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Abstract: In this paper, the emergence of hyperchaos in a network with two very simple discrete
periodic oscillators is presented. Uncoupled periodic oscillators may represent, in the crudest and
simplest form, periodic oscillators in nature, for example fireflies, crickets, menstrual cycles of women,
among others. Nevertheless, the emergence of hyperchaos in this kind of real-life network has
not been proven. In particular, we focus this study on the emergence of hyperchaotic dynamics,
considering that these can be mainly used in engineering applications such as cryptography,
secure communications, biometric systems, telemedicine, among others. In order to corroborate
that the emerging dynamics are hyperchaotic, some chaos and hyperchaos verification tests are
conducted. In addition, the presented hyperchaotic coupled system synchronizes, based on the proposed
coupling scheme.

Keywords: emergence of hyperchaos; complex dynamical systems; network synchronization;
periodic oscillators; entropy

1. Introduction

The emergence of chaos by coupling two or more systems is a widely-observed phenomenon that
has attracted the attention of the scientific community for decades. Particularly, two procedures for the
emergence of chaos or hyperchaos by coupling two or more systems have been studied. In the first
instance, we have the case of coupled chaotic oscillators in the periodic regime; see for example [1–3].
The second case is by means of the coupling of non-chaotic oscillators [4,5].

In the current literature, the majority of the research works concerning the emergence of chaos
in networks consider uncoupled chaotic nodes in the periodic regimen, that is chaotic nodes with
parameter values in non-chaotic regions. Then, these nodes are coupled by using different network
topologies. As a result, all nodes may be able to transit to a chaos state; see, e.g., [6–8]. In addition,
to our knowledge, relative to the emergence of chaos and hyperchaos in networks, previous works
consider rings of three or more unidirectionally-coupled oscillators; see, e.g., [9,10].

On the other hand, the synchronization of complex networks has received great interest in different
fields of science and technology, in particular, synchronization of complex dynamical networks with
chaotic systems as nodes; see, e.g., [11–14]. Interaction among coupled nodes within a complex
network plays an important role in the emerging dynamics of networks, for example synchronization
or emergence of chaos [6].

At present, special attention is paid to the study of complex networks in nature and the phenomena
arising in them [15–17]. The study of complex networks’ synchronization is of great interest in the
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scientific community, with similar behaviors present in natural networks, for example communities of
fireflies, crickets, menstrual cycles of women, among others.

Recently, we have studied the coupling of periodic oscillators, as a very simple model of fireflies
on nearest-neighbor, star and small-world topologies [18]. This allows understanding some important
aspects of behavior, interaction, coupling and synchronization of simple models that can represent
living organisms with common goals and collective behavior.

The case of hyperchaos emergence with coupled non-chaotic oscillators is presented in this paper,
where the entropy–that describes the dispersal of a system’s energy and is an indication of the disorder
of a physical system [19–21], appear with the coupling of the simple periodic oscillators, i.e., high
entropy is obtained from a coupling of systems with very low entropy. In addition, we present the
peculiarity that along with the emergence of hyperchaos, with particular configuration and parameters,
we achieve hyperchaotic synchronization (in-phase or anti-phase) of discrete periodic oscillators that
is based on the complex systems theory.

The main contribution of this paper is the emergence of chaos or hyperchaos making a coupling of
only two very simple periodic discrete systems, which in the crudest and simplest form can represent
real-life periodic oscillators, like the ones mentioned above, that in isolation in no way generate chaos or
hyperchaos, i.e., structurally non-chaotic. These emergent hyperchaotic dynamics can be mainly used
in information theory [22], in engineering applications such as cryptography, secure communications,
biometric systems, telemedicine, among others; see, e.g., [23–25]. Given the simplicity and discrete
nature of the proposed simple network, it may be attractive for digital implementations by using
embedded systems such as Field Programmable Gate Arrays (FPGAs), Digital Signals Processors
(DSPs) or microcontrollers; see, e.g., [26].

This paper is organized as follows. In Section 2, some basic concepts on the synchronization of
complex dynamical systems are presented. In Section 3, the emergence of hyperchaos in a simple
network from the interaction of only two discrete periodic oscillators that are bidirectionally coupled
is studied. In Section 4, some tests that confirm hyperchaos emergence are presented. In Section 5,
we show the synchronization of two bidirectionally-coupled hyperchaotic nodes. Finally, in Section 6,
some conclusions are presented.

2. Complex Dynamical Networks

We consider a complex dynamical network composed of N identical nodes, linearly and diffusively
coupled through the first state of each node. In this dynamical network, each node constitutes
an n-dimensional discrete-time map. The state equations of this network are described by:

xi(k + 1) = f (xi(k)) + ui(k), i = 1, 2, . . . , N, (1)

where xi(k) = (xi1(k), xi2(k), ..., xin(k))
T ∈ Rn are the state variables of the node i,

ui(k) = (ui1(k), 0, ..., 0)T ∈ Rn is the input signal of the node i and is defined by:

ui(k) = c
N

∑
j=1

aijΓxj(k), i = 1, 2, . . . , N, (2)

the constant c > 0 represents the coupling strength of the complex network, and Γ ∈ Rn×n is a constant
0–1 matrix linking coupled state variables; whereas, A =

(
aij
)
∈ RN×N is the coupling matrix, which

represents the coupling topology of the complex network. If there is a connection between node i and
node j, then aij = 1; otherwise, aij = 0 for i 6= j. The diagonal elements of coupling matrix A are
defined as:

aii = −
N

∑
j=1, j 6=i

aij = −
N

∑
j=1, j 6=i

aji, i = 1, 2, . . . , N. (3)

If the degree of node i is di, then di = −aii, i = 1, 2, . . . , N.
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Now, suppose that the complex network (1) and (2) are connected without isolated clusters.
Then, A is a symmetric irreducible matrix. In this case, it can be shown that zero is an eigenvalue of A
with multiplicity one, and all of the other eigenvalues of A are strictly negative; see [27,28].

In accordance with [28] for discrete systems, the complex dynamical network (1) and (2) are said
to achieve (asymptotically) synchronization if:

x1(k) = x2(k) =, ...,= xN(k), as k→ ∞. (4)

The diffusive coupling condition (3) guarantees that the synchronization state is a solution,
s(k) ∈ Rn, of an isolated node, that is:

s(k + 1) = f (s(k)) , (5)

where s(k) can be an equilibrium point, a periodic orbit or, a chaotic attractor. Thus, the stability of the
synchronization state,

x1(k) = x2(k) =, ...,= xN(k) = s(k), (6)

of the complex network (1) and (2) are determined by the dynamics of an isolated node, i.e., function f
and solution s(k), the coupling strength c, the inner linking matrix Γ and the coupling matrix A.

3. Emergence of Hyperchaos with Coupled Periodic Oscillators

This section describes the state equations for networks with bidirectionally-coupled periodic
oscillators like nodes.

3.1. Uncoupled Periodic Oscillators

Dynamical networks with discrete periodic oscillators are constructed, which in a simple way,
may represent organisms interacting with each other, for example fireflies [18]. Figure 1 illustrates
a simple network with two bidirectionally-coupled discrete periodic nodes.

Figure 1. Simple network with two bidirectionally-coupled periodic nodes.

State equations for this dynamical network are given as follows. The first node N1 is described by:{
w1(k + 1) = w1(k)b + u11(k),
x1(k + 1) = sin(w1(k)t(k)),

(7)

with input signal:
u11(k) = c(−ηx1(k) + x2(k)), (8)

the second node N2 is given by:{
w2(k + 1) = w2(k)b + u21(k),
x2(k + 1) = sin(w2(k)t(k)),

(9)

with input signal:
u21(k) = c(−ηx2(k) + x1(k)), (10)

and the time step is given by:

t(k + 1) = t(k) +
π

1000
. (11)
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Note that in the network with two coupled periodic discrete nodes (7)–(11), the parameters η and
b are introduced, with the purpose to control the interaction between the periodic oscillators. Therefore,
the appropriate choice of these parameter values determines whether the emerging collective dynamics
in the network are periodic, chaotic or hyperchaotic. Let us consider the following particular parameter
values η = −0.5 and b = 1 and initial conditions: w1(0) = 2π2, w2(0) = 2π5, x1(0) = x2(0) = 0 and
t(0) = 0. If coupling strength c = 0, then N1 and N2 are uncoupled nodes, i.e., u11(k) = u21(k) = 0; node
N1 corresponds to a simple periodic oscillator at 2 Hz, and node N2 corresponds to a simple periodic
oscillator at 5 Hz. Figure 2 shows state trajectories and error dynamics x1(k)− x2(k) (with discrete
nodes, the default interpolation of MATLAB R2014a is used, in order to better appreciate the temporary
graphics); while Figure 3 exhibits the phase portrait for isolated periodic oscillators (7)–(11).

Figure 2. Temporal dynamics of states (a) x1(k); (b) x2(k); (c) w1(k); (d) w2(k); (e) x1(k) − x2(k),
with u11(k) = u21(k) = 0.
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Figure 3. Phase portrait x1(k) versus x2(k) with u11(k) = u21(k) = 0.

It can be seen that oscillators N1 and N2 have periodical behavior when they are uncoupled,
and under this scenario, the oscillators do not generate chaos. Figure 4 shows the corresponding limit
cycle attractors for the periodic nodes N1 and N2. These limit cycle attractors are obtained by delaying
one sample. This was made in order to obtain attractors given that w1(k) and w2(k) are constants.



Entropy 2017, 19, 413 5 of 15

Figure 4. Limit cycle attractors generated by uncoupled periodic nodes N1 and N2: (a) x1(k) versus
x1(k− 1) and (b) x2(k) versus x2(k− 1).

3.2. Emerging Hyperchaos with Two Coupled Periodic Oscillators

On the other hand, if we use a coupling strength c = 1 in Equations (7)–(11), the emerging
collective behavior in the network due to the interaction of periodic oscillators is hyperchaotic
(this statement will be verified in a later section). Figure 5 shows state trajectories of x1(k), x2(k), w1(k),
w2(k) and error dynamics x1(k)− x2(k). Figure 6 illustrates the hyperchaotic attractors x1(k) versus
w1(k) and x2(k) versus w2(k); whereas, Figure 7 shows phase portraits x1(k) versus x2(k) and w1(k)
versus w2(k).

Figure 5. Time evolution for bidirectional coupling; c = 1, η = −0.5 and b = 1: (a) x1(k); (b) x2(k);
(c) w1(k); (d) w2(k) and (e) x1(k)− x2(k).
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Figure 6. Hyperchaotic attractors generated by coupled nodes N1 and N2: (a) x1(k) versus w1(k) and
(b) x2(k) versus w2(k).

Figure 7. Phase portraits for coupled nodes N1 and N2: (a) x1(k) versus x2(k) and (b) w1(k) versus w2(k).

From Equations (7)–(11), we can see that the parameter b directly affects the states w1(k) and
w2(k), so if we change this parameter value, we can select a value of b in order to have different
behavior in states w1(k) and w2(k). Figure 8a shows the bifurcation diagram for (7)–(11) of w1(k) with
respect to parameter b, with c = 1, η = −0.5, where the amplitude of w1(k) varies depending on the
value of b; while Figure 8b depicts the bifurcation diagram for state x1(k) with respect to parameter
b. From Figure 8, we can establish that |b| ≤ 1 is a sufficient condition to ensure the emergence of
hyperchaos in the simple network of two coupled periodic oscillators (7)–(11). Interestingly, a peculiar
behavior (like tug of war) at b = 0 is observed; as an illustrative example, this behavior is shown in
Figures 9 and 10, where we can see that (x1(k))(w1(k)) = 0 but x1(k) + w1(k) 6= 0 (the same result for
states x2(k) and w2(k) is observed). Figure 11 shows the bifurcation diagram for parameter c, where we
can see that the amplitude of x1(k) remains constant with the exception of values of c approaching
zero; on the other hand, the amplitude of w1(k) increases as c tends to ±∞.
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Figure 8. Bifurcation diagram of b with c = 1, η = −0.5, (a) w1(k) and (b) x1(k).

Figure 9. A peculiar collective behavior at b = 0 for (a) x1(k), x2(k) and (b) w1(k), w2(k) (note that one
iteration of the transient is suppressed).

Figure 10. A peculiar collective behavior at b = 0 for (a) x1(k) versus w1(k) and (b) x2(k) versus w2(k)
(note that one iteration of the transient is suppressed).

Figure 11. Bifurcation diagram of c with b = 0.5, η = −0.5, (a) x1(k) and (b) w1(k).
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For the case in which nodes N1 and N2 are unidirectionally coupled, i.e., taking (7)–(11) with
u11(k) = 0, master node N1 does not exhibit hyperchaotic dynamics. In the slave node N2, which is
influenced by the master node N1, hyperchaotic dynamics occur; see Figure 12. The value of k now is
2500 in order to appreciate a wide range of time evolution.

Note that this study is not limited to only two coupled discrete periodic nodes; complex networks
can be used to coupled more than two nodes in different topologies, such as star, nearest-neighbor,
small-world, among others.

Figure 12. Time evolution for unidirectional coupling: (a) x1(k); (b) x2(k); (c) w1(k); (d) w2(k) and
(e) x1(k)− x2(k).

In the next section, we will carry out some tests to confirm that the emerging collective behavior
in the network (7)–(11) is hyperchaos.

4. Confirmation of Collective Hyperchaotic Behavior

In order to verify whether the emerging collective behavior in a network with two coupled
discrete periodic oscillators is chaotic or hyperchaotic, some well-known test are reported in this
section: sensitivity to initial conditions, auto-correlation test, Gottwald–Melbourne 0–1 test (indicates if
the signal is or is not chaotic), Lyapunov exponents (indicate chaos or hyperchaos) and, finally,
the Kaplan–Yorke dimension. In the previous section, we can see that Figure 6 shows the first sign of
a chaotic signal because the attractors do not have a definite shape or a limit cycle indicating periodic
signals. One of the simplest, but essential tests for verification of hyperchaos is by simple visual
inspection of time series with respect to sensitivity to initial conditions. Consider the network (7)–(11),
with different initial conditions w1(0) = 2π2, w2(0) = 2π5, x1(0) = x2(0) = 0, w′1(0) = 2π2.0000001,
w′2(0) = 2π5, x′1(0) = x′2(0) = 0, t(0) = 0, c = 1, b = 0.5 and η = −1. In Figure 13, we can appreciate
high sensitivity to initial conditions in the network (7)–(11).
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Figure 13. High sensitivity to initial conditions: (a) x1(k), x′1(k); (b) x1(k)− x′1(k); (c) w1(k); w′1(k) and
(d) w1(k)− w′1(k).

Figure 14 shows the normalized auto-correlation of x1(k), which exhibits a strong peak in
displacement 2500, indicating that this point is the only one where the signal x1(k) presents a repeating
pattern, which is clearly comparable to the auto-correlation of a quasi-random signal, that is having
high entropy.

Figure 14. Auto-correlation for x1(k), where CA is the normalized auto-correlation coefficient.

Figure 15 shows the 0–1 Gottwald–Melbourne test [29], where, if the value of K is approximately
zero, the analyzed signal is not chaotic (K is the obtained value from the iterative process of
the Gottwald–Melbourne test), while if K ≈ 1, the signal is chaotic. The mean value in the
Gottwald–Melbourne test for signal x1(k) and x2(k) is K1 = 0.9968 and K2 = 0.9981, respectively,
indicating that the analyzed signals are chaotic.
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Figure 15. Gottwald–Melbourne test for signals x1(k) and x2(k).

In addition, we obtained the Lyapunov exponents of the network (7)–(11). Figure 16 shows the
Lyapunov exponents (L1 = 3.11659, L2 = 2.8843, L3 = 0, L4 = −0.725755 and L5 = −32.575) for the
network (7)–(11), wherein if at least one Lyapunov exponent is positive, then the network (7)–(11)
is chaotic. Due to the network having two positive exponents, the collective behavior in the
network (7)–(11) is hyperchaotic. Various kinds of fractal dimensions can be estimated theoretically and
empirically, as the Hausdorff dimension, Minkowski–Bouligand dimension, box-counting dimension,
correlation dimension, Kaplan–Yorke dimension, etc.; see [30–32]. The Kaplan–Yorke dimension
(calculated for a time series of 350,000 iterations) for the proposed network is given by:

DKY = 4 +
L1 + L2 + L3 + L4

|L5|
= 4.1619. (12)

The Lyapunov exponents and Kaplan–Yorke dimension were obtained by using the algorithm
reported in [31].

Figure 16. Lyapunov exponents for the simple network (7)–(11).

Finally, in order to determine the regions where the network (7)–(11) exhibits the emergence of
hyperchaos, we construct a diagram as a function of parameters c and η in Figure 17. The diagram
indicates no chaos in the green region, transition to hyperchaos in red regions and hyperchaos in
blue regions.
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Figure 17. Diagram of hyperchaos emergence: no chaos (green), transition to hyperchaos (red) and
hyperchaos (blue).

We use a 0.05 sweep step of c and η, k = 5000 and b = 0.5 to obtain the hyperchaos emergence
diagram of Figure 17.

In the next section, we intend to synchronize the network with two hyperchaotic nodes.

5. Hyperchaotic Network Synchronization of Two Oscillators

In this section, network synchronization with two bidirectionally-coupled hyperchaotic nodes N1

and N2, based on complex system theory, is presented.
Consider the single network (7)–(11) with parameter values c = 1, η = −0.5 and b = 0.5.

Phase synchronization is achieved between the hyperchaotic nodes. As we can see in Figure 18,
state trajectories and errors x1(k) − x2(k) and w1(k) − w2(k) are shown. Figures 19 and 20 show
hyperchaotic attractors and phase portraits between two oscillators respectively. We eliminated
the first five iterations in order to ignore the transitory, so that the presented simulation results in
Figures 19 and 20 can be seen in more detail.

Figure 18. Time evolution for c = 1, η = −0.5 and b = 0.5, (a) x1(k); (b) x2(k); (c) w1(k); (d) w2(k);
(e) x1(k)− x2(k) and (f) w1(k)− w2(k).
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Figure 19. Hyperchaotic attractors, (a) x1(k) versus w1(k) and (b) x2(k) versus w2(k) (after five iterations).

Figure 20. Phase portraits, (a) x1(k) versus x2(k) and (b) w1(k) versus w2(k) (after five iterations).

A numerical calculation for the network synchronization was performed for−6 ≤ η ≤ 6 at intervals of
0.001 (with k = 0, 1, ..., 2500, so the calculation is approximated). After removing the first 2000 iterations of
each state, we review x1(k)− x2(k) (phase synchronization) and x1(k) + x2(k) (anti-phase synchronization).
If |x1(k)± x2(k)| ≥ 0.01 (1% peak amplitude of x1(k)), then we establish no hyperchaotic synchronization
among nodes of the network (7)–(11). If |x1(k)− x2(k)| < 0.01, we establish phase synchronization,
and if |x1(k) + x2(k)| < 0.01, we establish anti-phase synchronization. Figure 21 shows a hyperchaotic
synchronization diagram with respect to η, where “0” denotes “no synchronization”, “1” denotes
“phase synchronization” and “−1” denotes “anti-phase synchronization”. From the hyperchaotic
synchronization diagram (see Figure 21), we can see that an intermittent synchronization occurs
in transitions from no synchronization to synchronization (and vice versa) in both the phase and
anti-phase cases.

Figure 21. Hyperchaotic synchronization diagram for η with c = 1 and b = 0.5.

Figures 22 and 23 show the hyperchaotic synchronization diagram of c and b, respectively,
obtained similarly as with η.
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Figure 22. Hyperchaotic synchronization diagram for c with η = −0.5 and b = 0.5.

Figure 23. Hyperchaotic synchronization diagram for b with η = −0.5 and c = 1.

In Figure 24, we can appreciate the synchronization diagram of c with respect to η, where,
if η = ±1, the network synchronizes for any value of 1 < c < −1. Note that, for illustrative purposes
only, c takes negative values.

Figure 24. Hyperchaotic synchronization diagram for c with respect to η with b = 0.5.

6. Conclusions

In this paper, we presented the emergence of hyperchaos in a network with two very simple
discrete periodic oscillators. We emphasized that when the oscillators are isolated, there is certainly
no chaos or hyperchaos generated, i.e., the oscillators are structurally non-chaotic. In addition,
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the presented hyperchaotic coupled system synchronizes based on the proposed coupling scheme;
this was proven by creating a diagram that shows the synchronization state: in phase or anti-phase.
Significantly, these emergent hyperchaotic dynamics can be mainly used in engineering applications,
such as cryptography, secure communications, biometric systems, telemedicine, among others; see for
example [23,24], where with the purpose of carrying out the experimental implementation, we can
use microcontrollers, FPGAs or any other device [26]. In future works, we will perform a theoretical
analysis to determine the conditions for the emergence of hyperchaos in networks with discrete
periodic oscillators, including networks with a large number of coupled nodes. In this same direction,
we will try to show the emergence of hyperchaos in some types of coupled periodic oscillators in
real-life networks.
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