=I(X1,X2c;Y1,Y^1r|X1c)=12log(1+Δ1)(1+SNR1p+INR1)+SNRr1p+INRr1(1+η12SNR1p)(1+Δ1)(1+INR1p)+INRr1p≥12log1+INR1+INRr1+SNR1(1+η12INRr1)+SNRr11+INR2−f1(Δ1).c1=I(X1;Y1|X2c)=12log1+SNR11+INR1p≥12log(1+SNR1)−12.c1′=I(X1;Y1,Y^1r|X2c)=12log(1+Δ1)(1+SNR1+INR1p)+SNRr1+INRr1p(1+η12SNR1)(1+Δ1)(1+INR1p)+INRr1p≥12log1+SNR1+SNRr1−f1(Δ1).d1=I(X1,X2c;Y1)=12log1+SNR1+INR11+INR1p≥12log(1+SNR1+INR1)−12.d1′=I(X1,X2c;Y1,Y^1r)=12log(1+Δ1)(1+SNR1+INR1)+SNRr1+INRr1(1+η12SNR1)(1+Δ1)(1+INR1p)+INRr1p≥121+INR1+INRr1+SNR1(1+η12INRr1)+SNRr1−f1(Δ1).











Hence Lemma A2 is proven. ☐





Now we are ready to prove Theorem 4. First, let us define [image: there is no content], [image: there is no content], [image: there is no content]. Comparing each constraint of the inner bound (13)–(21) with each corresponding constraint of the outer bound (50)–(69), and utilizing the inequalities in Lemma A2 (marked with [image: there is no content] below), we have:



For individual rate constraints:

	
[image: there is no content] in the RHS of (13) is within [image: there is no content] of the RHS of (50).

Proof. 

We have:


c1+(C1−ξ1)+≥(*)12log(1+SNR1)−12+C1−ξ1=12log(1+SNR1)+C1−g1(ξ1),








which is within [image: there is no content] of the outer bound [image: there is no content] in RHS of (13). The remaining gap follows straightforwardly from the lower bound on [image: there is no content] in Lemma A2. ☐







	
[image: there is no content] (resp. [image: there is no content]) in the RHS of (14) is within [image: there is no content] (resp. [image: there is no content]) of the first term in the RHS of (50).

Proof. 

We have:


a1+(C1−ξ1)++b2+(C2−ξ2)+≥a1+C1−ξ1+b2+C2−ξ2≥(*)12log1+SNR11+INR2−12+C1−ξ1+12log1+INR2+SNR21+INR1−12+C2−ξ2≥12log1+SNR1+C1−(ξ1+12)−(ξ2+12)=12log1+SNR1+C1−g1(ξ1)−g2(ξ2),








which is within [image: there is no content] of the outer bound [image: there is no content]. Further,


a1+(C1−ξ1)++b2′≥(*)12log1+SNR11+INR2−12+C1−ξ1+12log1+INR2+INRr2+SNR2(1+η22INRr2)+SNRr21+INR1−f2(Δ2)≥12log1+SNR1+C1−g1(ξ1)−f2(Δ2),








which is within [image: there is no content] of the outer bound [image: there is no content]. ☐







	
[image: there is no content] (resp. [image: there is no content]) in the RHS of (14) is within [image: there is no content] (respectively [image: there is no content]) of the second term in the RHS of (50).

Proof. 

We have:


a1′+b2+(C2−ξ2)+≥(*)12log1+SNR1+SNRr11+INR2−f1(Δ1)+12log1+INR2+SNR21+INR1−12+C2−ξ2≥12log1+SNR1+SNRr1−f1(Δ1)−(12+ξ2)=12log1+SNR1+SNRr1−f1(Δ1)−g2(ξ2),








which is within [image: there is no content] of the outer bound [image: there is no content]. Next,


a1′+b2′≥(*)12log1+SNR1+SNRr11+INR2−f1(Δ1)+12log1+INR2+INRr2+SNR2(1+η22INRr2)+SNRr21+INR1−f2(Δ2)≥12log1+SNR1+SNRr1−f1(Δ1)−f2(Δ2),








which is within [image: there is no content] of the outer bound [image: there is no content]. ☐












Similar gaps for [image: there is no content] follow by symmetry.



For sum rate constraints: following the same line of the above proofs we can show that of the constraints on [image: there is no content] in (17)–(19):

	
[image: there is no content], [image: there is no content], [image: there is no content] are within [image: there is no content] of the RHS’s of (52)–(54), respectively.



	
[image: there is no content], [image: there is no content], [image: there is no content] are within [image: there is no content] of the RHS’s of (56)–(58), respectively.



	
[image: there is no content], [image: there is no content], [image: there is no content] are within [image: there is no content] of the RHS’s of (60)–(62), respectively.



	
[image: there is no content], [image: there is no content], [image: there is no content] are within [image: there is no content] of the RHS’s of (64)–(66), respectively.








For weighted sum rate constraints: of the inner bounds on [image: there is no content] in (20), it can be shown that the bounds [image: there is no content] and [image: there is no content] are redundant. For the remaining bounds:

	
[image: there is no content] is within [image: there is no content] of the RHS of (55).



	
[image: there is no content] is within [image: there is no content] of the RHS of (59).



	
[image: there is no content] is within [image: there is no content] of the RHS of (63).



	
[image: there is no content] is within [image: there is no content] of the RHS of (67).



	
[image: there is no content] is within [image: there is no content] of the RHS of (68).



	
[image: there is no content] is within [image: there is no content] of the RHS of (69).








The gaps for [image: there is no content] follow directly from the gaps for [image: there is no content] by symmetry.



To this end, we loosen the gaps obtained from the above comparisons by replacing [image: there is no content] in the definition of [image: there is no content] and [image: there is no content] in (A46) and (A48) with its upper bound θ defined in (75) (similarly done for [image: there is no content] and [image: there is no content]). The final step is optimizing [image: there is no content] and [image: there is no content] to minimize the new (loosened) gaps. At this point we can apply the result in [8] and conclude that the optimal values are [image: there is no content]. Direct calculation leads to the optimized gap in (76).




Appendix E. Proof of Proposition 1.


First, by setting [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] in Theorem 1, i.e., the whole message at each transmitter is set to be the common message, and noticing that each decoder does not interested in decoding the common message of the unpaired transmitter uniquely, we obtain the following achievable rate region [image: there is no content]:


[image: there is no content]



(A57)






[image: there is no content]



(A58)






[image: there is no content]



(A59)






[image: there is no content]



(A60)







From the equations of the received signals [image: there is no content] in (46)–(49), and by choosing the distribution of the quantization codebooks [image: there is no content] with [image: there is no content], [image: there is no content] we have:


[image: there is no content]



(A61a)






[image: there is no content]



(A61b)






[image: there is no content]



(A61c)






[image: there is no content]



(A61d)






[image: there is no content]



(A61e)




and [image: there is no content] follow by symmetry. Next, we choose the quantization level [image: there is no content]. This reflects the fact that in many networks with relays, it is near optimal for each relay to quantize its received signal at the noise level [10,42]. It then follows from (A61e) that [image: there is no content]. We proceed to compare the inner and outer bounds, keeping in mind that [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].



Individual rate constraints. Direct comparison reveals that

	
[image: there is no content] in (A57) is within [image: there is no content] bit of the outer bound [image: there is no content] in (50).



	
[image: there is no content] in (A57) is within [image: there is no content] bit of the outer bound [image: there is no content] in (50).








Therefore, the inner bound on [image: there is no content] is within [image: there is no content] bit of the outer bound. The same gap for [image: there is no content] follows by symmetry.



Sum rate constraints. Direct comparison reveals that

	
[image: there is no content] in (A59) is within 1 bit of the outer bound


[image: there is no content]








in (61).



	
[image: there is no content] in (A59) is within 1 bit of the outer bound


[image: there is no content]








in (57).








By symmetry, it follows that [image: there is no content] is within 1 bit of the outer bounds in (65) and (56).  ☐




Appendix F. Proof of Proposition 2.


We will prove the theorem in the reverse direction, i.e., we fix the power allocation at the transmitters and the quantization distortion at the relays, and then find the conditions on [image: there is no content] such that the second terms in the min in the RHS of (22)–(29) are active.



Since we are focusing on the case when the quantization codewords can be recovered correctly at that destination, i.e., [image: there is no content] is a channel output at the receiver [image: there is no content], [image: there is no content], it is reasonable to think of relay and receiver as single receiver. As such, we expect that the rule of thumb for power allocation in [10,36] should perform well. Accordingly, we allocate transmit power for the private signal such that it arrives at the unintended receiver at the level below the noise level. Specifically, we choose


[image: there is no content]



(A62)






[image: there is no content]



(A63)







Moreover, as learned from the linear deterministic model in [10], it is reasonable for each relay to choose the quantization distortion at the level of undesired signals plus noise perceived by the associated receiver. In particular we choose


Δ1=1+INRr1p,Δ2=1+INRr2p.



(A64)







Then we have the “rate-loss” terms to be bounded


ξ1=I(Y^r1;Yr1|X1,X2c,Y1)=12log1+1Δ11+INRr1p1+INR1p≤12.



(A65)







Similarly, [image: there is no content]. In the same line of the proof of Lemma A1 in Appendix D, we can show the following bounds:


[image: there is no content]



(A66a)






[image: there is no content]



(A66b)






[image: there is no content]



(A66c)






[image: there is no content]



(A66d)







Now, in order for the second terms in the min in the RHS of (22)–(29) to be active we need


(C1−ξ1)+≥max{a1′−a1,b1′−b1,c1′−c1,d1′−d1}=d1′−d1.











Since [image: there is no content], a sufficient condition would be


C1≥12+d1′−d1=12+I(X1,X2c;Y^r1|Y1).



(A67)







Now we have


[image: there is no content]








where [image: there is no content] follows from the upper bound on [image: there is no content] in (A66b), [image: there is no content] follows from the lower bound on [image: there is no content] in (A66a). Hence, a sufficient condition for [image: there is no content] is


[image: there is no content]



(A68)







Due to this condition on [image: there is no content] (and similarly for [image: there is no content]), the achievable rate region in Theorem 1 reduces to


[image: there is no content]



(A69)






[image: there is no content]



(A70)






[image: there is no content]



(A71)






[image: there is no content]



(A72)






[image: there is no content]



(A73)






[image: there is no content]



(A74)






[image: there is no content]



(A75)






[image: there is no content]



(A76)






[image: there is no content]



(A77)







Let us define


[image: there is no content]











Using the bounds in (A66a)–(A66d) we have


[image: there is no content]



(A78a)






[image: there is no content]



(A78b)




and


a1′=I(X1;Y1,Y^1r|X1c,X2c)=12log(1+Δ1)(1+SNR1p+INR1p)+SNRr1p+INRr1p(1+η12SNR1p)(1+Δ1)(1+INR1p)+INRr1p≥12log1+SNR1p+SNRr1p)−g1(Δ1)≥12log1+SNR1+SNRr11+INR2+INRr2−g1(Δ1).











In the same way we can show that


b1′=I(X1,X2c;Y1,Y^1r|X1c)=12log(1+Δ1)(1+SNR1p+INR1)+SNRr1p+INRr1(1+η12SNR1p)(1+Δ1)(1+INR1p)+INRr1p≥12log1+INR1+INRr1+SNR1(1+η12INRr1)+SNRr11+INR2+INRr2−g1(Δ1).c1′=I(X1;Y1,Y^1r|X2c)=12log(1+Δ1)(1+SNR1+INR1p)+SNRr1+INRr1p(1+η12SNR1)(1+Δ1)(1+INR1p)+INRr1p≥12log1+SNR1+SNRr1−g1(Δ1).










d1′=I(X1,X2c;Y1,Y^1r)=12log(1+Δ1)(1+SNR1+INR1)+SNRr1+INRr1(1+η12SNR1)(1+Δ1)(1+INR1p)+INRr1p≥121+INR1+INRr1+SNR1(1+η12INRr1)+SNRr1−g1(Δ1).











The preceding inequalities lead to the following gap between inner and outer bounds:

	
Constraints on [image: there is no content]:

	–

	
The RHS of (A69) is within [image: there is no content] of the RHS of (50).




	–

	
The RHS of (A70) is within [image: there is no content] of the RHS of (50).









	
Constraints on [image: there is no content]follow by symmetry.



	
Constraints on [image: there is no content]:

	–

	
The RHS of (A73) is within [image: there is no content] of the RHS of (56).




	–

	
Similarly for the RHS of (A75).




	–

	
The RHS of (A74) is within [image: there is no content] of the RHS of (58).









	
Constraint on [image: there is no content]:



The RHS of (A76) is within [image: there is no content] of the RHS of (59).



	
Constraint on [image: there is no content]follows by symmetry.








In summary, we conclude that inner bound on the individual rates are within [image: there is no content] bits of the outer bound, inner bound on [image: there is no content] is within [image: there is no content] of the outer bound, inner bound on [image: there is no content] is within [image: there is no content] of the outer bound, and inner bound on [image: there is no content] is within [image: there is no content] of the outer bound. Using (A78) we obtain the desired gap. Finally, recall that the outer bounds we have just used are derived by assuming each receiver cooperates with its associated relay. ☐




Appendix G. Proofs of Lemma 1 and Lemma 2.


Proof of Lemma 1: by setting the whole message at each transmitter to be private, i.e., setting [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] in Theorem 1, the achievable rate region for the IRC reduces to a rectangle given by


[image: there is no content]











Extending the above achievable region to the Gaussian IRC, as described in Section 4.2, with the quantization distortion [image: there is no content], [image: there is no content], we can easily show that [image: there is no content] if the conditions in (79) are satisfied. Hence, the resulting achievable region is given by


[image: there is no content]








which gives rise to the achievable sum rate [image: there is no content] in explicit form in (80). ☐



Proof of Lemma 2: recall that we denote the sequences sent over the digital links by [image: there is no content] and [image: there is no content]. By the Fano’s inequality


n(R1+R2−2ϵn)≤I(X1n;Y1n,V1n)+I(X2n;Y2n,V2n)≤I(X1n;Y1n)+H(V1n)+I(X2n;Y2n)+H(V2n)≤I(X1n;Y1n)+I(X2n;Y2n)+nC1+nC2,



(A79)




where [image: there is no content] as [image: there is no content]. Under the condition (81) we can proceed to bound [image: there is no content] in the same way as done in [37,38,39]. Specifically, we can find a useful and smart genie, which gives us


[image: there is no content]



(A80)







Combining (A79) and (A80) we have Lemma 2 proven. ☐




Appendix H. Proof of Proposition 4.


Similarly to the Gaussian IRC in the strong interference regime, we also set the whole message at each transmitter to be the common message, i.e., [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] in (22)–(29). As a result, the achievable rate region [image: there is no content] consists of (A57)–(A60) plus two extra conditions given below, which follows from (27) and (23), due to the fact that each decoder is to decode both messages:


[image: there is no content]



(A81)






[image: there is no content]



(A82)







By the same procedure for quantization as for the Gaussian IRC with strong interference in Appendix E, we obtain [image: there is no content] as in (A61), plus


[image: there is no content]



(A83)






[image: there is no content]



(A84)




and symmetrically for [image: there is no content]. Note that we also choose [image: there is no content], which make [image: there is no content] (see (A61e)). Keeping these in mind, let us compare the inner and outer bounds.



Individual rate constraints.

	
[image: there is no content] in (A57) is within [image: there is no content] bit of the outer bound [image: there is no content] in (84).



	
[image: there is no content] in (A57) is within [image: there is no content] bit of the outer bound [image: there is no content] in (84).



	
[image: there is no content] in (A81) is within [image: there is no content] bit of the outer bound [image: there is no content] in (85).



	
[image: there is no content] in (A81) is within [image: there is no content] bit of the outer bound [image: there is no content] in (85).








Therefore we conclude the active inner bound on [image: there is no content] is within [image: there is no content] bit of some outer bound. By symmetry we obtain the same result for [image: there is no content].



Sum rate constraints.



	
[image: there is no content] in (A59) is within [image: there is no content] bit of the outer bound


[image: there is no content]








in (88).



	
[image: there is no content] in (A59) is within [image: there is no content] bit of the outer bound


[image: there is no content]








in (90).






Similarly we obtain the same gaps for the two remaining bounds on [image: there is no content]. Accordingly we conclude that the active inner bound on sum rate is within [image: there is no content] bit of some outer bound.



Finally, since the inner bound is within [image: there is no content] bit of the outer bound, the inner bound is within [image: there is no content] bit of the capacity region of the channel. ☐
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