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Abstract: Relations between estimation and information measures have received considerable
attention from the information theory community. One of the most notable such relationships is the
I-MMSE identity of Guo, Shamai and Verdú that connects the mutual information and the minimum
mean square error (MMSE). This paper reviews several applications of the I-MMSE relationship to
information theoretic problems arising in connection with multi-user channel coding. The goal of
this paper is to review the different techniques used on such problems, as well as to emphasize the
added-value obtained from the information-estimation point of view.
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1. Introduction

The connections between information theory and estimation theory go back to the late 1950s in
the work of Stam in which he uses the de Bruijn identity [1], attributed to his PhD advisor, which
connects the differential entropy and the Fisher information of a random variable contaminated by
additive white Gaussian noise. In 1968 Esposito [2] and then in 1971 Hatsell and Nolte [3] identified
connections between the Laplacian and the gradient of the log-likelihood ratio and the conditional
mean estimate. Information theoretic measure can indeed be put in terms of log-likelihood ratios,
however, these works did not make this additional connecting step. In the early 1970s continuous-time
signals observed in white Gaussian noise received specific attention in the work of Duncan [4] and
Kadota et al. [5] who investigated connections between the mutual information and causal filtering.
In particular, Duncan and Zakai (Duncan’s theorem was independently obtained by Zakai in the
general setting of inputs that may depend causally on the noisy output in a 1969 unpublished Bell Labs
Memorandum (see [6])) [4,7] showed that the input-output mutual information can be expressed as a
time integral of the causal minimum mean square error (MMSE). It was only in 2005 that Guo, Shamai
and Verdú revealed the I-MMSE relationship [8], which similarly to the de Bruijn identity, relates
information theoretic quantities to estimation theoretic quantities over the additive white Gaussian
noise channel. Moreover, the fact that the I-MMSE relationship connects the mutual information with
the MMSE has made it considerably more applicable, specifically to information theoretic problems.

The I-MMSE type relationships have received considerable attention from the information theory
community and a number of extensions have been found. In [9], in the context of multiple-input
multiple-output (MIMO) Gaussian channels, it was shown that the gradient of the mutual information
with respect to the channel matrix is equal to the channel matrix times the MMSE matrix. In [10] a
version of the I-MMSE identity has been shown for Gaussian channels with feedback. An I-MMSE type
relationship has been found for additive non-Gaussian channels in [11] and non-additive channels
with a well-defined notion of the signal-to noise ratio (SNR) in [12–15]. A relationship between the
MMSE and the relative entropy has been established in [16], and between the score function and
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Rényi divergence and f-divergence in [17]. The I-MMSE relationship has been extended to continuous
time channels in [8] and generalized in [18] by using Malliavin calculus. For other continuous
time generalizations the reader is referred to [19–21]. Finally, Venkat and Weissman [22] dispensed
with the expectation and provided a point-wise identity that has given additional insight into this
relationship. For a comprehensive summary of results on the interplay between estimation and
information measures the interested reader is referred to [23].

In this survey we provide an overview of several applications of the I-MMSE relationship to
multi-user information theoretic problems. We consider three types of applications:

1. Capacity questions, including both converse proofs and bounds given additional constraints
such as discrete inputs;

2. The MMSE SNR-evolution, meaning the behavior of the MMSE as a function of SNR for
asymptotically optimal code sequences (code sequences that approach capacity as n→ ∞); and

3. Finite blocklength effects on the SNR-evolution of the MMSE and hence effects on the rate as well.

Our goal in this survey is both to show the strength of the I-MMSE relationship as a tool to tackle
network information theory problems, and to overview the set of tools used in conjunction with the
I-MMSE relationship such as the “single crossing point” property. As will be seen such tools lead to
alternative and, in many cases, simpler proofs of information theoretic converses.

We are also interested in using estimation measures in order to upper or lower bound information
measures. Such bounds lead to simple yet powerful techniques that are used to find “good” capacity
approximations. At the heart of this technique is a generalization of the Ozarow-Wyner bound [24]
based on minimum mean p-th error (MMPE). We hope that this overview will enable future application
of these properties in additional multi-user information theoretic problems.

The outline of the paper is as follows:

1. In Section 2 we review information and estimation theoretic tools that are necessary for the
presentation of the main results.

2. In Section 3 we go over point-to-point information theory and give the following results:

• In Section 3.1, using the I-MMSE and a basic MMSE bound, a simple converse is shown for
the Gaussian point-to-point channel;

• In Section 3.2, a lower bound, termed the Ozarow-Wyner bound, on the mutual information
achieved by a discrete input on an AWGN channel, is presented. The bound holds for vector
discrete inputs and yields the sharpest known version of this bound; and

• In Section 3.3, it is shown that the MMSE can be used to identify optimal point-to-point codes.
In particular, it is shown that an optimal point-to-point code has a unique SNR-evolution of
the MMSE.

3. In Section 4 we focus on the wiretap channel and give the following results:

• In Section 4.1, using estimation theoretic properties a simple converse is shown for the
Gaussian wiretap channel that avoids the use of the entropy power inequality (EPI); and

• In Section 4.2, some results on the SNR-evolution of the code sequences for the Gaussian
wiretap channel are provided, showing that for the secrecy capacity achieving sequences of
codes the SNR-evolution is unique.

4. In Section 5 we study a communication problem in which the transmitter wishes to maximize its
communication rate, while subjected to a constraint on the disturbance it inflicts on the secondary
receiver. We refer to such scenarios as communication with a disturbance constraint and give the
following results:

• In Section 5.1 it is argued that an instance of a disturbance constraint problem, when the
disturbance is measured by the MMSE, has an important connection to the capacity of a
two-user Gaussian interference channel;
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• In Section 5.2 the capacity is characterized for the disturbance problem when the disturbance
is measured by the MMSE;

• In Section 5.3 the capacity is characterized for the disturbance problem when the disturbance
is measured by the mutual information. The MMSE and the mutual information disturbance
results are compared. It is argued that the MMSE disturbance constraint is a more natural
measure in the case when the disturbance measure is chosen to model the unintended
interference;

• In Section 5.4 new bounds on the MMSE are derived and are used to show upper bounds
on the disturbance constraint problem with the MMSE constraint when the block length is
finite; and

• In Section 5.5 a notion of mixed inputs is defined and is used to show lower bounds on the
rates of the disturbance constraint problem when the block length is finite.

5. In Section 6 we focus on the broadcast channel and give the following results:

• In Section 6.1, the converse for a scalar Gaussian broadcast channel, which is based only on
the estimation theoretic bounds and avoids the use of the EPI, is derived; and

• In Section 6.2, similarly to the Gaussian wiretap channel, we examine the SNR-evolution of
asymptotically optimal code sequences for the Gaussian broadcast channel, and show that
any such sequence has a unique SNR-evolution of the MMSE.

6. In Section 7 the SNR-evolution of the MMSE is derived for the K-user broadcast channel.
7. In Section 8, building on the MMSE disturbance problem in Section 5.1, it is shown that for the

two-user Gaussian interference channel a simple transmission strategy of treating interference as
noise is approximately optimal.

Section 9 concludes the survey by pointing out interesting future directions.

1.1. Notation

Throughout the paper we adopt the following notational conventions:

• Random variables and vectors are denoted by upper case and bold upper case letters, respectively,
where r.v. is short for either random variable or random vector, which should be clear from
the context. The dimension of these random vectors is n throughout the survey. Matrices are
denoted by bold upper case letters;

• If A is an r.v. we denote the support of its distribution by supp(A);
• The symbol | · | may denote different things: |A| is the determinant of the matrix A, |A| is the

cardinality of the set A, |X| is the cardinality of supp(X), or |x| is the absolute value of the
real-valued x;

• The symbol ‖ · ‖ denotes the Euclidian norm;
• E[·] denotes the expectation;
• N (mX, KX) denotes the density of a real-valued Gaussian r.v. X with mean vector mX and

covariance matrix KX;
• X ∼ PAM

(
N, dmin(X)

)
denotes the uniform probability mass function over a zero-mean pulse

amplitude modulation (PAM) constellation with |supp(X)| = N points, minimum distance
dmin(X), and therefore average energy E[X2] = d2

min(X)
N2−1

12 ;
• The identity matrix is denoted by I;
• The reflection of the matrix A along its main diagonal, or the transpose operation, is denoted

by AT;
• The trace operation on the matrix A is denoted by Tr(A);
• The order notation A � B implies that A−B is a positive semidefinite matrix;
• log(·) denotes the logarithm to the base e;
• [n1 : n2] is the set of integers from n1 to n2 ≥ n1;
• For x ∈ R we let bxc denote the largest integer not greater than x;
• For x ∈ R we let [x]+ := max(x, 0) and log+(x) := [log(x)]+;



Entropy 2017, 19, 409 4 of 51

• Let f (x), g(x) be two real-valued functions. We use the Landau notation f (x) = O(g(x)) to mean
that for some c > 0 there exists an x0 such that f (x) ≤ c g(x) for all x ≥ x0, and f (x) = o(g(x)) to
mean that for every c > 0 there exists an x0 such that f (x) < cg(x) for all x ≥ x0; and

• We denote the upper incomplete gamma function and the gamma function by

Γ (x; a) :=
∫ ∞

a
tx−1e−tdt, x ∈ R, a ∈ R+, (1a)

Γ (x) := Γ (x; 0) . (1b)

2. Estimation and Information Theoretic Tools

In this section, we overview relevant information and estimation theoretic tools. The specific
focus is to show how estimation theoretic measures can be used to represent or bound information
theoretic measures such as entropy and mutual information.

2.1. Estimation Theoretic Measures

Of central interest to us is the following estimation measure constructed from the Lp norm.

Definition 1. For the random vector V ∈ Rn and p > 0 let

‖V‖p :=
(

1
n
E [‖V‖p]

) 1
p
=

(
1
n
E
[(

Tr(VVT)
) p

2
]) 1

p

. (2a)

We define the minimum mean p-th error (MMPE) of estimating X from Y as

mmpe(X|Y; p) = inf
f
‖X− f (Y)‖p

p, (2b)

where the minimization is over all possible Borel measurable functions f (Y). Whenever the optimal MMPE
estimator exists, we shall denote it by fp(X|Y).

In particular, for Z ∼ N (0, I) the norm in (2a) is given by

n‖Z‖p
p = E

( n

∑
i=1

Z2
i

) p
2
 = 2

p
2

Γ
( n

2 + p
2
)

Γ
( n

2
) , for n ∈ N, p ≥ 0, (3)

and for V uniform over the n dimensional ball of radius r the norm in (2a) is given by

n‖V‖p
p =

1
Vol(B(r))

π
n
2

Γ
( n

2
) ∫ r

0
ρpρn−1dρ =

n
2p + 2n

rp, for n ∈ N, p ≥ 0. (4)

We shall denote

mmpe(X|Y; p) = mmpe(X, snr, p), (5)

if Y and X are related as

Y =
√
snrX+Z, (6)

where Z, X, Y ∈ Rn, Z ∼ N (0, I) is independent of X, and snr ≥ 0 is the SNR. When it will be necessary
to emphasize the SNR at the output Y, we will denote it by Ysnr. Since the distribution of the noise is
fixed mmpe(X|Y; p) is completely determined by the distribution of X and snr and there is no ambiguity
in using the notation mmpe(X, snr, p). Applications to the Gaussian noise channel will be the main
focus of this paper.
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In the special, case when p = 2, we refer to the MMPE as the minimum mean square error (MMSE)
and use the notation

mmpe(X, snr, 2) = mmse(X, snr), (7)

in which case we also have that f2(X|Y) = E[X|Y].

Remark 1. The notation fp(X|Y), for the optimal estimator in (2) is inspired by the conditional expectation
E[X|Y], and fp(X|Y) should be thought of as an operator on X and a function of Y. Indeed, for p = 2, the MMPE
reduces to the MMSE; that is, mmpe(X|Y; 2) = mmse(X|Y) and f2(X|Y) = E[X|Y].

Finally, similarly to the conditional expectation, the notation fp(X|Y = y) should be understood as an
evaluation for a realization of a random variable Y, while fp(X|Y) should be understood as a function of a random
variable Y which itself is a random variable.

Lemma 1. (Existence of the Optimal Estimator [25]) For any X and Y given by (6) an optimal estimator exists
and the infimum in (2) can be attained.

In certain cases the optimal estimator might not be unique and the interested reader is referred
to [25] for such examples. In general we do not have a closed form solution for the MMPE optimal
estimator in (2). Interestingly, the optimal estimator for Gaussian inputs can be found and is linear for
all p ≥ 1

Proposition 1. (MMPE of a Gaussian Input [25–27]) For XG ∼ N (0, I) and p ≥ 1

mmpe(XG, snr, p) =
‖Z‖p

p

(1+ snr)
p
2

, (8a)

with the optimal estimator given by

fp(XG|Y = y) =
√
snr y

1+ snr
. (8b)

Note that unlike the Gaussian case in general the estimator will be a function of the order p.
For X = ±1 equally likely (i.e., binary phase shift keying—BPSK) the optimal estimator is given by

fp(X|Y = y) = tanh
(

y
√
snr

p− 1

)
. (9)

Often the MMPE is difficult to compute, even for p = 2 (MMSE), and one instead is interested
in deriving upper bounds on the MMPE. One of the most useful upper bounds on the MMPE can be
obtained by restricting the optimization in (2) to linear functions.

Proposition 2. (Asymptotically Gaussian is the “hardest” to estimate [25]) For snr ≥ 0, p ≥ 1, and a random
variable X such that ‖X‖p

p ≤ σp‖Z‖p
p, we have

mmpe(X, snr, p) ≤ κp,σ2snr ·
σp‖Z‖p

p

(1+ snrσ2)
p
2

, (10a)
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where

for p = 2 : κ
1
p

p,σ2snr
= 1, (10b)

for p 6= 2 : 1 ≤ κ
1
p

p,σ2snr
=

1 +
√

σ2snr√
1 + σ2snr

≤ 1 +
1√

1 + σ2snr
. (10c)

Moreover, a Gaussian X with per-dimension variance σ2 (i.e., X ∼ N (0, σ2I)) asymptotically achieves the
bound in (10a), since limsnr→∞ κp,σ2snr = 1.

For the case of p = 2, the bound in (10a) is achieved with a Gaussian input for all SNR’s. Moreover,
this special case of the bound in (10a), namely

mmse(X, snr) ≤ σ2

1 + σ2snr
, (11)

for all ‖X‖2
2 ≤ σ2, is referred to as the linear minimum mean square error (LMMSE) upper bound.

2.2. Mutual Information and the I-MMSE

For two random variables (X, Y) distributed according to PXY the mutual information is defined as

I(X; Y) = E
[

log
dPXY

d(PX × PY)

]
, (12)

where dPXY
d(PX×PY)

is the Radon-Nikodym derivative. For the channel in (6) the mutual information
between X and Y takes the following form:

I(X; Y) = E
[

log

(
fY|X(Y|X)

fY(Y)

)]
, (13)

and it will be convenient to use the normalized mutual information

In(X, snr) =
1
n

I(X; Y). (14)

The basis for much of our analysis is the fundamental relationship between information theory
and estimation theory, also known as the Guo, Shamai and Verdú I-MMSE relationship [8].

Theorem 1. (I-MMSE [8]) For any X (independent of snr) we have that

d
dsnr

In(X, snr) =
1
2

mmse(X, snr), (15a)

In(X, snr) =
1
2

∫ snr

0
mmse(X, t)dt. (15b)

In [28] the I-MMSE relationship has been partially extended to the limit as n → ∞. This result
was then extended in [29] under the assumption that the mutual information sequence converges.

Proposition 3. (I-MMSE limiting expression [29]) Suppose that ‖X‖2
2 ≤ σ2 < ∞ and

lim
n→∞

In(X, snr) = I∞(X, snr), (16)
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exists. (The limit here is taken with respect to a sequence of input distributions over {Xn}n≥1 which induces a
sequence of input-output joint distributions. The second moment constraint ‖Xn‖2

2 should be understood in a
similar manner, as a constraint for every n in the sequence.) Then,

lim
n→∞

mmse(X, snr) = mmse∞(X, snr), (17)

and the I-MMSE relationship holds for the following limiting expression:

I∞(X, snr) =
1
2

∫ snr

0
mmse∞(X, t)dt. (18)

Proof. The proof is given in Appendix A.

Properties of the MMSE, with the specific focus on the I-MMSE identity, as a function of the input
distribution and the noise distribution have been thoroughly studied and the interested reader is
referred to [17,30–32]. For the derivation of the I-MMSE and a comprehensive summary of various
extension we refer the reader to [23].

For a continuous random vector X with the density fX the differential entropy is defined as

h(X) = −E [log fX(X)] . (19)

Moreover, for a discrete random vector X the discrete entropy is defined as

H(X) = − ∑
x∈supp(X)

px log px, where px = P[X = x]. (20)

2.3. Single Crossing Point Property

Upper bounds on the MMSE are useful, thanks to the I-MMSE relationship, as tools to derive
information theoretic converse results, and have been used in [23,30,33,34] to name a few. The key
MMSE upper bound that will be used in conjunction with the I-MMSE to derive information theoretic
converses is the single crossing point property (SCPP).

Proposition 4. (SCPP [30,33]) Let ‖X‖2 ≤ 1. Then for any fixed snr0 there exists a unique α ∈ [0, 1] such that

mmse(X, snr0) =
α

1 + αsnr0
. (21a)

Moreover, for every snr > snr0

mmse(X, snr) ≤ α

1 + αsnr
, (21b)

and for every snr ≤ snr0

mmse(X, snr) ≥ α

1 + αsnr
. (21c)

Even though the statement of Proposition 4 seems quite simple it turns out that it is sufficient to
show a special case of the EPI [33]:

e
2
n h(X+Z) ≥ e

2
n h(X) + e

2
n h(Z), (22)
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where Z ∼ N (0, RZ). Interestingly, the I-MMSE appears to be a very powerful tool in deriving EPI
type inequalities; the interested reader is referred to [35–38].

In [25] it has been pointed out that the SCPP upper bound can also be shown for the MMPE as follows.

Proposition 5. (Generalized SCPP upper bound [25]) Let mmpe
2
p (X, snr0, p) =

β‖Z‖2
p

1+βsnr0
for some β ≥ 0. Then,

mmpe
2
p (X, snr, p) ≤ cp ·

β‖Z‖2
p

1+ β snr
, for snr ≥ snr0, (23a)

where

cp =

{
2 p 6= 2

1 p = 2
. (23b)

Proof. The proof of Propositions 4 and 5 uses a clever choice of a sub-optimal estimator. The interested
reader is referred to Appendix B for the proof.

2.4. Complementary SCPP Bounds

Note that the SCPP allows us to upper bound the MMSE for all values of snr ≥ snr0, and as
will be shown later this is a very powerful tool in showing information theoretic converses. Another
interesting question is whether we can produce a complementary upper bound to that of the SCPP.
That is, can we show an upper bounds on the MMSE for snr ≤ snr0? As will be demonstrated in
Section 5, such complementary SCPP bounds are useful in deriving information theoretic converses
for problems of communication with a disturbance constraint.

The next result shows that this is indeed possible.

Proposition 6. (Complementary SCPP bound [25]) For 0 < snr ≤ snr0, X and p ≥ 0, we have

mmpe(X, snr, p) ≤ κn,t mmpe
1−t
1+t

(
X, snr0,

1+ t
1− t

· p
)

,

where κn,t :=
(

2n

n2

) t
t+1
(

1
1− t

) nt
t+1− 1

2
, t =

snr0 − snr

snr0
.

An interesting property of the bound in Proposition 6 is that the right hand side of the inequality
keeps the channel SNR fixed and only varies the order of the MMPE while the left hand side of the
inequality keeps the order fixed and changes the SNR value.

2.5. Bounds on Differential Entropy

Another common application of estimation theoretic measures is to bound information measures.
Next, we presented one such bound.

For any random vector V such that |Cov(V)| < ∞, h(V) < ∞, and any random vector Y,
the following inequality is considered to be a continuous analog of Fano’s inequality [39]:

h(V|Y) ≤ n
2

log(2πe |Cov(V|Y)| 1n ) (24)

≤ n
2

log(2πe mmse(V|Y)), (25)

where the inequality in (25) is a consequence of the arithmetic-mean geometric-mean inequality, that is,

for any 0 � A we have used |A| 1n = (∏n
i=1 λi)

1
n ≤ ∑n

i=1 λi
n = Tr(A)

n where λi’s are the eigenvalues of A.
The inequality in (25) can be generalized in the following way.



Entropy 2017, 19, 409 9 of 51

Theorem 2. (Conditional Entropy Bound [25]) Let V ∈ Rn be such that h(V) < ∞ and ‖V‖p < ∞. Then, for
any p ∈ (0, ∞) and for any Y ∈ Rn, we have

h(V|Y) ≤ n
2

log
(

k2
n,p · n

2
p ·mmpe

2
p (V|Y; p)

)
, (26)

where kn,p =

√
π( pe

n )
1
p Γ

1
n
(

n
p+1

)
Γ

1
n ( n

2 +1)
.

While the MMPE is still a relatively new tool it has already found several applications:

• The MMPE can be used to bound the conditional entropy (see Theorem 2 in Section 2.5).
These bounds are generally tighter than the MMSE based bound especially for highly
non-Gaussian statistics;

• The MMPE can be used to develop bounds on the mutual information of discrete inputs via
the generalized Ozarow-Wyner bound (see Theorem 4 in Section 3.2); The MMPE and the
Ozarow-Wyner bound can be used to give tighter bounds on the gap to capacity achieved by
PAM input constellations (see Figure 2);

• The MMPE can be used as a key tool in finding complementary bounds on the SCPP
(see Theorem 10 in Section 5.4). Note that using the MMPE as a tool produces the correct
phase transition behavior; and
• While not mentioned, another application is to use the MMPE to bound the derivatives of the

MMSE; see [25] for further details.

3. Point-to-Point Channels

In this section, we review Shannon’s basic theorem for point-to-point communication and
introduce relevant definitions used throughout the paper. The point-to-point channel is also a good
starting point for introducing many of the techniques that will be used in this survey.

A classical point-to-point channel is shown in Figure 1. The transmitter wishes to reliably
communicate a message W at a rate R bits per transmission to a receiver over a noisy channel. To that
end, the transmitter encodes the message W into a signal X and transmits it over a channel in n time
instances. Upon receiving a sequence Y, a corrupted version of X, the receiver decodes it to obtain the
estimate Ŵ.

Definition 2. A memoryless channel (MC), assuming no feedback, (X , PY|X,Y) (in short PY|X) consists
of an input set X , an output set Y , and a collection of transition probabilities PY|X on Y for every x ∈ X .
The transition of a length-n vector X through such a channel then has the following conditional distribution:

PY|X(y|x) =
n

∏
i=1

PY|X(yi|xi). (27)

Definition 3. A code of length n and rate R, denoted by (2nR, n), of the channel PY|X consist of the following:

• A message set {1, 2, ..., 2nR}. We assume that the message W is chosen uniformly over the message set.
• An encoding function X : {1, 2, ..., 2nR} → X n that maps messages W to codewords X(W). The set of

all codewords is called the codebook and is denoted by C; and
• A decoding function g : Yn → {1, 2, ..., 2nR} that assigns an estimate Ŵ to each received sequence.

The average probability of error for a (2nR, n) code is defined as

P[Ŵ 6= W] =
1

2nR

2nR

∑
w=1

P[Ŵ 6= w |W = w].
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Definition 4. A rate R is said to be achievable over a point-to-point channel if there exists a sequence of codes,
(2nR, n), such that

lim
n→∞

P[Ŵ 6= W] = 0. (28)

The capacity C of a point-to-point channel is the supremum over all achievable rates.

W

Y n

Zn

PY,Z|X

Eavesdropper

Ŵ

Encoder 1 Nn
2 ⇠ N (0, I)

Y n

W
Xn

Encoder 1
Xn

Nn
1 ⇠ N (0, I)

Ŵ

Eavesdropper

Zn

W

Y n

PY,Z|XEncoder 1
Xn

Ŵ

Zn

Secondary User

F (Xn, Zn)  c

W Encoder 1

Zn

Nn
2 ⇠ N (0, I)

Y n

Xn

Nn
1 ⇠ N (0, I)

Secondary User

F (Xn, Zn)  c

Ŵ

Y n

PY,Z|XEncoder 1
Xn

Zn
W1, W2

Ŵ1Decoder 1

Decoder 2 Ŵ2

Encoder 1 Ŵ1Decoder 1

Decoder 2 Ŵ2

Xn
1

Encoder 2
Xn

2

Y n
1

Y n
2

PY1,Y2|X1,X2

W1

W2

Encoder 1 Ŵ1Decoder 1

Decoder 2 Ŵ2

Xn
1

Encoder 2 Xn
2

Y n
1

Y n
2

W1

W2

�

�

h11
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DecoderEncoder ŴW �
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Figure 1. A point-to-point communication system. (a) A memoryless point-to-point channel with a
transition probability PY|X ; (b) A Gaussian point-to-point channel.

A crowning achievement of Shannon’s 1948 paper [40] is a simple characterization of the capacity
of a point-to-point channel.

Theorem 3. (Channel Coding Theorem [40]) The capacity of the channel PY|X is given by

C = max
PX

I(X; Y). (29)

For a formal derivation of the capacity expression in (29) the reader is referred to classical texts
such as [39,41,42].

3.1. A Gaussian Point-to-Point Channel

In this section we consider the practically relevant Gaussian point-to-point channel shown in
Figure 1b and given by

Y =
√
snrX + Z, (30)

where Z is standard Gaussian noise and there is an additional input power constraint E[X2] ≤ 1.
The capacity in this setting was solved in the original paper by Shannon and is given by

C =
1
2

log(1 + snr). (31)

To show the converse proof of the capacity (the upper bound on the capacity) in (31), Shannon used
the maximum entropy principle. In contrast to Shannon’s proof, we show the converse can be derived
by using the I-MMSE and the LMMSE upper bound in (11)

I(X; Y) =
1
2

∫ snr

0
mmse(X, γ)dγ

≤ 1
2

∫ snr

0

1
1 + γ

dγ

=
1
2

log(1 + snr). (32)
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It is well know that the upper bound in (32) is achievable if and only if the input is X ∼ N (0, 1).
The main idea behind the upper bounding technique in (32) is to find an upper bound on the

MMSE that holds for all SNR’s and integrate it to get an upper bound on the mutual information.
This simple, yet powerful, idea will be used many times throughout this paper to show information
theoretic converses for multi-user channels.

3.2. Generalized Ozarow-Wyner Bound

In practice, Gaussian inputs are seldom used and it is important to assess the performance of more
practical discrete constellations (or inputs). Another reason is that discrete inputs often outperform
Gaussian inputs in competitive multi-user scenarios, such as the interference channel, as will be
demonstrated in Section 7. For other examples of discrete inputs being useful in multi-user settings,
the interested readers is referred to [43–46].

However, computing an exact expression for the mutual information between the channel input
and output when the inputs are discrete is often impractical or impossible. Therefore, the goal is
to derive a good computable lower bound on the mutual information that is not too far away from
the true value of the mutual information. As we will see shortly, estimation measures such as the
MMSE and the MMPE will play an important role in establishing good lower bounds on the mutual
information.

The idea of finding good capacity approximations can be traced back to Shannon.
Shannon showed, in his unpublished work in 1948 [47], the asymptotic optimality of a PAM input
for the point-to-point power-constrained Gaussian noise channel. Another such observation about
approximate optimality of a PAM input was made by Ungerboeck in [48] who, through numerical
methods, observed that the rate of a properly chosen PAM input is always a constant away from the
AWGN capacity.

Shannon’s and Ungerboeck’s arguments were solidified by Ozarow and Wyner in [24] where firm
lower bounds on the achievable rate with a PAM input were derived and used to show optimality of
PAM to within 0.41 bits [24].

In [24] the following “Ozarow-Wyner lower bound” on the mutual information achieved by a
discrete input XD transmitted over an AWGN channel was shown:

[H(XD)− gap]+ ≤ I(XD; Y) ≤ H(XD), (33a)

gap ≤ 1
2

log
(πe

6

)
+

1
2

log
(

1 +
lmmse(X, snr)

dmin(XD)2

)
, (33b)

where lmmse(X|Y) is the LMMSE. The advantage of the bound in (33) compared to the existing
bounds is its computational simplicity. The bound depends only on the entropy, the LMMSE, and the
minimum distance, which are usually easy to compute.

The bound in (33) has also been proven to be useful for other problems such as two-user Gaussian
interference channels [45,49], communication with a disturbance constraint [50], energy harvesting
problems [51,52], and information-theoretic security [53].

The bound on the gap in (33) has been sharpened in [45] to

gap ≤ 1
2

log
(πe

6

)
+

1
2

log
(

1 +
mmse(X, snr)

dmin(XD)2

)
, (34)

since lmmse(X, snr) ≥ mmse(X, snr).
Finally, the following generalization of the bound in (34) to discrete vector input, which is the

sharpest known bound on the gap term, was derived in [25].
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Theorem 4. (Generalized Ozarow-Wyner Bound [25]) Let XD be a discrete random vector with finite entropy,
and let Kp be a set of continuous random vectors, independent of XD, such that for every V ∈ Kp, h(V),
‖V‖p < ∞, and

H(XD|XD + V) = 0, ∀V ∈ Kp. (35a)

Then for any p > 0

[H(XD)− gapp]
+ ≤ I(XD; Y) ≤ H(XD), (35b)

where

n−1gapp ≤ inf
V∈Kp

(
G1,p(V, XD) + G2,p(V)

)
,

G1,p(V, XD) = log
(‖V + XD − fp(XD|Y)‖p

‖V‖p

)
≤


log

(
1 + mmpe

1
p (XD ,snr,p)
‖V‖p

)
, p 6= 2

1
2 log

(
1 + mmse(XD ,snr)

‖V‖2
2

)
, p = 2

, (35c)

G2,p(V) = log

 kn,p · n
1
p · ‖V‖p

e
1
n he(V)

 . (35d)

Remark 2. The condition in (35a) can be enforced by, for example, selecting the support of V to satisfy a
non-overlap condition given by

supp(V + xi) ∩ supp(V + xj) = ∅, ∀ xi, xj ∈ supp(XD), i 6= j, (36)

as was done in [54].

It is interesting to note that the lower bound in (35b) resembles the bound for lattice codes in [55],
where V can be thought of as a dither, G2,p corresponds to the log of the normalized p-moment
of a compact region in Rn, G1,p corresponds to the log of the normalized MMSE term, and H(XD)

corresponds to the capacity C.
In order to show the advantage of Theorem 4 over the original Ozarow-Wyner bound (case of n = 1

and with LMMSE instead of MMPE), we consider XD uniformly distributed with the number of points
equal to N = b

√
1 + snrc, that is, we choose the number of points such that H(XD) ≈ 1

2 log(1 + snr).
Figure 2 shows:

• The solid cyan line is the “shaping loss” 1
2 log

(
πe
6
)

for a one-dimensional infinite lattice and is
the limiting gap if the number of points N grows faster than

√
snr;

• The solid magenta line is the gap in the original Ozarow-Wyner bound in (33); and
• The dashed purple, dashed-dotted blue and dotted green lines are the new gap given by Theorem 4

for values of p = 2, 4, 6, respectively, and where we choose V ∼ U
[
− dmin(XD)

2 ,
dmin(XD)

2

]
.

We note that the version of the Ozarow-Wyner bound in Theorem 4 provides the sharpest bound
for the gap term. An open question, for n = 1, is what value of p provide the smallest gap and whether
it coincides with the ultimate “shaping loss”.
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Figure 2. Gaps in Equations (33a) and (35) vs. snr.

For the AWGN channel there exist a number of other bounds that use discrete inputs as well
(see [46,56–58] and references therein). The advantage of using Ozarow-Wyner type bounds, however,
lies in their simplicity as they only depend on the number of signal constellation points and the
minimum distance of the constellation.

The Ozarow-Wyner bound will play a key role in Sections 5 and 8 where we examine achievable
schemes for a point-to-point channel with a disturbance constraint and for a two-user Gaussian
interference channel.

For recent applications of the bound in Theorem 4 to non-Gaussian and MIMO channels the
reader is referred to [59–61].

3.3. SNR Evolution of Optimal Codes

The I-MMSE can also be used in the analysis of the MMSE SNR-evolution of asymptotically
optimal code sequences (code sequences that approach capacity in the limit of blocklength).
In particular, using the I-MMSE relationship one can exactly identify the MMSE SNR-evolution
of asymptotically optimal code sequences for the Gaussian point-to-point channel.

Theorem 5. (SNR evolution of the MMSE [62,63]) Any code sequence for the Gaussian point-to-point channel
attains capacity if and only if

mmse∞(X, γ) =

{
1

1+γ γ ≤ snr,
0 γ ≥ snr.

(37)

Figure 3 depicts the SNR evolution of the MMSE as described in Theorem 5. The discontinuity of
the MMSE at snr is ofter referred to as the phase transition. From Theorem 5 it is clear that the optimal
point-to-point code must have the same MMSE profile as the Gaussian distribution for all SNR’s
before snr and experience a phase transition at snr. Intuitively, the phase transition happens because an
optimal point-to-point code designed to operate at snr can be reliably decoded at snr and SNR’s larger
than snr, and both the decoding and estimation errors can be driven to zero. It is also important to
point out that the area under (37) is twice the capacity.
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Figure 3. SNR evolution of the MMSE for snr = 3.

4. Applications to the Wiretap Channel

In this section, by focusing on the wiretap channel, it is shown how estimation theoretic techniques
can be applied to multi-user information theory. The wiretap channel, introduced by Wyner in [64], is
a point-to-point channel with an additional eavesdropper (see Figure 4a). The input is denoted by X,
the output of the legitimate user is denoted by Y, and the output of an eavesdropper is denoted by Ye.
The transmitter of X, commonly referred to as Alice, wants to reliably communicate a message W to
the legitimate receiver Y, commonly referred to as Bob, while keeping the message W secure to some
extent from the eavesdropper Ye, commonly referred to as Eve.
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Figure 4. Wiretap Channels. (a) The Wiretap Channel; (b) The Gaussian Wiretap Channel.

Definition 5. A rate-equivocation pair (R, d) is said to be achievable over a wiretap channel if there exists a
sequence of (2nR, n) codes such that

lim
n→∞

P[Ŵ 6= W] = 0, reliability constraint, (38a)

lim
n→∞

1
n

I(W; Ye) ≤ R− d, information leakage or secrecy constraint. (38b)

The rate-equivocation region Rs is defined as the closure of all achievable rate-equivocation pairs, and the
secrecy capacity is defined as
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Cs = sup
R
{R : (R, R) ∈ Rs}. (39)

The secrecy capacity of a general wiretap channel was shown by Csiszár and Körner [65] and is
given by

Cs = max
PUX
{I(U; Y)− I(U; Ye)} (40)

where U is an auxiliary random variable that satisfies the Markov relationship U ↔ X ↔ (Y, Ye).
In the case of a degraded wiretap channel (i.e., a wiretap channel obeying the Markov relationship

X ↔ Y ↔ Ye) the expression in (40) reduces to

Cs = max
PX
{I(X; Y)− I(X; Ye)} . (41)

In fact, the expression in (41) for the degraded channel predates the expression in (40) and was shown
in the original work of Wyner [64].

4.1. Converse of the Gaussian Wiretap Channel

In this section, we consider the practically relevant scalar Gaussian wiretap channel given by

Y =
√
snrX1 + Z1, (42a)

Ye =
√
snr0X2 + Z2, (42b)

where snr ≥ snr0, with an additional input power constraint E[X2] ≤ 1. This setting was considered
in [66], and the secrecy capacity was shown to be

Cs =
1
2

log
(

1 + snr

1 + snr0

)
. (43)

In contrast to the proof in [66], where the key technical tool used to maximize the expression in (41)
was the EPI, by using the I-MMSE relationship the capacity in (43) can be shown via the following
simple three line argument [30]:

I(X; Y)− I(X; Ye) =
1
2

∫ snr

snr0

mmse(X, t)dt (44a)

≤ 1
2

∫ snr

snr0

1
1 + t

dt (44b)

=
1
2

log
(

1 + snr

1 + snr0

)
, (44c)

where the inequality follows by using the LMMSE upper bound in (11). It is also interesting to point
out that the technique in (44) can be easily mimicked to derive the entire rate-equivocation region; for
details see [23].

4.2. SNR Evolution of Optimal Wiretap Codes

In the previous section, we saw that the I-MMSE relationship is a very powerful mathematical tool
and can be used to provide a simple derivation of the secrecy capacity of the scalar Gaussian wiretap
channel. In fact, as shown in [28,34], the I-MMSE relationship can also be used to obtain practical
insights. Specifically, it was shown to be useful in identifying key properties of optimal wiretap codes.

Theorem 6. (SNR evolution of the MMSE [28]) Any code sequence for the Gaussian wiretap channel attains a
rate equivocation pair (R, Cs), meaning it attains the maximum level of equivocation, if and only if

mmse∞(X; γ |W) = 0, γ ≥ snr0, (45)
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and

mmse∞(X; γ) =

{
1

1+γ , γ ≤ snr,
0, γ > snr,

(46)

regardless of the rate of the code, meaning for any R ≥ Cs.

Note that, as shown in Theorem 5, (46) is the SNR-evolution of any point-to-point capacity
achieving code sequence, C, to Y as shown in [62,63]; however, only a one-to-one mapping over this
codebook sequence leads to the maximum point-to-point rate. The idea is that the maximum level of
equivocation determines the SNR-evolution of mmse(X; γ) regardless of the rate.

The additional condition given in (45) is required in order to fully define the sub-group of code
sequences that are (R, Cs) codes for the Gaussian wiretap channel. Still, these conditions do not fully
specify the rate of the code sequence, as the group contains codes of different rates R as long as
R ≥ dmax. Note that the rate of the code is determined solely by the SNR-evolution of mmse (X; γ|W)

in the region of γ ∈ [0, snr0) and is given by

R =
1
2

∫ snr

0
[mmse∞(X; γ)−mmse∞(X; γ|W)] dγ. (47)

The immediate question that arises is: Can we find MMSE properties that will distinguish code
sequences of different rates? The answer is affirmative in the two extreme cases: (i) When R = Cs,
meaning a completely secure code; (ii) When R = C, meaning maximum point-to-point capacity. In the
latter case, one-to-one mapping is required, and the conditional MMSE is simply zero for all SNR.
Figure 5 considers the former case of perfect secrecy as well as an arbitrary intermediate case in which
the rate is between the secrecy capacity and the point-to-point capacity.
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Figure 5. The above figure depicts the behavior of mmse∞(X; γ) as a function of γ assuming dmax

(in dotted blue), the behavior mmse∞(X; γ|Ws) assuming complete secrecy (in dashed red) and
the behavior of mmse∞(X; γ|W) for some arbitrary code of rate above secrecy capacity and below
point-to-point capacity (in dash-dot black). We mark twice the rate as the area between mmse∞(X; γ)

and mmse∞(X; γ|W) (in magenta). Parameters are snr0 = 2 and snr = 2.5.
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According to the above result, constructing a completely secure code sequence requires
splitting the possible codewords into sub-codes that are asymptotically optimal for the eavesdropper.
This approach is exactly the one in Wyner’s original work [64], and also emphasized by Massey
in [67], wherein the achievability proof the construction of the code sequence is such that the bins of
each secure message are asymptotically optimal code sequences to the eavesdropper (saturating the
eavesdropper). The above claim extends this observation by claiming that any mapping of messages
to codewords (alternatively, any binning of the codewords) that attains complete secrecy must saturate
the eavesdropper, thus supporting the known achievability scheme of Wyner. Moreover, it is important
to emphasize that the maximum level of equivocation can be attained with no loss in rate, meaning the
reliable receiver can continue communicating at capacity.

Another important point to note is that these results supports the necessity of a stochastic encoder
for any code sequence for the Gaussian wiretap channel, achieving the maximum level of equivocation
and with R < C (as shown in [68] for a completely secure code for the discrete memoryless wiretap
channel), since one can show that the conditions guarantee H (X|W) > 0 for any such code sequence.

5. Communication with a Disturbance Constraint

Consider a scenario in which a message, encoded as X, must be decoded at the primary receiver Y
while it is also seen at the unintended/secondary receiver Y0 for which it is interference, as shown in
Figure 6a. The transmitter wishes to maximize its communication rate, while subject to a constraint
on the disturbance it inflicts on the secondary receiver, and where the disturbance is measured by
some function F(X, Y0). It is common to refer to such a scenario as communication with a disturbance
constraint. The choice of F(X, Y0) depends on the application one has in mind. For example, a common
application is to limit the interference that the primary user inflicts on the secondary. In this case,
two possible choices of F(X, Y0) are the mutual information I(X; Y0) and the MMSE mmse(X|Y0),
considered in [69,70], respectively. In what follows we review these two possible measures of
disturbance, so as to explain the advantages of the MMSE as a measure of disturbance that best
models the interference.
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Ŵ

Eavesdropper

W

Ŵ
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Figure 6. Channels with disturbance constraints. (a) A point-to-point channel with a disturbance
constraint; (b) A Gaussian point-to-point channel with the disturbance constraint.

5.1. Max-I Problem

Consider a Gaussian noise channel and take the disturbance to be measured in terms of the MMSE
(i.e., F(X, Y0) = mmse(X, snr0)), as shown on Figure 6b. Intuitively, the MMSE disturbance constraint
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quantifies the remaining interference after partial interference cancellation or soft-decoding have been
performed [47,70]. Formally, the following problem was considered in [50]:

Definition 6. (Max-I problem.) For some β ∈ [0, 1]

Cn(snr, snr0, β) := sup
X

In(X, snr), (48a)

s.t. ‖X‖2
2 ≤ 1, power constraint, (48b)

and mmse(X, snr0) ≤
β

1 + βsnr0
, MMSE constraint. (48c)

The subscript n in Cn(snr, snr0, β) emphasizes that we consider length n inputs X ∈ Rn . Clearly
Cn(snr, snr0, β) is a non-decreasing function of n. The scenario depicted in Figure 6b is captured
when n → ∞ in the Max-I problem, in which case the objective function has a meaning of reliable
achievable rate.

The scenario modeled by the Max-I problem is motivated by the two-user Gaussian interference
channel (G-IC), whose capacity is known only for some special cases. The following strategies are
commonly used to manage interference in the G-IC:

1. Interference is treated as Gaussian noise: in this approach the interference is not explicitly decoded.
Treating interference as noise with Gaussian codebooks has been shown to be sum-capacity
optimal in the so called very-weak interference regime [71–73].

2. Partial interference cancellation: by using the Han-Kobayashi (HK) achievable scheme [74], part
of the interfering message is jointly decoded with part of the desired signal. Then the decoded
part of the interference is subtracted from the received signal, and the remaining part of the
desired signal is decoded while the remaining part of the interference is treated as Gaussian
noise. With Gaussian codebooks, this approach has been shown to be capacity achieving in the
strong interference regime [75] and optimal within 1/2 bit per channel per user otherwise [76].

3. Soft-decoding/estimation: the unintended receiver employs soft-decoding of part of the interference.
This is enabled by using non-Gaussian inputs and designing the decoders that treat interference
as noise by taking into account the correct (non-Gaussian) distribution of the interference.
Such scenarios were considered in [44,46,49], and shown to be optimal to within either a constant
or a O(log log(snr)) gap for all regimes in [45].

Even though the Max-I problem is somewhat simplified, compared to that of determining the
capacity of the G-IC, as it ignores the existence of the second transmission, it can serve as an important
building block towards characterizing the capacity of the G-IC [47,70], especially in light of the known
(but currently uncomputable) limiting expression for the capacity region [77]:

CIC
∞ = lim

n→∞
co

⋃
PX1X2=PX1

PX2

{
0 ≤ R1 ≤ In(X1; Y1)

0 ≤ R2 ≤ In(X2; Y2)

}
, (49)

where co denotes the convex closure operation. Moreover, observe that for any finite n we have that
the capacity region can be inner bounded by

CIC
n ⊂ CIC

∞ , (50)

where

CIC
n = co

⋃
PX1X2=PX1

PX2

{
0 ≤ R1 ≤ In(X1; Y1)

0 ≤ R2 ≤ In(X2; Y2)

}
. (51)
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The inner bound CIC
n will be referred to as the treating interference as noise (TIN) inner bound. Finding

the input distributions PX1 PX2 that exhaust the achievable region in CIC
n is an important open problem.

In Section 8, for a special case of n = 1, we will demonstrate that CIC
1 is within a constant or

O(log log(snr)) from the capacity CIC
∞ . Therefore, the Max-I problem, denoted by Cn(snr, snr0, β) in

(48), can serve as an important step in characterizing the structure of optimal input distributions for
CIC

n . We also note that in [47,70] it was conjectured that the optimal input for C1(snr, snr0, β) is discrete.
For other recent works on optimizing the TIN region in (51), we refer the reader to [43,46,49,78,79] and
the references therein.

The importance of studying models of communication systems with disturbance constraints has
been recognized previously. For example, in [69] Bandemer et al. studied the following problem
related to the Max-I problem in (48).

Definition 7. (Bandemer et al. problem [69]) For some R ≥ 0

In(snr0, snr, R) := max
X

In(X, snr0), (52a)

s.t. ‖X‖2
2 ≤ 1, power constraint, (52b)

and In(X, snr0) ≤ R, disturbance constraint. (52c)

In [69] it was shown that the optimal solution for In(snr, snr0, R), for any n, is attained by
X ∼ N (0, αI) where α = min

(
1, e2R−1

snr0

)
; here α is such that the most stringent constraint between (52b)

and (52c) is satisfied with equality. In other words, the optimal input is independent and identically
distributed (i.i.d.) Gaussian with power reduced such that the disturbance constraint in (52c) is
not violated.

Theorem 7 ([69]). The rate-disturbance region of the problem in (52) is given by

In(snr0, snr, R) ≤ 1
2

log (1 + αsnr) , (53)

with equality if and only if X ∼ N (0, αI) where α = min
(

1, e2R−1
snr0

)
.

Measuring the disturbance with the mutual information as in (52), in contrast to the MMSE as
in (48), suggests that it is always optimal to use Gaussian codebooks with reduced power without
any rate splitting. Moreover, while the mutual information constraint in (52) limits the amount of
information transmitted to the unintended receiver, it may not be the best choice for measuring the
interference, since any information that can be reliably decoded by the unintended receiver is not
really interference. For this reason, it has been argued in [47,70] that the Max-I problem in (48) with
the MMSE disturbance constraint is a more suitable building block to study the G-IC, since the MMSE
constraint accounts for the interference, and captures the key role of rate splitting.

We also refer the reader to [80] where, in the context of discrete memoryless channels,
the disturbance constraint was modeled by controlling the type (i.e., empirical distribution) of the
interference at the secondary user. Moreover, the authors of [80] were able to characterize the tradeoff
between the rate and the type of the induced interference by exactly characterizing the capacity region
of the problem at hand.

We first consider a case of the Max-I problem when n→ ∞.

5.2. Characterization of Cn(snr, snr0, β) as n→ ∞

For the practically relevant case of n→ ∞, which has an operational meaning, C∞(snr, snr0, β) has
been characterized in [70] and is given by the following theorem.



Entropy 2017, 19, 409 20 of 51

Theorem 8 ([70]). For any snr, snr0 ≥ 0 and β ∈ [0, 1]

C∞(snr, snr0, β) = lim
n→∞

Cn(snr, snr0, β),

=

{ 1
2 log(1 + snr), snr ≤ snr0,

1
2 log(1 + βsnr) + 1

2 log
(

1 + snr0(1−β)
1+βsnr0

)
, snr ≥ snr0,

=
1
2

log+
(

1 + βsnr

1 + βsnr0

)
+

1
2

log (1 + min(snr, snr0)) , (54)

which is achieved by using superposition coding with Gaussian codebooks.

The proof of the achievability part of Theorem 8 is by using superposition coding and is outside
of the scope of this work. The interested reader is referred to [63,70,81] for a detailed treatment of
MMSE properties of superposition codes.

Next, we show a converse proof of Theorem 8. In addition, to the already familiar use of the
LMMSE bound technique, as in the wiretap channel in Section 4.1, we also show an application of the
SCPP bound. The proof for the case of snr ≤ snr0 follows by ignoring the MMSE constraint at snr0 and
using the LMMSE upper bound

In(X, snr) =
1
2

∫ snr

0
mmse(X, t)dt

≤ 1
2

∫ snr

0

1
1 + t

dt

=
1
2

log(1 + snr)dt.

Next, we focus on the case of snr ≥ snr0

In(X, snr) =
1
2

∫ snr

0
mmse(X, t)dt

=
1
2

∫ snr0

0
mmse(X, t)dt +

1
2

∫ snr

snr0

mmse(X, t)dt

≤ 1
2

∫ snr0

0

1
1 + t

dt +
1
2

∫ snr

snr0

β

1 + βt
dt

=
1
2

log(1 + βsnr) +
1
2

log
(

1 +
snr0(1− β)

1 + βsnr0

)
,

where the last inequality follows by upper bounding the integral over [0, snr0] by the LMMSE bound
in (11) and by upper bounding the integral over [snr0, snr] using the SCPP bound in (21).

Figure 7 shows a plot of C∞(snr, snr0, β) in (54) normalized by the capacity of the point-to-point
channel 1

2 log(1 + snr). The region snr ≤ snr0 (flat part of the curve) is where the MMSE constraint is
inactive since the channel with snr0 can decode the interference and guarantee zero MMSE. The regime
snr ≥ snr0 (curvy part of the curve) is where the receiver with snr0 can no-longer decode the interference
and the MMSE constraint becomes active, which in practice is the more interesting regime because
the secondary receiver experiences “weak interference” that cannot be fully decoded (recall that in
this regime superposition coding appears to be the best achievable strategy for the two-user Gaussian
interference channel, but it is unknown whether it achieves capacity [76]).
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Figure 7. Plot of C∞(snr,snr0,β)
1
2 log(1+snr)

vs. snr in dB, for β = 0.01, snr0 = 5 = 6.989 dB.

5.3. Proof of the Disturbance Constraint Problem with a Mutual Information Constraint

In this section we show that the mutual information disturbance constraint problem in (52) can
also be solved via an estimation theoretic approach.

An Alternative Proof of the Converse Part of Theorem 7. Observe that, similarly to the Max-I
problem, the interesting case of the In(snr0, snr, R) is the “weak interference” regime (i.e., snr ≥ snr0).
This, follows since for the “strong interference” regime (i.e., snr ≤ snr0) the result follows trivially by
the data processing inequality

In(X, snr) ≤ In(X, snr0) ≤ R, (55)

and maximizing (55) under the power constraint. To show Theorem 7, for the case of snr ≥ snr0,
observe that

0 ≤ In(X, snr0) ≤
1
2

log (1 + snr0) , (56)

where the inequality on the right is due to the power constraint on X. Therefore, there exists some
α ∈ [0, 1] such that

In(X, snr0) =
1
2

log (1 + αsnr0) . (57)

Using the I-MMSE, (57) can be written as

1
2

∫ snr0

0
mmse(X, t)dt =

1
2

∫ snr0

0

α

1 + αt
dt. (58)

From (58) and SCPP property we conclude that mmse(X, t) and α
1+αt are either equal for all t, or cross

each other once in the region [0, snr0). In both cases, by the SCPP, we have

mmse(X, t) ≤ α

1 + αt
, ∀t ∈ [snr0, ∞). (59)

We are now in the position to bound the main term of the disturbance constrained problem. By using
the I-MMSE relationship the mutual information can be bounded as follows:
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In(X, snr) =
1
2

∫ snr0

0
mmse(X, t)dt +

1
2

∫ snr

snr0

mmse(X, t)dt

=
1
2

log (1 + αsnr0) +
1
2

∫ snr

snr0

mmse(X, t)dt

≤ 1
2

log (1 + αsnr0) +
1
2

∫ snr

snr0

α

1 + αt
dt (60)

=
1
2

log (1 + αsnr) , (61)

where the bound in (60) follows by the inequality in (59). The proof of the converse is concluded by
establishing that the maximum value of α in (61) is given by α = min

(
1, e2R−1

snr0

)
which is a consequence

of the bound In(X, snr0) ≤ R.
This concludes the proof of the converse.

The achievability proof of Theorem 7 follows by using an i.i.d. Gaussian input with power α.
This concludes the proof of Theorem 7.

In contrast to the proof in [69] which appeals to the EPI, the proof outlined here only uses the
SCPP and the I-MMSE. Note, that unlike the proof of the converse of the Max-I problem, which also
requires the LMMSE bound, the only ingredient in the proof of the converse for In(snr0, snr, R) is a
clever use of the SCPP bound. In Section 6, we will make use of this technique and show a converse
proof for the scalar Gaussian broadcast channel.

Another observation is that the achievability proof of the In(snr0, snr, R) holds for an arbitrary
finite n while the achievability proof of the Max-I problem holds only as n→ ∞. In the next section,
we demonstrate techniques for how to extend the achievability of the Max-I problem to the case of
finite n. These techniques will ultimately be used to show an approximate optimality of the TIN inner
bound for the two-user G-IC in Section 8.

5.4. Max-MMSE Problem

The Max-I problem in (48) is closely related to the following optimization problem.

Definition 8. (Max-MMSE problem [50,82]) For some β ∈ [0, 1]

Mn(snr, snr0, β) := sup
X

mmse(X, snr), (62a)

s.t. ‖X‖2
2 ≤ 1, power constraint, (62b)

and mmse(X, snr0) ≤
β

1 + βsnr0
, MMSE constraint. (62c)

The authors of [63,70] proved that

M∞(snr, snr0, β) = lim
n→∞

Mn(snr, snr0, β) =

{
1

1+snr , snr < snr0,
β

1+βsnr , snr ≥ snr0,
, (63)

achieved by superposition coding with Gaussian codebooks. Clearly there is a discontinuity in (63) at
snr = snr0 for β < 1. This fact is a well known property of the MMSE, and it is referred to as a phase
transition [63].

The LMMSE bound provides the converse solution for M∞(snr, snr0, β) in (63) in the regime
snr ≤ snr0. An interesting observation is that in this regime the knowledge of the MMSE at snr0 is not
used. The SCPP bound provides the converse in the regime snr ≤ snr0 and, unlike the LMMSE bound,
does use the knowledge of the value of MMSE at snr0.
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The solution of the Max-MMSE problem provides an upper bound on the Max-I problem (for every
n including in the limit as n→ ∞), through the I-MMSE relationship

Cn(snr, snr0, β) =
1
2

∫ snr

0
mmse(X, t)dt ≤ 1

2

∫ snr

0
Mn(t, snr0, β)dt. (64)

The reason is that in the Max-MMSE problem one maximizes the integrand in the I-MMSE
relationship for every γ, and the maximizing input may have a different distribution for each γ.
The surprising result is that in the limit as n → ∞ we have equality, meaning that in the limit
there exists an input that attains the maximum Max-MMSE solution for every γ. In other words,
the integration of M∞(γ, snr0, β) over γ ∈ [0, snr] results in C∞(snr, snr0, β). In view of the relationship
in (64) we focus on the Mn(snr, snr0, β) problem.

Note that SCPP gives a solution to the Max-MMSE problem in (62) for snr ≥ snr0 and any n ≥ 1
as follows:

Mn(snr, snr0, β) =
β

1 + βsnr
, for snr ≥ snr0, (65)

achieved by X ∼ N (0, βI).
However, for snr ≤ snr0, where the LMMSE bound (11) is used without taking the constraint

into account, it is no longer tight for every n ≥ 1. Therefore, the emphasis in the treatment of the
Max-MMSE problem is on the regime snr ≤ snr0. In other words, the phase transition phenomenon
can only be observed as n → ∞, and for any finite n the LMMSE bound on the MMSE at snr ≤ snr0
must be sharpened, as the MMSE constraint at snr0 must restrict the input in such a way that would
effect the MMSE performance at snr ≤ snr0. We refer to the upper bounds in the regime snr ≤ snr0 as
complementary SCPP bounds. Also, for any finite n, mmse(X, snr) is a continuous function of snr [30].
Putting these two facts together we have that, for any finite n, the objective function Mn(snr, snr0, β)

must be continuous in snr and converge to a function with a jump-discontinuity at snr0 as n → ∞.
Therefore, Mn(snr, snr0, β) must be of the following form:

Mn(snr, snr0, β) =


1

1+snr , snr ≤ snrL,
Tn(snr, snr0, β), snrL ≤ snr ≤ snr0,

β
1+βsnr , snr0 ≤ snr,

(66)

for some snrL. The goal is to characterize snrL in (66) and the continuous function Tn(snr, snr0, β) such that

Tn(snrL, snr0, β) =
1

1 + snrL
, (67a)

Tn(snr0, snr0, β) =
β

1 + βsnr0
, (67b)

and give scaling bounds on the width of the phase transition region defined as

Wn := snr0 − snrL. (68)

In other words, the objective is to understand the behavior of the MMSE phase transitions for
arbitrary finite n by obtaining complementary upper bounds on the SCPP. We first focus on upper
bounds on Mn(snr, snr0, β).

Theorem 9. (D-Bound [50]) For any X and 0 < snr ≤ snr0, we have

mmse(X, snr) ≤ mmse(X, snr0) + kn

(
1
snr
− 1

snr0

)
, (69a)

kn ≤ n + 2, (69b)
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The proof of Theorem 9 can be found in [50] and relies on developing bounds on the derivative of
the MMSE with respect to the SNR.

Theorem 10. (M-Bound [25]) For 0 < snr ≤ snr0,

mmse(X, snr) ≤ min
r> 2

γ

κ(r, γ, n) (mmse(X, snr0))
γr−2
r−2 , (70a)

where γ := snr
2snr0−snr ∈ (0, 1], and

κ(r, γ, n) :=

√
2

n1−γ

(
1 + γ

γ

) n(1−γ)−1
2

M
2(1−γ)

r−2
r , (70b)

Mr := ‖X−E [X|Ysnr0 ]‖r
r ≤ 2r min

 ‖Z‖r
r

snr
r
2
0

, ‖X‖r
r

 . (70c)

The bounds in (69a) and in (70a) are shown in Figure 8. The key observation is that the bounds
in (69a) and in (70a) are sharper versions of the LMMSE bound that take into account the value of the
MMSE at snr0. It is interesting to observe how the bounds converge with n going to ∞.
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Figure 8. Upper bounds on Mn(snr, snr0, β) vs. snr. (a) For snr0 = 5 and β = 0.01. Here n = 1;
(b) For snr0 = 5 and β = 0.05. Several values of n.
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The bound in (70a) is asymptotically tighter than the one in (69a). It can be shown that the phase
transition region shrinks as O

(
1√
n

)
for (70a), and as O

(
1
n

)
for the bound in (69a). It is not possible in

general to assert that (70a) is tighter than (69a). In fact, for small values of n, the bound in (69a) can
offer advantages, as seen for the case n = 1 shown in Figure 8b. Another advantage of the bound
in (69a) is its analytical simplicity.

With the bounds in (69a) and in (70a) at our disposal we can repeat the converse proof outline in (61).

5.5. Mixed Inputs

Another question that arises, in the context of finite n, is how to mimic the achievability of
superposition codes? Specifically, how to select an input that will maximize Mn(snr, snr0, β) when
snr ≤ snr0.

We propose to use the following input, which in [45] was termed a mixed input:

Xmix :=
√

1− δXD +
√

δXG, δ ∈ [0, 1] : (71)

XG ∼ N (0, I), ‖XD‖2
2 ≤ 1,

1
n

H(XD) < ∞, (72)

where XG and XD are independent. The parameter δ and the distribution of XD are to be optimized over.
The behavior of the input in (71) exibits many properties of superposition codes and we will see

that the discrete part XD will behave as the common message and the Gaussian part XG will behave as
the private message.

The input Xmix exhibits a decomposition property via which the MMSE and the mutual
information can be written as the sum of the MMSE and the mutual information of the XD and
XG components, albeit at different SNR values.

Proposition 7 ([50]). For Xmix defined in (71) we have that

In(Xmix, snr) = In

(
XD,

snr(1− δ)

1 + δsnr

)
+ In(XG, snr δ), (73a)

mmse(Xmix, snr) =
1− δ

(1 + snrδ)2 mmse
(

XD,
snr(1− δ)

1 + δsnr

)
+ δ mmse(XG, snr δ). (73b)

Observe that Proposition 7 implies that, in order for mixed inputs (with δ < 1) to comply with the
MMSE constraint in (48c) and (62c), the MMSE of XD must satisfy

mmse
(

XD,
snr0(1− δ)

1 + δsnr0

)
≤ (β− δ)(1 + δsnr0)

(1− δ)(1 + βsnr0)
. (74)

Proposition 7 is particularly useful because it allows us to design the Gaussian and discrete
components of the mixed input independently.

Next, we evaluate the performance of Xmix in Mn(snr, snr0, β) for the important special case of
n = 1. Figure 9 shows upper and lower bounds on M1(snr, snr0, β) where we show the following:

• The M∞(snr, snr0, β) upper bound in (63) (solid red line);
• The upper D-bound (69a) (dashed cyan line) and upper M-bound (dashed red line) (70a);
• The Gaussian-only input (solid green line), with X ∼ N (0, β), where the power has been reduced

to meet the MMSE constraint;
• The mixed input (blue dashed line), with the input in (71). We used Proposition 7 where we

optimized over XD for δ = β snr0
1+snr0

. The choice of δ is motivated by the scaling property of

the MMSE, that is, δmmse(XG, snrδ) = mmse(
√

δXG, snr), and the constraint on the discrete
component in (74). That is, we chose δ such that the power of XG is approximately β while
the MMSE constraint on XD in (74) is not equal to zero. The input XD used in Figure 9 was
found by a local search algorithm on the space of distributions with N = 3, and resulted in
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XD = [−1.8412,−1.7386, 0.5594] with PX = [0.1111, 0.1274, 0.7615], which we do not claim to
be optimal;

• The discrete-only input (Discrete 1 brown dashed-dotted line), with
XD = [−1.8412,−1.7386, 0.5594] with PX = [0.1111, 0.1274, 0.7615], that is, the same discrete
part of the above mentioned mixed input. This is done for completeness, and to compare the
performance of the MMSE of the discrete component of the mixed input with and without the
Gaussian component; and

• The discrete-only input (Discrete 2 dotted magenta line), with
XD = [−1.4689,−1.1634, 0.7838] with PX = [0.1282, 0.2542, 0.6176], which was found by using a
local search algorithm on the space of discrete-only distributions with N = 3 points.

The choice of N = 3 is motivated by the fact that it requires roughly N = b√1 + snr0c points for
the PAM input to approximately achieve capacity of the point-to-point channel with SNR value snr0.

On the one hand, Figure 9 shows that, for snr ≥ snr0, a Gaussian-only input with power reduced
to β maximizes M1(snr, snr0, β) in agreement with the SCPP bound (green line). On the other hand,
for snr ≤ snr0, we see that discrete-only inputs (brown dashed-dotted line and magenta dotted
line) achieve higher MMSE than a Gaussian-only input with reduced power. Interestingly, unlike
Gaussian-only inputs, discrete-only inputs do not have to reduce power in order to meet the MMSE
constraint. The reason discrete-only inputs can use full power, as per the power constraint only,
is because their MMSE decreases fast enough (exponentially in SNR) to comply with the MMSE
constraint. However, for snr ≥ snr0, the behavior of the MMSE of discrete-only inputs, as opposed to
mixed inputs, prevents it from being optimal; this is due to their exponential tail behavior. The mixed
input (blue dashed line) gets the best of both (Gaussian-only and discrete-only) worlds: it has the
behavior of Gaussian-only inputs for snr ≥ snr0 (without any reduction in power) and the behavior of
discrete-only inputs for snr ≤ snr0. This behavior of mixed inputs turns out to be important for the
Max-I problem, where we need to choose an input that has the largest area under the MMSE curve.

Finally, Figure 9 shows the achievable MMSE with another discrete-only input (Discrete 2, dotted
magenta line) that achieves higher MMSE than the mixed input for snr ≤ snr0 but lower than the mixed
input for snr ≥ snr0. This is again due to the tail behavior of the MMSE of discrete inputs. The reason
this second discrete input is not used as a component of the mixed inputs is because this choice would
violate the MMSE constraint on XD in (74). Note that the difference between Discrete 1 and 2 is that,
Discrete 1 was found as an optimal discrete component of a mixed input (i.e., δ = β snr0

1+snr0
), while

Discrete 2 was found as an optimal discrete input without a Gaussian component (i.e., δ = 0).
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Figure 9. Upper and lower bounds on M1(snr, snr0, β) vs. snr, for β = 0.01, snr0 = 10.
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We conclude this section by demonstrating that an inner bound on C1(snr, snr0, β) with the mixed
input in (71) is to within an additive gap of the outer bound.

Theorem 11 ([50]). A lower bound on C1(snr, snr0, β) with the mixed input in (71), with XD ∼ PAM and
with input parameters as specified in Table 1, is to within O

(
log log

(
1

mmse(X,snr0)

))
.

Table 1. Parameters of the mixed input in (71) used in the proof of Proposition 11.

Regime Input Parameters

Weak Interference (snr ≥ snr0) N =

⌊√
1 + c1

(1−δ)snr0
1+δsnr0

⌋
, c1 = 3

2 log
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) , δ = β snr0
1+snr0

Strong Interference (snr ≤ snr0) N =
⌊√

1 + c2snr
⌋
, c2 = 3

2 log
(

12(1+βsnr0)
β

) , δ = 0

We refer the reader to [50] for the details of the proof and extension of Theorem 11 to arbitrary n.
Please note that the gap result in Proposition 11 is constant in snr (i.e., independent of snr) but

not in snr0. Figure 10 compares the inner bounds on C1(snr, snr0, β), normalized by the point-to-point
capacity 1

2 log(1 + snr), with mixed inputs (dashed magenta line) in Proposition 11 to:

• The C∞(snr, snr0, β) upper bound in (54) (solid red line);
• The upper bound from integration of the bound in (69a) (dashed blue line);
• The upper bound from integration of the bound in (70a) (dashed red line); and
• The inner bound with X ∼ N (0, β), where the reduction in power is necessary to satisfy the

MMSE constraint mmse(X, snr0) ≤ β
1+βsnr0

(dotted green line).

Figure 10 shows that Gaussian inputs are sub-optimal and that mixed inputs achieve large degrees
of freedom compared to Gaussian inputs. Interestingly, in the regime snr ≤ snr0, it is approximately
optimal to set δ = 0, that is, only the discrete part of the mixed input is used. This in particular
supports the conjecture in [70] that discrete inputs may be optimal for n = 1 and snr ≤ snr0. For the
case snr ≥ snr0 our results partially refute the conjecture by excluding the possibility of discrete inputs
with finitely many points from being optimal.
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Figure 10. Upper and lower bounds on Cn=1(snr, snr0, β) vs. snr, for β = 0.001 and snr0 = 60 = 17.6815 dB.
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The key intuition developed in this section about the mixed input and its close resemblance
to superposition coding will be used in Section 8 to show approximate optimality of TIN for the
two-user G-IC.

6. Applications to the Broadcast Channel

The broadcast channel (BC), introduced by Cover in [83], is depicted in Figure 11a. In the BC
the goal of the transmitter is to reliably transmit the message W1 to receiver 1 and the message W2

to receiver 2. The transmitter encodes the pair of messages (W1, W2) into a transmitted codeword
X of length n. Receiver 1 receives the sequence Y1 of length n and receiver 2 receives the sequence
Y2 of length n. They both try to decode their respective messages from their received sequence.
An achievable rate pair is defined as follows:

Definition 9. A rate pair (R1, R2) is said to be achievable for each n, for a message W1 of cardinality 2nR1 and
a message W2 of cardinality 2nR2 , if there exists an encoding function

fn(W1, W2) = X,

and decoding functions

Ŵ1 = g1,n(Y1),

Ŵ2 = g2,n(Y2),

such that

lim
n→∞

P[(W1, W2) 6= (Ŵ1, Ŵ2)] = 0,

assuming that W1 and W2 are uniformly distributed over the respective message sets.

The capacity is defined as the closure over all achievable rate pairs. Note that one can easily add
to the above definition a common message.

The capacity of a general broadcast channel is still an open problem. However, the capacity is
known for some important special cases [42] such as the degraded broadcast channel which is of interest
in this work.
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X Y

X Y

Z ⇠ N (0, I)

X
Encoder

Y

Ye

Y

X
Encoder

Z1 ⇠ N (0, I)

Encoder
X

Y

Ye

PY,Ye|X

Y0

Y

Encoder
X

Y1

Y2X2

X1

Y1

Y2X2

X1

Z1 ⇠ N (0, I)

Z2 ⇠ N (0, I)

X

Y1

Y2

Encoder PY1,Y2|X

(a)

Decoder

Decoder

Decoder

Decoder Decoder Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder 1

Decoder 2

(b)

Figure 11. Two-receiver broadcast channel. (a) A general BC; (b) A Gaussian BC.
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As told by Cover in [84] 1973–1974 was a year of “intense activity” where Bergmans, Gallager
and others tried to provide a converse proof showing that the natural achievable region (shown in
1973 by Bergmans) is indeed the capacity region. Correspondences were exchanged between Gallager,
Bergmans and Wyner until finally one day both Gallager and Bergmans sent a converse proof to
Wyner. Gallager’s proof tackled the degraded (i.e., X ↔ Y1 ↔ Y2) discrete memoryless BC yielding
the following [85]:

CBC =
⋃

PUX

{
R1 ≤ I(X; Y1|U)

R2 ≤ I(U; Y2)
, (75)

where U is an auxiliary random variable with U ↔ X ↔ (Y1, Y2). It did not consider a constraint on
the input.

Bergman’s proof directly examined the scalar Gaussian channel under a power constraint
E[X2] ≤ 1 and input-output relationship given by

Y1 =
√
snr1X + Z1, (76)

Y2 =
√
snr2X + Z2, (77)

where snr1 ≥ snr2 (i.e., the degraded case) and applied the EPI (its first use since Shannon’s paper in
1948) [86]:

CBC =
⋃

α∈[0,1]

{
R1 ≤ 1

2 log (1 + αsnr1)

R2 ≤ 1
2 log

(
1+snr2

1+αsnr2

) . (78)

6.1. Converse for the Gaussian Broadcast Channel

In [30] Guo et al. have shown that a converse proof of the scalar (degraded) Gaussian channel can
also be derived using the SCPP bound instead of the EPI, when applied on the extension of Gallager’s
single-letter expression which takes into account also a power constraint.

The power constraint E[X2] ≤ 1, implies that there exists some α ∈ [0, 1] such that

I(X; Y2|U) =
1
2

log(1 + αsnr2) =
1
2

∫ snr2

0

α

1 + αt
dt. (79)

By the chain rule of mutual information

I(U; Y2) = I(U, X; Y2)− I(X; Y2|U)

= I(X; Y2)− I(X; Y2|U), (80)

where in the last step we have used the Markov chain relationship U ↔ X ↔ (Y1, Y2). Using (79)
and (80) the bound on R2 is given by

R2 ≤ I(U; Y2)

=
1
2

∫ snr2

0
mmse(X, t)dt +

∫ snr2

0

α

1 + αt
dt

≤ 1
2

∫ snr2

0

1
1 + t

dt +
∫ snr2

0

α

1 + αt
dt (81)

=
1
2

log
(

1 + snr2
1 + αsnr2

)
, (82)
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where in (81) we have used the LMMSE bound. The inequality in (82) establishes the desired bound
on R2. To bound the R1 term observe that by using I-MMSE and (79)

I(X; Y2|U) =
1
2

∫ snr2

0
mmse(X, t|U)dt =

1
2

∫ snr2

0

α

1 + αt
dt, (83)

the expression in (83) implies that there exists some 0 ≤ snr0 ≤ snr2 such that

mmse(X, snr0|U) =
α

1 + αsnr0
. (84)

The equality in (84) together with the SCPP bound implies the following inequality:

mmse(X, t|U) ≤ α

1 + αt
, (85)

for all t ≥ snr2 ≥ snr0. Therefore,

R1 ≤ I(X; Y1|U)

=
1
2

∫ snr2

0
mmse(X, t|U)dt +

1
2

∫ snr1

snr2

mmse(X, t|U)dt

=
1
2

log(1 + αsnr2) +
1
2

∫ snr1

snr2

mmse(X, t|U)dt (86)

≤ 1
2

log(1 + αsnr2) +
1
2

∫ snr1

snr2

α

1 + αt
dt (87)

=
1
2

log
(

1 + snr2
1 + αsnr2

)
,

where the expression in (86) follows from (79) and the bound in (87) follows by using the bound in (85).
This concludes the proof.

6.2. SNR Evolution of Optimal BC Codes

Similarly to the analysis presented in Section 4.2 the I-MMSE relationship can be used also to
obtain practical insights and key properties of optimal code sequences for the scalar Gaussian BC.
These were shown in [28,87].

The first result we present explains the implications of reliable decoding in terms of the
MMSE behavior.

Theorem 12 ([28]). Consider a code sequence, transmitting a message pair (W1, W2), at rates (R1, R2)

(not necessarily on the boundary of the capacity region), over the Gaussian BC. W2 can be reliably decoded from
Y2 if and only if

mmse∞(X; γ|W2) = mmse∞(X; γ), ∀γ ≥ snr2. (88)

The above theorem formally states a very obvious observation which is that once W2 can be
decoded, it provides no improvement to the estimation of the transmitted codeword, beyond the
estimation from the output. This insight is strengthened as it is also a sufficient condition for reliable
decoding of the message W2.

The main observation is an extension of the result given in [63], where it was shown that a typical
code from the hierarchical code ensemble (which achieves capacity) designed for a given Gaussian BC
has a specific SNR-evolution of the MMSE function. This result was extended and shown to hold for
any code sequence on the boundary of the capacity region.
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Theorem 13 ([28]). An achievable code sequence for the Gaussian BC has rates on the boundary of the capacity
region, meaning

(R1, R2) =

(
1
2

log (1 + αsnr1) ,
1
2

log
(

1 + snr2
1 + αsnr2

))
, (89)

for some α ∈ [0, 1], if and only if it has a deterministic mapping from (W1, W2) to the transmitted codeword and

mmse∞(X; γ) =


1

1+γ , snr ∈ [0, snr2)
α

1+αγ , γ ∈ [snr2, snr1)
0, γ ≥ snr1

, (90)

mmse∞(X; γ|W2) =

{
α

1+αγ , snr ∈ [0, snr1)
0, snr ≥ snr1

. (91)

Note that the above SNR-evolution holds for any capacity achieving code sequence for the
Gaussian BC. This includes also codes designed for decoding schemes such as “dirty paper coding”,
in which case the decoding at Y1 does not require the reliable decoding of the known “interference”
(the part of the codeword that carries the information of W2), but simply encodes the desired messages
against that “interference”. In that sense the result is surprising since one does not expect such a
scheme to have the same SNR-evolution as a superposition coding scheme, where the decoding is in
layers: first the “interference” and only after its removal, the reliable decoding of the desired message.

Figure 12 depicts the result of Theorem 13 for capacity achieving code sequences.
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mmse∞(X, γ)

mmse∞(X, γ | W2)

Figure 12. In the above figure we consider the SNR-evolution of mmse∞(X; γ) (in dashed blue) and
mmse∞(X; γ|W2) (in solid red) required from an asymptotically capacity achieving code sequence for
the Gaussian BC (rate on the boundary of the capacity region). Twice R2 is marked as the area between
these two functions (in magenta). The parameters are snr1 = 2.5, snr2 = 2, and α = 0.4.

7. Multi-Receiver SNR-Evolution

In this section we extend the results regarding the SNR-evolution of the Gaussian wiretap channel
and the SNR-evolution of the Gaussian broadcast channel, given in Sections 4.2 and 6.2, respectively,
to the multi-receiver setting. Moreover, we enhance the graphical interpretation of the SNR-evolution
to relate to the basic relevant quantities of rate and equivocation.
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More specifically, we now consider a multi-receiver additive Gaussian noise setting in which

Yi =
√
snriX + Zi, (92)

where we assume that snr1 ≤ snr2 ≤ · · · ≤ snrK for some K ≥ 2. Since both rate and equivocation are
measured according to the conditional densities at the receivers we may further assume that Z = Zi
for all i. Moreover, X is the transmitted message encoded at the transmitter, assuming a set of some L
messages (W1, W2, . . . , WL). Each receiver may have a different set of requirements regarding these
messages. Such requirements can include:

• Reliably decoding some subset of these messages;
• Begin ignorant to some extent regarding some subset of these messages, meaning having at least

some level of equivocation regarding the messages within this subset;
• A receiver may be an “unintended” receiver with respect to some subset of messages, in which

case we might wish also to limit the “disturbance” these message have at this specific receiver.
We may do so by limiting the MMSE of these messages; and
• Some combination of the above requirements.

There might be, of course, additional requirements, but so far the application of the I-MMSE approach
as done in [34,70,87,88], was able to analyze these types of requirements. We will now give the main
results from which one can consider other specific cases as discussed at the end of this section.

We first consider only reliable communication, meaning a set of messages intended for receivers
at different SNRs, in other words, a K-user Gaussian BC.

Theorem 14 ([88]). Given a set of messages (W1, W2, . . . , WK), such that Wi is reliably decoded at snri and
snr1 ≤ snr2 ≤ · · · ≤ snrK, we have that

Ri =
1
2

∫ snri

0
mmse∞(X; γ|W1, . . . , Wi−1)−mmse∞(X; γ|W1, . . . , Wi)dγ. (93)

In the case of R1 the first MMSE is simply mmse∞(X; γ) (meaning W0 = ∅).

Note that due to the basic ordering of the MMSE quantity, meaning that for all γ ≥ 0

mmse∞(X; γ) ≥ mmse∞(X; γ|W1) ≥ mmse∞(X; γ|W1, W2) ≥ mmse∞(X; γ|W1, W2, W3) ≥ . . . ,

we have that the integrand is always non-negative. Thus, the above result slices the region defined
by mmse∞(X; γ) into distinctive stripes defined by the conditional MMSE functions. Each such stripe
corresponds to twice the respective rate. The order of the stripes from top to bottom is by the message
first decoded to the one last decoded (see Figure 13); further, taking into account Theorem 12, which
gives a necessary and sufficient condition for reliable communication in terms of MMSE functions,
we know that for snr ≥ snri the MMSE conditioned on any message reliably decoded at snri equals
mmse∞(X; γ); thus, we may extend the integration in the above result to any snr ≥ snri (or even
integrate to infinity).
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Figure 13. The above figure depicts a general transmission of (W1, W2, W3) independent messages,
each required to be reliably decoded at the respective SNR (snr1, snr2, snr3) = (1/2, 1, 3/2). The rates
are defined by the areas. (a) We observe that due to reliable decoding, the respective conditional MMSE
converges to the MMSE; (b) we examine the same transmission as in (a), however here we observe the
respective rates. The rates are defined by the areas. As an example we mark 2R2 - twice the rate of
message W2. Similarly one can mark the other rates 2R1 and 2R3.

We now consider in addition to reliable communication also the equivocation measure.
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Theorem 15 ([88]). Assume a set of independent messages (W1, W2, . . . , Wi) such that (W1, W2, . . . , Wi−1)

are reliably decoded at Y(snri−1), however Wi is reliably decoded only at some snri > snri−1. The equivocation
of Wi at Y(snri−1) equals

H(Wi|Y(snri−1)) =
1
2

∫ snri

snri−1

mmse∞(X; γ|W1, . . . , Wi−1)−mmse∞(X; γ|W1, W2, . . . , Wi)dγ, (94)

which can also be written as

H(Wi|Y(snri−1)) =
1
2

∫ snri

snri−1

mmse∞(X; γ)−mmse∞(X; γ|W1, . . . , Wi)dγ. (95)

The above result together with Theorem 14 provides a novel graphical interpretation. Theorem 14
divides the area below mmse∞(X; γ) into stripes, each corresponding to a rate. Theorem 15 further
divides these stripes horizontally. The stripe corresponding to the rate of message Wi is an area
between mmse∞(X; γ|W1, W2, . . . , Wi−1) and mmse∞(X; γ|W1, W2, . . . , Wi) from [0, snri]. For any point
snr > snri this area is then split into the region between [0, snr] which corresponds to the information
that can be obtained regarding the message by Y(snr) and the region [snr, snri] which corresponds to
the equivocation (see Figure 14 for an example).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

2H (W2|Y(snr1))

2H (W3|Y(snr2))

γ

mmse∞(X, γ | W1)

mmse∞(X, γ | W1, W2)

mmse∞(X, γ | W1, W2, W3)

mmse∞(X, γ)

Figure 14. The above figure depicts a general transmission of independent messages (W1, W2, W3),
each required to be reliably decoded at the respective SNR (snr1, snr2, snr3) = (1/2, 1, 3/2). Here we
denote two equivocation measures 2H(W2|Y(snr1)) and 2H(W3|Y(snr2)) according to Theorem 15.

Let us now assume complete secrecy, meaning

H(Wi|Y(snri−1)) = H(Wi). (96)

Using Theorems 14 and 15 we have that∫ snri

0
mmse∞(X; γ|W1, . . . , Wi−1)−mmse∞(X; γ|W1, . . . , Wi)dγ =∫ snri

snri−1

mmse∞(X; γ|W1, . . . , Wi−1)−mmse∞(X; γ|W1, . . . , Wi)dγ, (97)
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assuming we have reliable decoding of messages (W1, W2, . . . , Wi−1) at snri−1. This reduces to∫ snri−1

0
mmse∞(X; γ|W1, . . . , Wi−1)−mmse∞(X; γ|W1, . . . , Wi)dγ = 0, (98)

which due to the non-negativity of the integrand results in

mmse∞(X; γ|W1, W2, . . . , Wi−1) = mmse∞(X; γ|W1, W2, . . . , Wi), (99)

for all γ ∈ [0, snri−1). This is exactly the condition for complete secrecy given in [34]. The important
observation here is that to obtain complete secrecy we require that the stripe of the secure message is
reduced to the section [snri−1, snri], where the eavesdropper is at snri−1 and the legitimate receiver is at
snri. This reduction in the stripe of the secure message can be interpreted as having been used for the
transmission of the camouflaging information required for complying with the secrecy constraint.

The above approach can be further extended and can provide a graphical interpretation for more
elaborate settings with additional requirements at the receiver. An immediate such example would
be adding “disturbance” constraints in terms of MMSEs. Another extension which has been also
considered in [88] is the problem of “secrecy outside the bounded range” [89]. For this setting complete
secrecy rate can be enhanced by using the inherent randomness in the message which results from the
fact that it contains an additional “unintended” message which is not necessarily reliably decoded.
For more details on this problem and its graphical interpretation the reader is referred to [88,89].

8. Interference Channels

A two user interference channel (IC), introduced by Ahlswede in [77], depicted in Figure 15, is
a system consisting of two transmitters and two receivers. The goal of a transmitter i ∈ [1 : 2] is to
reliably transmit the message Wi to receiver i. Transmitter i encodes a message Wi into a transmitted
codeword Xi of length n. Receiver i receives the sequence Yi of length n and tries to decode the message
Wi from the observed sequence Yi. An achievable rate pair for the IC is defined as follows:

Definition 10. A rate pair (R1, R2) is said to be achievable, if for a message W1 of cardinality 2nR1 and a
message W2 of cardinality 2nR2 there exists a sequence of encoding functions

fn,1(W1) = X1,

fn,2(W2) = X2,

and decoding functions

Ŵ1 = g1,n(Y1),

Ŵ2 = g2,n(Y2),

such that

lim
n→∞

P[(W1, W2) 6= (Ŵ1, Ŵ2)] = 0, (100)

assuming that W1 and W2 are uniformly distributed over their respective message sets.

The capacity region is defined as the closure over all achievable rate pairs. In [77] Ahlswede
demonstrated a multi-letter capacity expression given in (49). Unfortunately, the capacity expression
in (49) is considered “uncomputable” in the sense that we do not know how to explicitly characterize
the input distributions that attain its convex closure. Moreover, it is not clear whether there exists an
equivalent single-letter form for (49) in general.
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Ŵ

Z2 ⇠ N (0, I)W

Ŵ
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Ŵ

Z2 ⇠ N (0, I)W

Ŵ
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Encoder 1 Ŵ1Decoder 1

Decoder 2 Ŵ2Encoder 2
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X Y

X Y

Z ⇠ N (0, I)

X
Encoder

Y

Ye

Y

X
Encoder

Z1 ⇠ N (0, I)

Encoder
X

Y

Ye

PY,Ye|X

Y0

Y

Encoder
X

Y1

Y2X2

X1

Y1

Y2X2

X1

Z1 ⇠ N (0, I)

Z2 ⇠ N (0, I)

(b)

Figure 15. Two user interference channels. (a) A general interference channel; (b) The Gaussian
interference channel.

Because of “uncomputability” the capacity expression in (49) has received little attention, except
for the following: in [79] the limiting expression was used to show that limiting to jointly Gaussian
distributions is suboptimal; in [72] the limiting expression was used to derive the sum-capacity in the
very weak interference regime; and in [90] it was shown that in the high-power regime the limiting
expression normalized by the point-to-point capacity (i.e., the degrees of freedom (DoF)) can be
single letterized.

Instead, the field has focussed on finding alternative ways to characterize single-letter inner and
outer bounds. The best known inner bound is the HK achievable scheme [74], which is:

• capacity achieving in the strong interference regime [75,91,92];
• capacity achieving for a class of injective deterministic channels [93,94];
• approximately capacity achieving for a class of injective semi-deterministic channels [95]; and
• approximately capacity achieving (within 1/2 bit) for a class of Gaussian noise channels (which

is a special case of the injective semi-deterministic channel) [76].

It is important to point out that in [96] the HK scheme was shown to be strictly sub-optimal for a
class of DMC’s. Moreover, the result in [96] suggests that multi-letter achievable strategies might be
needed to achieve capacity of the IC.

8.1. Gaussian Interference Channel

In this section we consider the practically relevant scalar G-IC channel, depicted in Figure 15b,
with input-output relationship

Y1 = h11X1 + h12X2 + Z1, (101a)

Y2 = h21X1 + h22X2 + Z2, (101b)

where Zi is i.i.d. zero-mean unit-variance Gaussian noise. For the G-IC in (101), the maximization
in (49) is further restricted to inputs satisfying the power constraint E[X2

i ] ≤ 1, i ∈ [1 : 2].
For simplicity we will focus primarily on the symmetric G-IC defined by

|h11|2 = |h22|2 = snr ≥ 0, (102a)

|h12|2 = |h21|2 = inr ≥ 0, (102b)

and we will discuss how the results for the symmetric G-IC extend to the general asymmetric setting.
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In general, little is known about the optimizing input distribution in (49) for the G-IC and only
some special cases have been solved. In [71–73] it was shown that i.i.d. Gaussian inputs maximize

the sum-capacity in (49) for
√

inr
snr (1 + inr) ≤ 1

2 in the symmetric case. In contrast, the authors of [79]
showed that in general multivariate Gaussian inputs do not exhaust regions of the form in (49).
The difficulty arises from the competitive nature of the problem [43]: for example, say X2 is i.i.d.
Gaussian; taking X1 to be Gaussian increases I(X1; Y1) but simultaneously decreases I(X2; Y2), as
Gaussians are known to be the “best inputs” for Gaussian point-to-point power-constrained channels,
but are also the “worst noise” (or interference, if it is treated as noise) for a Gaussian input.

So, instead of pursuing exact results, the community has recently focussed on giving performance
guarantees on approximations of the capacity region [97]. In [76] the authors showed that the HK
scheme with Gaussian inputs and without time-sharing is optimal to within 1/2 bit, irrespective of the
channel parameters.

8.2. Generalized Degrees of Freedom

The constant gap result of [76] provides an exact characterization of the generalized degrees of
freedom (gDoF) region defined as

D(α) :=
{
(d1, d2) : di := lim

snr→∞

Ri(snr, inr = snrα)
1
2 log(1 + snr)

, i ∈ [1 : 2], (R1, R2) is achievable
}

, (103)

and where D(α) was shown to be

D(α) =


(d1, d2) :

d1 ≤ 1
d2 ≤ 1
d1 + d2 ≤ [1− α]+ + max(α, 1)
d1 + d2 ≤ max(1− α, α) + max(1− α, α)

2d1 + d2 ≤ [1− α]+ + max(1, α) + max(1− α, α)

d1 + 2d2 ≤ [1− α]+ + max(1, α) + max(1− α, α)


. (104a)

The region in (104) is achieved by the HK scheme without time sharing; for the details see [42,76].
The α parameter is the strength of the interference in dB. The gDoF is an important metric that

sheds light on the optimal coding strategies in the high SNR regime. The gDoF metric deemphasizes
the role of noise in the network and only focuses on the role of signal interactions. Often these strategies
can be translated to the medium and low SNR regions. The gDoF is especially useful in analyzing
interference alignment strategies [98,99] where proper design of the signaling scheme can ensure very
high rates. The notion of gDoF has received considerable attention in information theoretic literature
and the interested reader is referred to [100] and reference therein.

For our purposes, we will only look at the sum-gDoF of the interference channel given by

dΣ(α) = max
(d1,d2)∈D(α)

d1 + d2 = 2 min
(

1, max
(α

2
, 1− α

2

)
, max(α, 1− α)

)
. (105)

The sum-gDoF in (105) as a function of the parameter α is plotted in Figure 16. The curve in Figure 16
is often called the W-curve.
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Figure 16. gDoF of the G-IC.

Depending on the parameters (snr, inr = snrα) we identify the following operational regimes:
very strong interference, α ≥ 2; strong interference, 1 ≤ α < 2; weak interference type I, 2/3 ≤ α < 1;
weak interference type II, 1/2 ≤ α < 2/3; very weak interference, 0 ≤ α < 1/2.

8.3. Treating Interference as Noise

An inner bound on the capacity region in (49) can be obtained by considering i.i.d. inputs in (49)
thus giving

RTIN+TS
in = co

 ⋃
PX1X2=PX1 PX2

{
0 ≤ R1 ≤ I(X1; Y1)

0 ≤ R2 ≤ I(X2; Y2)

} , (106)

where the superscript “TIN+TS” reminds the reader that the region is achieved by treating interference
and noise and with time sharing (TS), where TS is enabled by the convex hull operation [42]. By further
removing the convex hull operation in (106) we arrive at

RTINnoTS
in =

⋃
PX1X2=PX1 PX2

{
0 ≤ R1 ≤ I(X1; Y1)

0 ≤ R2 ≤ I(X2; Y2)

}
. (107)

The region in (107) does not allow the users to time-share.
Obviously

RTINnoTS
in ⊆ RTIN+TS

in ⊆ C.

The question of interest in this section is how RTINnoTS
in fares compared to C. Note that there

are many advantages in using TINnoTS in practice. For example, TINnoTS does not require
codeword synchronization, as for example for joint decoding or interference cancellation, and does not
require much coordination between users, thereby reducing communications overhead. Therefore,
an interesting question that arises is: What are the limits of the TIN region?
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By evaluating the TIN region with Gaussian inputs we get an achievable sum-gDoF of

dTIN-G
Σ (α) = 2 max(0, 1− α), (108)

shown by a red curve in Figure 16. Clearly, using Gaussian inputs in the TIN region is gDoF optimal
in the very weak interference regime and is otherwise strictly suboptimal. Because Gaussian inputs
are often mutual information maximizers, one might think that the expression in (108) is the best that
we can hope for. However, this intuition can be very misleading, and despite the simplicity of TIN,
in [45] TINnoTS was shown to achieve capacity C within a gap which also implies that TIN is gDoF
optimal. The key observation is to use non-Gaussian inputs, specifically the mixed inputs presented in
Section 5.5.

Theorem 16 ([45]). For the G-IC, as defined in (102), the TINnoTS achievable region in (107) is optimal to
within a constant gap, or a gap of order O(log log(min(snr, inr))), and it is therefore gDoF optimal.

Next, we demonstrated the main ideas behind Theorem 16. The key to this analysis is to use
mixed inputs, presented in Section 5.5, and given by

Xi =
√

1− δi XiD +
√

δi XiG, i ∈ [1 : 2] : (109a)

XiD ∼ PAM

(
Ni,

√
12

N2
i − 1

)
, (109b)

XiG ∼ N (0, 1), (109c)

where the random variables Xij are independent for i ∈ [1 : 2] and j ∈ {D, G}. Inputs in (109) have
four parameters, namely the number of points Ni ∈ N and the power split δi ∈ [0, 1], for i ∈ [1 : 2],
which must be chosen carefully in order to match a given outer bound.

By evaluating the TIN region in (107) with mixed inputs in (109) we arrive at the following
achievable region.

Proposition 8. (TIN with Mixed Inputs [45]) For the G-IC the TINnoTS region in (107) contains the region
Rin defined as

Rin :=

⋃ 0 ≤ R1 ≤ I (S1, S1 + Z1) +
1
2 log

(
1 + |h11|2δ1

1+|h12|2δ2

)
−min

(
log(N2), 1

2 log
(

1 + |h12|2(1−δ2)
1+|h12|2δ2

))
0 ≤ R2 ≤ I (S2; S2 + Z2) +

1
2 log

(
1 + |h22|2δ2

1+|h21|2δ1

)
−min

(
log(N1), 1

2 log
(

1 + |h21|2(1−δ1)
1+|h21|2δ1

))  , (110)

where the union is over all possible parameters [N1, N2, δ1, δ2] ∈ N2 × [0, 1]2 for the mixed inputs in (109) and
where the equivalent discrete constellations seen at the receivers are

S1 :=
√

1− δ1h11X1D +
√

1− δ2h12X2D√
1 + |h11|2δ1 + |h12|2δ2

, (111a)

S2 :=
√

1− δ1h21X1D +
√

1− δ2h22X2D√
1 + |h21|2δ1 + |h22|2δ2

. (111b)

Next, we select the parameters [N1, N2, δ1, δ2] to optimize the region in (110). For simplicity, we
focus only on the very strong interference regime (α ≥ 2). The gDoF optimality of TIN in the very
strong interference regime is perhaps the most surprising. The capacity in this regime has been shown
by Carleial in [91] who demonstrated that capacity can be achieved with a successive cancellation
decoding strategy where the interference is decoded before the desired signal. Unlike the Carleial
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scheme TIN only use a point-to-point decoder for non-Gaussian noise and can be classified as a
soft-interference-decoding strategy discussed in Section 5.1.

In the very strong interference (α ≥ 2) regime the sum-gDoF is given by

dΣ(α) = 2. (112)

To show that TIN can achieve the gDoF (112), let the parameters in (110) be given by
N = N1 = N2 = b

√
1 + snrc and δ1 = δ2 = 0. It is not difficult to see that with this choice of

inputs the rate in (110) is given by

Ri = I (Si, Si + Zi)−min
(

log(N),
1
2

log (1 + inr)

)
≥ I (Si, Si + Zi)− log(N).

Therefore, the key now is to lower bound I (Si, Si + Zi). This is done by using the Ozarow-Wyner
bound in (35b).

Lemma 2. Let N = N1 = N2 = b
√

1 + snrc and δ1 = δ2 = 0. Then,

I (Si, Si + Zi) ≥ 2 log(N)− 1
2

log
(πe

3

)
. (113)

Proof. Using the Ozarow-Wyner bound in (35b)

I (Si, Si + Zi) ≥ H(Si)−
1
2

log
(πe

6

)
− 1

2
log
(

1 +
12mmse(Si, 1)

dmin(Si)2

)
a)
≥ H(Si)−

1
2

log
(πe

6

)
− 1

2
log
(

1 +
12mmse(Si, 1)
snrdmin(Xi)2

)
b)
≥ H(Si)−

1
2

log
(πe

6

)
− 1

2
log
(

1 +
12(snr+ inr)

(1 + snr+ inr)snrdmin(Xi)2

)
c)
≥ H(Si)−

1
2

log
(πe

6

)
− 1

2
log
(

1 +
(snr+ inr)

(1 + snr+ inr)

)
d)
≥ H(Si)−

1
2

log
(πe

3

)
,

where the (in)-equalities follow from: (a) using the bound dmin(Si) ≥ min(
√
snrdmin(X1),√

inrdmin(X2)); (b) using the LMMSE bound in (11); (c) using the bound dmin(Xi)
2 = 12

N2
i −1
≥ 12

snr ; and

(d) using the bound (snr+inr)
(1+snr+inr) ≤ 1.

The proof is concluded by observing that in the very strong interference regime with the choice
N = N1 = N2 = b

√
1 + snrc, the entropy of a sum-set is given by

H(Si) = H(X1) + H(X2) = 2 log(N).

Therefore, the sum-gDoF of TIN is given by

lim
snr→∞

R1 + R2
1
2 log(1 + snr)

≥ lim
snr→∞

2 log(N)− log
(

πe
3
)

1
2 log(1 + snr)

= lim
snr→∞

2 log(b
√

1 + snrc)− log
(

πe
3
)

1
2 log(1 + snr)

= 2.
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This concludes the proof of the achievability for the very strong interference regime.
Using the same ideas as in the proof for the very strong interference regime one can extend the

optimality of TIN to other regimes.

9. Concluding Remarks and Future Directions

This section concludes this work by summarizing some interesting future directions.
One of the intriguing extensions of the I-MMSE relationship is the gradient formula, obtained by

Palomar and Verdú [9]:

∇H I(X; HX + Z) = HE
[
(X−E[X | HX + Z])(X−E[X | HX + Z])T

]
. (114)

The expression in (114) has been used to study MIMO wiretap channels [101], extensions of Costa’s
EPI [102], and the design of optimal precoders for MIMO Gaussian channels [103].

However, much work is needed to attain the same level of maturity for the gradient expression
in (114) as for the original I-MMSE results [8]. For example, it is not clear what is the correct extension
(or if it exists) of a matrix version of the SCPP in Proposition 4. A matrix version of the SCPP could
facilitate a new proof of the converse of the MIMO BC by following the steps of Section 6.1. The reader
is referred to [33] where the SCPP type bounds have been extended to several classes of MIMO
Gaussian channels.

Estimation theoretic principles have been instrumental in finding a general formula for the DoF
for a static scalar K-user Gaussian interference channel [90], based on notions of the information
dimension [104] and the MMSE dimension [32]. While the DoF is an important measure of the network
performance it would be interesting to see if the approach of [90] could be used to analyze the more
robust gDoF measure. Undoubtedly, such an extension will rely on the interplay between estimation
and information measures.

"Information bottleneck" type problems [105] are defined as

min
Y

I(X; Y, Z) (115a)

s.t. I(X; Y) = C, (115b)

where X ∼ N (0, 1), Z =
√
snrX + N with N ∼ N (0, 1) independent of X and Y. A very elegant

solution to (115) can be found by using the I-MMSE, the SCPP, and the argument used in the proof
of the converse for the Gaussian BC in Section 6.1. It would be interesting to explore whether other
variants of the bottleneck problem can be solved via estimation theoretic tools. For example, it would
be interesting to consider

max
X,Z

I(X; Z) (116a)

s.t. I(Y; Z) ≤ C, (116b)

where X ↔ Y ↔ Z and Y =
√
snrX + N where N ∼ N (0, 1) and independent of X.

The extremal entropy inequality of [106], inspired by the channel enhancement method [107],
was instrumental in showing several information theoretic converses in problems such as the MIMO
wiretap channel [108], two-user Gaussian interference channel [71–73], and cognitive interference
channel [109] to name a few. In view of the successful applications of the I-MMSE relationship to
prove EPI type inequalities (e.g., [35,36,38,102]), it would be interesting to see if the extremal inequality
presented in [106] can be shown via estimation theoretic arguments. Existence of such a method
can reveal a way of deriving a large class of extremal inequalities potentially useful for information
theoretic converses.

The extension of the I-MMSE results to cases that allow snr dependency of the input signal have
been derived and shown to be useful in [10]. An interesting future direction is to consider the MMPE
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while allowing snr dependency of the input signal; such a generalization has the potential of being
useful when studying feedback systems as did the generalization of the MMSE in [10].

Another interesting direction is to study sum-rates of arbitrary networks with the use of the
Ozarow-Wyner bound in Theorem 4. Note that, the Ozarow-Wyner bound holds for an arbitrary
transition probability and the rate of an arbitrary network with n independent inputs and outputs can
be lower bounded as

∑
i

Ri = I(X1, ..., Xn; Y1, ..., Yn) ≥∑
i

H(Xi)− gap, (117)

where the gap term is explicitly given in Theorem 4 and is a function of the network transition probability.
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Appendix A. Proof of Proposition 3

Wu et al. [110] have shown precisely and rigorously, using basic inequalities, that the I-MMSE
relationship holds for any input of finite variance. The approach in [110] followed by examining the
truncated input. Although this approach extends directly for any finite n it is not trivial to extend it
to the limit as n→ ∞. Note that the truncation argument is used only for the lower bound, whereas
the upper bound is obtained directly and can be extended to the limit as shown in the sequel. Thus,
our approach is to show this extension indirectly, relying on the existence of the I-MMSE relationship
for any n.

Proof. We begin with an upper bound on the quantity

1
n

I
(

Xn,δ;
√

δXn,δ + Nn|V n,δ = vn

)
, (A1)

where {Xn,δ, V n,δ}δ>0 is a collection of jointly distributed random vectors and Nn ∼ N (0n, In) is
independent of the pair {Xn,δ, V n,δ}δ>0.

For fixed δ ∈ (0, 1), we have

1
n

I
(

Xn,δ;
√

δXn,δ + Nn|V n,δ = vn

)
≤ 1

n
1
2

log |In + δKδ,vn |

=
1
n

1
2

log
n

∏
i=1

(1 + δλi(Kδ,vn))

=
1
2

1
n

n

∑
i=1

log (1 + δλi(Kδ,vn))

≤ 1
2

log

(
1 + δ

1
n

n

∑
i=1

λi(Kδ,vn)

)

≤ δ

2
1
n

n

∑
i=1

λi(Kδ,vn)

=
δ

2
1
n

Tr (Kδ,vn) , (A2)
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where in the first inequality we have used the fact that the Gaussian distribution maximizes the entropy
and where we denote the conditional covariance matrix of Xn,δ given vn as follows:

Kδ,vn = E
[
(Xn,δ −E [Xn,δ|V n,δ = vn]) (Xn,δ −E [Xn,δ|Vn,δ = vn])

T
]

. (A3)

The second inequality uses Jensen’s inequality and the last inequality uses log(1 + x) ≤ x. Thus, we
have that

1
n

I
(

Xn,δ;
√

δXn,δ + Nn|V n,δ = vn

)
≤ δ

2
1
n

Tr (Kδ,vn) . (A4)

Note that we may take the expectation with respect to V n of both sides of the inequality at any point,
either by applying Jensen’s inequality, or simply when the right-hand-side is linear in Kδ,vn . We get that

1
n

I
(

Xn,δ;
√

δXn,δ + Nn|V n,δ

)
≤ δ

2
1
n

Tr (Kδ) , (A5)

which holds for all n. Our assumption is that the limit of the normalized conditional mutual information
quantity exists; however, we have no such assumption over the normalized MMSE quantity on the
right-hand-side of the above. Thus, we take the lim inf of both sides of the above inequality, to obtain

I∞

(
Xδ;
√

δXδ + N|V δ

)
≤ δ

2
lim inf

n→∞

1
n

Tr (Kδ) . (A6)

A similar assumption to that in [110] is that

lim
δ→0

lim inf
n→∞

1
n

Tr (Kδ) = σ2
inf < ∞, (A7)

for any pair {Xn,δ, V n,δ}δ>0. However, in our setting Xn,δ is independent of δ and V n,δ =
√
snrXn + Nn

is also independent of δ. Thus, the above convergence requirement reduces simply to

lim inf
n→∞

1
n

Tr (K) = σ2
inf(snr) < ∞, (A8)

where we emphasize the dependence on V n, meaning the dependence on snr.
Now, instead of considering the lower bound on the normalized conditional mutual information

as done in [110] going through the truncation argument, we examine the I-MMSE relationship directly:

d

dsnr

1
n

I
(
Xn;
√
snrXn + Nn

)
=

1
2

1
n

Tr (Ksnr) , (A9)

where

Ksnr = E
[(

Xn −E
[
Xn|
√
snrXn + Nn

]) (
Xn −E

[
Xn|
√
snrXn + Nn

])T] . (A10)

As shown in the “incremental proof” of the I-MMSE in [8] using the chain rule for mutual information
and data processing arguments, the above is equivalent to

lim
δ→0

1
n I
(

Xn;
√

δXn + N1,n|
√
snrXn + N2,n

)
δ

=
1
2

1
n

Tr (Ksnr) , (A11)

where N1,n is independent of N2,n and both are standard Gaussian. The above can also be equivalently
written as follows:

1
n

I
(
Xn;
√
snrXn + Nn

)
=

1
2

∫ snr

0

1
n

Tr (Kγ) dγ. (A12)
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We take the above integral form of this result in order to apply the reverse Fatou lemma. Denote for
any γ ≥ 0

lim sup
n→∞

1
n

Tr (Kγ) = σ2
sup(γ) < ∞, (A13)

where the above is bounded again due to the assumption of an average power coonstraint on the input.
We have that

lim sup
n→∞

∫ snr

0

∣∣∣∣ 1n Tr (Kγ)− σ2
sup

∣∣∣∣ dγ ≤
∫ snr

0
lim sup

n→∞

∣∣∣∣ 1n Tr (Kγ)− σ2
sup

∣∣∣∣ dγ = 0, (A14)

where the inequality is due to the reverse Fatou lemma, where

fn =

∣∣∣∣ 1n Tr (Kγ)− σ2
sup

∣∣∣∣ ≤ 1 + σ2
sup, ∀n ≥ 1, (A15)

due to the fact that Kγ � E
[

XnXT
n

]
and the power constraint asusmed on the input sequence. Due to

the non-negativity of the integrand we have that

lim sup
n→∞

∫ snr

0

1
n

Tr (Kγ) dγ =
∫ snr

0
σ2

sup(γ)dγ. (A16)

Thus, putting everything together we have that

lim
n→∞

1
n

I
(
Xn;
√
snrXn + Nn

) a
= lim sup

n→∞

1
n

I
(
Xn;
√
snrXn + Nn

)
b
= lim sup

n→∞

∫ snr

0

1
n

Tr (Kγ) dγ

c
=

1
2

∫ snr

0
σ2

sup(γ)dγ, (A17)

where a is due to assumption that the limit of the normalized mutual information exists; b is due
to (A12); and c is due to (A16), meaning a consequence of Fatou’s lemma.

Taking the derivative with respect to snr of both sides we have that

d

dsnr
lim

n→∞

1
n

I
(
Xn;
√
snrXn + Nn

)
=

1
2

σ2
sup(snr). (A18)

We can again follow the arguments in the “incremental proof” of the I-MMSE in [8] using the chain
rule for mutual information and data processing on the normalized mutual information in the limit to
obtain that the above is equivalent to

lim
δ→0

limn→∞
1
n I
(

Xn;
√

δXn + N1,n|
√
snrXn + N2,n

)
δ

=
1
2

σ2
sup(snr), (A19)

where in the second equation we again apply the same steps as in the “incremental channel” proof as
in [8] on the normalized mutual information in the limit. Thus, we have that

lim
n→∞

1
n

I
(

Xn;
√

δXn + N1,n|
√
snrXn + N2,n

)
=

δ

2
σ2

sup(snr) + o(δ). (A20)

Putting this together with the upper bound that we have obtained, we get that

lim
n→∞

1
n

I
(

Xn;
√

δXn + N1,n|
√
snrXn + N2,n

)
=

δ

2
σ2

sup(snr) + o(δ) ≤ δ

2
σ2

inf(snr) + o(δ). (A21)
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But since by definition

σ2
inf(snr) ≤ σ2

sup(snr), (A22)

for all snr ≥ 0 we have that

lim
n→∞

1
n

I
(

Xn;
√

δXn + N1,n|
√
snrXn + N2,n

)
=

δ

2
σ2

sup(snr) + o(δ) =
δ

2
σ2

inf(snr) + o(δ), (A23)

and

σ2
inf(snr) = σ2

sup(snr). (A24)

This concludes the proof.

Appendix B. Proof of Proposition 5

Before showing the proof of Proposition 5 we present several auxiliary results and definitions.
We define the conditional MMPE as follows.

Definition A1. For any X and V, the conditional MMPE of X given V is defined as

mmpe(X, snr, p|V) := ‖X− fp(X|Ysnr, V)‖p
p. (A25)

The conditional MMPE in (A25) reflects the fact that the optimal estimator has been given
additional information in the form of V. Note that when Z is independent of (X, V) we can write the
conditional MMPE for Xu ∼ PX|V(·|v) as

mmpe(X, snr, p|V) =
∫

mmpe(Xv, snr, p) dPV(v). (A26)

Since giving extra information does not increase the estimation error, we have the following result.

Proposition A1. (Conditioning reduces the MMPE [25].) For every snr ≥ 0, and random variable X,
we have

mmpe(X, snr, p) ≥ mmpe(X, snr, p|V). (A27)

Finally, the following proposition generalizes [23] and states that the MMPE estimation of X from
two observations is equivalent to estimating X from a single observation with a higher SNR.

Proposition A2 ([25]). For every X and p ≥ 0, let V =
√

∆ · X + Z∆ where Z∆ ∼ N (0, I) and where
(X, Z, Z∆) are mutually independent. Then

mmpe(X, snr0, p|V) = mmpe(X, snr0 + ∆, p). (A28)

Proof. For two independent observations Ysnr0 =
√
snr0X + Z and Y∆ =

√
∆X + Z∆ where Z∆ and Z

are independent, by using maximal ratio combining, we have that

Ysnr =

√
∆√

snr0 + ∆
Y∆ +

√
snr0√

snr0 + ∆
Ysnr0

=
√

snr0 + ∆X + W,

where W ∼ N (0, I). Next by using the same argument as in [23], we have that the conditional
probabilities are
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pX|Ysnr0 ,Y∆
(x|ysnr0 , y∆) = pX|Y(x|ysnr), (A29)

for ysnr =
√

∆√
snr0+∆ y∆ +

√
snr0√

snr0+∆ ysnr0 . The equivalence of the posterior probabilities implies that
the estimation of X from Ysnr is as good as the estimation of X from (Ysnr0 , Y∆). This concludes
the proof.

We are now in a position to prove the SCPP bound in Proposition 5.

Proof. Let snr = snr0 + ∆ for ∆ ≥ 0, and let Y∆ =
√

∆X + Z∆. Then

Ysnr =

√
∆√

snr0 + ∆
Y∆ +

√
snr0√

snr0 + ∆
Ysnr0

=
√

snr0 + ∆X + W,

where W ∼ N (0, I). Next, let

m := mmpe
2
p (X, snr0, p) = ‖X− fp(X|Ysnr0)‖2

p, (A30)

and define a suboptimal estimator given (Y∆, Ysnr0) as

X̂ =
(1− γ)√

∆
Y∆ + γ fp(X|Ysnr0), (A31)

for some γ ∈ R to be determined later. Then

X− X̂ = γ(X− fp(X|Ysnr0))−
(1− γ)√

∆
Z∆,

and

mmpe
1
p (X, snr, p) = ‖X− fp(X|Ysnr)‖p

a)
= ‖X− fp(X|Y∆, Ysnr0)‖p

b)
≤ ‖X− X̂‖p =

∥∥∥∥γ(X− fp(X|Ysnr0))−
(1− γ)√

∆
Z∆

∥∥∥∥
p

c)
=

∥∥∥‖Z‖2
p(X− fp(X|Ysnr0))−

√
∆ ·m · Z∆

∥∥∥
p

‖Z‖2
p + ∆ ·m , (A32)

where the (in)-equalities follow from: (a) Proposition A2; (b) by using the sub-optimal estimator

in (A31); and (c) by choosing γ =
‖Z‖2

p

‖Z‖2
p+∆·m for m defined in (A30).

Next, by applying the triangle inequality to (A32) we get

mmpe
1
p (X, snr, p) ≤

∥∥∥‖Z‖2
p(X− fp(X|Ysnr0))

∥∥∥
p
+
∥∥∥√∆ ·m · Z∆

∥∥∥
p

‖Z‖2
p + ∆ ·m (A33)

=

√
m‖Z‖p · (‖Z‖p +

√
∆ · √m)

‖Z‖2
p + ∆ ·m

≤
√

2
√

m‖Z‖p√
‖Z‖2

p + ∆ ·m
,

where in the last step we have used (a + b) ≤
√

2
√

a2 + b2.
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Note that for the case p = 2, instead of using the triangle inequality in (A33), the term in (A32) can

be expanded into a quadratic equation for which it is not hard to see that the choice of γ =
‖Z‖2

p

‖Z‖2
p+∆·m is

optimal and leads to the bound

mmpe
1
p (X, snr, p) ≤

√
m‖Z‖p√

‖Z‖2
p + ∆ ·m

.

The proof is concluded by noting that β = m
‖Z‖2

p−snr0m
.
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