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1. Introduction

Maxwell relations are thermodynamic equations which establish the relations between various
thermodynamic quantities (e.g., pressure, P, volume, V, Entropy, S, and temperature, T) in equilibrium
thermodynamics via other fundamental quantities known as thermodynamical potentials—the most
important being internal energy, U, Helmholtz free energy, F, enthalpy, H, and Gibbs free energy, G.

A Legendre transform converts from a function of one set of variables to another function of a
conjugate set of variables. With the use of Legendre transforms, we can study different equations of
state. For example, with the adequate change in variables, U(S, V) transforms to F = F(V, T).

In this study, we pursue the development of Maxwell’s generalized thermodynamic relations,
considering complex systems in which the thermodynamic quantities are expressed by partial metric
derivatives (MDs) [1,2]. In order to fulfill this task, we start with the redefinition of the mathematical
concept of the derivatives of functions under the physical basis of mappings to a continuous fractal
space as proposed in References [3–5]. According to Reference [6], the generalized equations of
state (called “fractal” equations of state) are derived on the basis of the experimentally measured
thermodynamic variables P, V, and T, which achieve good agreement with experimental data for
argon gas.

To pursue a mathematical basis for physics on fractals, differential vector calculus in a
three-dimensional continuum with fractal metric were studied in Reference [5], where the mapping of
physical problems on nowhere differentiable fractals into the corresponding problems for a continuum,
with a proper fractal metric, is discussed. The authors also showed that there exists an isomorphism of
algebras and present a mathematical formalism to differential vector calculus in a continuum with
the induced fractal metric. In Reference [7], while studying anomalous diffusion of fluid momentum
and Darcy-like law for laminar flow in media with fractal porosity, the authors showed that in the
context studied, there exists a homomorphism in certain cases of dimensional parameters. The physical
problems on a fractal (F ⊂ E3) can be mapped into problems in the ν-dimensional space Fν ⊆ E3
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equipped with the metric induced by the fractal topology, while ν is the number of effective degrees
of freedom of a random walker on the fractal. The mapping implies a change from the Cartesian
coordinates in the embedding Euclidean space to the fractal coordinates in the fractional dimensional
space allied to the fractal. Furthermore, the mapping F ⊂ E3 → Fν ⊆ E3 implies the use of metric
partial derivatives instead of conventional partial derivatives. So, we can claim that the mapping to
a continuous fractal space [3–5] leads naturally to the necessity of modifications in the definition of
derivatives. Consequently, the use of the MD [1,2] is justified. The modification of the derivatives in
terms of the metric implies a change in the algebra involved, which in turn gives rise to a generalized
statistical mechanics with certain generalized definition of entropy, such as in nonextensive statistical
mechanics. The use of these deformed-operators can be justified on our proposition that there exists
an intimate relation between dissipation, coarse-grained media, and the limit scale of energy among
the interactions. It seems that a suitable way to describe the dynamics of complex systems requires
the use of the MD and the associated operators instead of the popular fractional derivatives (FD).
The q-deformed derivative and the correspondent q-deformed algebras consequently appear in the
context of Tsallis’ statistical mechanics and other deformed operators like the Hausdorff and the
conformable derivatives.

In considering the appearance of the concept of general multiscale metric derivatives, we can cast
the interesting work in Reference [8] (reviewed in Reference [9]) with the effort to build up geometry
and field theory in multi-fractional space-time, but there with the name of q-derivative. In [9], the
author shows, among a vast number of other things, that the multifractal paradigm not only makes the
“fractal space-time” idea systematic, but it also provides an explicit form for the dynamics (questions
31 and 40 in the reference). Moreover, the author works with a mapping between the fractional and
the integer picture that includes the deformed derivative involved there.

All of the above-referred approaches indicate the systematic attempts to build up mappings that
lead to the redefinition of derivatives as structural deformed operators that can be used to describe the
dynamics of complex and open systems in the most diverse research lines.

Following this path, in a recent work it was demonstrated that there is a possible relation
between q-deformed algebras in the two different contexts of statistical mechanics (namely, the Tsallis’
framework and the Kaniadakis’ scenario), with a local form of a deformed-derivative operator for
fractal media—the so-called Hausdorff derivatives—mapped into a continuous medium with a fractal
measure, considering the relevant space-time/phase space as fractal or multifractal [1]. One of the
authors shows that this approach could be capable of describing dissipative systems, where the
traditional Lagrangian formalism fails [2]. Instead, a method of dealing with a mass-dependent
Lagrangian was presented.

Following this line of thought, in a recent article [10] it was claimed that the use of deformed
operators could be justified based on our proposition that there exists an intimate relation between
dissipation, coarse-grained media, and a limit energy scale for the interactions. Concepts and
connections like open systems, quasi-particles, energy scale, and the change in the geometry of
space-time at its topological level, nonconservative systems, and noninteger dimensions of space-time
connected to a coarse-grained medium have been discussed. With this perspective, we argued that
deformed (or metric or structural derivatives)—similar to the fractional calculus (FC)—could allow us
to describe and emulate certain dynamics without explicit many-body, dissipation, or geometrical terms
in the dynamical governing equations. Additionally, we emphasized that the paradigm we adopted
was different from the standard approach in the generalized statistical mechanics context [11–13],
where the modification in the definition of entropy leads to the modification of the algebra—and
consequently, the concept of a derivative [1,2]. This was set up by a mapping into a continuous fractal
space [3–5], which naturally yields the need for modifications in the derivatives which we have named
deformed, or better, metric derivatives [1,2]. In connection with the metric, the modifications of the
derivatives yields a change in the algebra involved, which in turn may lead to a generalized statistical
mechanics with some adequate definition of entropy.
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According to Reference [14], there is a relation between entropy and the fractal dimension; the
latter can be considered a statistical index, measuring the complexity of a given pattern embedded
in the topological space and characterizing a measure of the space-filling capacity. It is possible to
define the statistical complexity by using different distance measures [15]. Thus, we claim that with
the physical definition of the MD, the complexity can be inherently considered by the generalized
thermodynamics characterized in entropic expressions.

To establish a solid basis for the MD and its applications, some experimental tests can be
indicated. For instance, the so called fractal differential equations [16]—particular forms of the
metric differential equations—were applied to predict the surface temperature of air-cooled cylindrical
Li-ion cells. The authors [16] also argue that it can be used to model a variety of non-integer power
law scaling phenomena such as turbulence, fractional quantum mechanics, anomalous diffusion, and
they elaborate an interesting argument that fractal time models can describe systems with temporal
behavior that present strong intermittence and, self-similarity, without a characteristic time scale.
Under fractal time average, the time of an event must be infinite instead of the usual finite for systems
that possess time scale. Such an example relates the time in which a fluid particle spends in a given
vortex. The lack of an average time induces fractional exponents. For details, see references therein.

In numerical contexts, it has been shown that the MD models have distinct advantages over the
existing models from the perspective of computational accuracy and efficiency [17].

Here, it seems pertinent to stress the fact that the mathematical tool of MD has advantages when
compared to the formalism with the FC (in addition to the numerical ones already observed above).
This also includes attempts to formulate non-equilibrium thermodynamics. The Leibniz differentiation
rules and the chain rule are preserved for MD, which facilitates the design, development, and research
in linear and nonlinear systems, including quantum systems and hydrodynamic models. However,
the equivalence between these formalisms needs to be verified in each case. For example, there seems
to be some equivalence in the case of water transport in an unsaturated medium [18]. Recall that
the formalism of FC is based on non-local operators in its formulation, while that of MD is based on
definitions of local operators. However, one claim that non-locality can also be considered with the
argument is as follows: we are dealing with open systems and the hereditary effects or the nonlocal
effects (memory and spatial effects) are inherent to the fractality, connected to the geometry or the
topology of the medium. In an attempt to outline possible connections between formalisms of FC and
the MD (the latter being presented in this work), we can indicate Reference [18], where nonlocality is
considered with the use of FC. The authors in Reference [18] propose a fractal Richards equation, in
which the classical integer-order time derivative of the water content is replaced by a fractal derivative
underlying a power law rule in time, whose solution exhibits anomalous non-Boltzmann scaling,
attributed to the fractal nature of heterogeneous media. The model was verified by accurately fitting
the eight different benchmark experiment data for the water content curves reported in the literature.
The wide applicability of this Richards model demonstrates a clear edge of the MD approach over the
other existing models.

Additionally, in terms of applications, the authors in Reference [19] show the applicability of what
they call fractal models with fractal derivatives to characterize the creep of viscoelastic materials. The
applicability of a MD formalism is reinforced by the recent publication in Reference [20], where aspects
of Tsallis’ entropy in water engineering are studied. Additionally, an effort to unified formalisms can
be found in Reference [21].

In this contribution, our focus is on the development of generalized Maxwell relations based on
a mapping to a fractal continuum [4,5,22] with the use of MDs. We work with two kinds of MD: the
first in the context of generalized nonadditive statistical mechanics called q-derivative, and the second
called conformable derivatives [23], in the context of fractals and multifractals. All these operators are
local metric derivatives.
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In the following section, the reader will see that the concept of physical temperature defined by
Abe in Reference [24] emerges naturally in our approach, just like the emergence of the Rényi entropy
from the Tsallis entropy and the relation between Sharma–Mittal and Tsallis entropic forms.

The remainder of this paper is outlined as follows: In Section 2, the metric derivatives and
mathematical aspects are presented. In Section 3, the deformed Maxwell relations are developed,
followed by the Conclusions and Outlook in Section 4.

2. Metric Derivatives: Mathematical Aspects

In this Section, we provide some brief information to review the main forms of the MD. For more
details, the readers may see References [1–3,19,25].

2.1. Conformable Derivative

This kind of MD was proposed in Reference [23], preserves classical operational properties, and
is given by

Tα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

. (1)

If the function f is differentiable in a classical sense, the definition above yields

Tα f (t) = t1−α d f (t)
dt

. (2)

Changing the variable t→ 1 + x
l0

, one of the authors shows [1] that Equation (2) is nothing but
the Hausdorff derivative [1,3–5,19,25] up to a constant, and is valid for differentiable functions.

We can see that the above form of the MD has the same mathematical structure of generic MD for
differentiable functions.

Interconnections and equivalence of the metric derivatives was presented in Reference [1]—
particularly between definitions of fractal derivatives, called Hausdorff derivative in Reference [25],
q-derivatives in Reference [26], and conformable derivatives in Reference [23]. Therein, a simple scale
change in the variable was used to show that for differentiable functions, the conformable derivatives
are equivalent to Hausdorff derivatives.

We provide some comments here: The first is that the Maxwell relations that will be stated in
Section 3 may involve multiscales, since we are working with different state variables that can be
described by different parameters (e.g., different entropic indices). Moreover, we reinforce that all the
metric derivatives referred to here are local operators, and for this reason cannot be simply proportional
to the Riemann–Liouville derivative in the context of FC.

2.2. The q-Derivative in a Nonextensive Context

With the generalized nonadditive q-entropy as the main motivation, the q-derivative sets up a
deformed algebra and considers that the q-exponential is an eigenfunction of D(q) [26]. Borges [26]
proposed the operator for q-derivative as given below:

D(q) f (x) ≡ lim
x′→x

f (x′)− f (x)
x′ 	q x

= [1 + (1− q)x]
d f (x)

dx
. (3)

Here, 	q is the deformed difference operator,

x′ 	q x ≡ x′ − x
1 + (1− q)x

(x 6= 1/(q− 1)). (4)

If we write x′ = x ⊕q 4x = x +4x + (1− q)x4x, we will have x′ 	q x = 4x, where ⊕q is the
deformed sum operator.



Entropy 2017, 19, 407 5 of 13

Additionally,

dq(x) ≡ lim
x′→x

x′ 	q x =
dx

1 + (1− q)x
(x 6= 1/(q− 1)). (5)

In this way, the expression (3) can be also rewritten as in Reference [27],

D(q) f (x) ≡ lim
4x→0

f (x⊕q4x)− f (x)
4x

. (6)

This is the key for the multivariable q-Taylor expansion.
Recently, one of the authors has shown [1] that the main parameters of MD, Hausdorff derivative,

and the q-derivative can be connected by

1− q =
(1− ζ)

l0
, (7)

where the characteristic scale l0 appears in the context of the mappings in References [3–5].
We concluded that the deformed or metric q-derivative is the first-order expansion of the

Hausdorff derivative, and that there is a strong connection between these formalisms by means
of a fractal metric.

An important point to emphasize here concerns the appearance of multifractals, since multifractal
measures are formally used to explain systems with scaling properties [28]. In Reference [28],
an approach based on generalized Tsallis dimensions is used for the formulation of mutual information
related dependence coefficients in the multifractal domain. This is only one example indicating that
the concepts of fractals, scales, and multifractals are present in our approach, since q-derivatives are
one of several possible forms of metric derivatives. In Reference [2], the authors pointed out that
the deformation parameter or entropic index, q—occupying an important place in the description of
those complex systems—describes deviations from standard Lie symmetries, and the formalism of
metric derivatives aimed to accommodate scale invariance in a system with multifractal properties
to the thermodynamic formalism, and considered the relevant space-time/phase space as fractal
or multifractal.

2.3. The q-Total Differentiation in Nonextensive Context

For one variable, let us expand f (x′) = f (x⊕q4x) around x [27]:

f (x′) = f (x) + (x′ − x)
d f (x′)

dx′
|x′=x +O((4x)2), (8)

which can be written as

f (x⊕q4x) = f (x) +4x[1 + (1− q)x]
d f (x′)

dx′
|x′=x +O((4x)2), (9)

where4x→ 0.
Now, we can extend to more than one variable with the expansion around x, y. Assuming a

possible different q-parameter for x, y variables, a total differential is:

f (x⊕q4x, y⊕q′ 4y) = f (x, y) +4x[1 + (1− q)x]
∂ f (x′)

∂x′
|x′=x,y=cte

+4y[1 + (1− q′)y]
∂ f (y′)

∂y′
|y′=y,x=cte +O((4x)2, (4y)2). (10)

In the limit4x→ 0,4y→ 0, the expression above can be written as
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f (x⊕q dx, y⊕q dy) = f (x, y) +
∂q f (x, y)

∂x
|y dx +

∂q′ f (x, y)
∂y

|x dy. (11)

2.4. The Leibiniz and the Chain Rule Hold for Metric Derivative

As the reader can readily check, for the MD the Leibniz rule holds Dα( f g) = gDα f + f Dαg;
and similarly, for q-derivative: Dq( f g) = gDq f + f Dqg. For composed functions, the chain rule holds
true as well:

Dα[ f ◦ g](x) =
d f

(
g(x)

)
dg

Dαg(x), (12)

Dq[ f ◦ g](x) =
d f

(
g(x)

)
dg

Dqg(x). (13)

3. Deformed Maxwell Relations

In this section, we pursue the investigation of a version of the MD to study a possible version
of generalized thermodynamics. The intention is to build a tool to study the dynamics of complex
systems such as porous media or some viscous systems.

Before proceeding further, in order to clarify some points here, we now make a few brief remarks
about entropy. There are some controversies regarding the connections of the concept of entropy in the
sense of Clausius and in the context of information theory—that is, with entropy and disorder [29].
For example, in Reference [30], the author uses liquid crystals to show that an increase in the order
of the refereed system follows the increase in entropy, which could be considered impossible in the
context of the connection between entropy and disorder. Additionally, against the idea that entropy
and disorder are always the same, see Reference [31]. In the sense of information theory, entropy is
related to aspects and problems of information and communication [32]. In addition, in the context of
information theory, the important concept of informational energy is that related to classical mechanics,
and can be considered as a measure of the uncertainty or randomness of a probability system [32].
Here, one adopts the conciliatory sense—namely, that entropy describes the amount of disorder or
randomness in a system bearing energy or information [32], and that can be also used to evaluate
aspects of uncertainty. In this broader sense, there are some generalized entropic forms which are
particularly inspired in the context of information theory; for instance, Havdra–Charvat–Tsallis (HCT),
Sharma–Mittal (SM), Sharma–Taneja (ST), and attempts to construct a generalized statistics with these
forms. Examples of these attempts are based on the entropy concept like Rényi, HCT, Kaniadakis, and
incomplete information-based theory [33,34].

Now, consider a mapping to a continuous fractal space [3–5] which leads naturally to the necessity
of modifications in the derivatives, called the MD [1,2]. In the new continuous space, we call Sq,
Sα metric entropies, depending on the metric considered.

3.1. q-Deformed Maxwell Relations

Consider Uq as some internal energy that is a function of the entropy Sq and volume Vq′ :
Uq = Uq(Sq, Vq′), where the entropic indices q and q′ are not necessarily the same.

The total q-derivative can be written as

Uq(Sq ⊕q4Sq, Vq′ ⊕q′ 4Vq′)−Uq(Sq, Vq′)

= Uq(Sq ⊕q4Sq, V ⊕q′ 4Vq′)−Uq(Sq, V ⊕q′ 4Vq′)

+Uq(Sq, V ⊕q′ 4Vq′)−Uq(Sq, Vq′). (14)



Entropy 2017, 19, 407 7 of 13

In the limit of4Vq′ ,∇Sq → 0, we find for the total q-derivative of Uq

DqUq = [1 + (1− q)Sq]
∂Uq

∂Sq
|Vq′

dSq + [1 + (1− q′)Vq′ ]
∂Uq

∂Vq′
|Sq dVq′

=
∂qUq

∂Sq
|V dSq +

∂q′Uq′

∂Vq′
|S dVq′ . (15)

Now, in the same way, consider Uq = Uq(Tq, Sq), where the variable Tq is introduced and will be
made clear in what follows.

The total q-derivative can be written as:

DqUq(Tq, Sq) =
∂qUq

∂Tq
|Sq dTq +

∂qUq

∂Sq
|Tq dTq. (16)

Here, Tq =
∂Uq
∂Sq
|Vq′

is not a temperature. It is similar to kTβ−1 in the nonextensive formalisms, and is
sometimes related to the Lagrange multiplier in the maximum entropy variational approach.

3.1.1. Legendre Transform and Helmholtz Free Energy, Enthalpy, and Gibbs Free Energy

Suppose a transform with change of variables in such a way that Uq(Sq, Vq) transfers to
Fq = Fq(Vq, Tq), with Fq = Uq − TqSq being the Helmholtz free energy.

Adding and subtracting Equation (16) to Equation (15) and considering that Fq only depends on
(Vq, Tq), yields

Dq(Uq − TqSq) = DqFq =
∂qUq

∂Vq
|S dVq −

∂q(TqSq)

∂Tq
|S dTq, (17)

∂qUq

∂Sq
|Vq = Tq[1 + (1− q)Sq]. (18)

The expression in Equation (18) is nothing else than the physical temperature defined by Abe in
Reference [24].

Now consider the partial q-derivatives of TqSq and of PqVq

∂q(PqVq′)

∂Pq
|V = Vq′ [1 + (1− q′)Pq′ ], (19)

∂q(PqVq)

∂Vq
|P = Pq′ [1 + (1− q′)Vq′ ]. (20)

Analogously to Uq, consider the enthalpy function given by Hq = Uq + PqV = Hq(Sq, Pq′). The total
q-derivative of Hq can be written as

Dq(Uq + PqV) = DqHq =
∂qUq

∂Sq
|Vq dS +

∂q(PqVq)

∂Pq
|Vq dPq; (21)

∂qUq

∂V
|Sq = − Pq[1 + (1− q)V]. (22)

Finally, the q-deformed differential forms of Uq, Fq, Hq are given by

DqUq = Tq[1 + (1− q)Sq]dSq − Pq[1 + (1− q)Vq]dVq, (23)

DqFq = −Pq[1 + (1− q)Vq]− Sq[1 + (1− q)Tq]dTq, (24)

DqHq = Tq[1 + (1− q)Sq]dSq + Vq[1 + (1− q)Pq]dPq. (25)
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In a similar way, for the Gibbs free energy Gq, we have

DqG = −Sq[1 + (1− q)Tq]dTq + Vq[1 + (1− q)Pq]dPq. (26)

With the help of the above equations, we can rewrite Equation (15) as

DqUq = TPhysdSq − PPhysdVq. (27)

3.1.2. The q-Deformed Maxwell Relations

Below we collect all the Maxwell relations obtained by the present approach with q-derivatives.
They are collected in Table 1.

Table 1. q-Deformed Maxwell relations.

∂qUq
∂Vq
|Sq= −Pq[1 + (1− q)Vq],

∂qUq
∂Sq
|Vq= Tq[1 + (1− q)Sq],

∂q Fq
∂Vq
|Tq= −Pq[1 + (1− q)Vq],

∂q Fq
∂Tq
|Vq= −Sq[1 + (1− q)Tq],

∂q Hq
∂Pq
|Sq= Vq[1 + (1− q)Pq],

∂q Hq
∂Sq
|Pq= Tq[1 + (1− q)Sq],

∂qGq
∂Pq
|Tq= −V[1 + (1− q)Pq],

∂qGq
∂Tq
|Pq= −Sq[1 + (1− q)Tq],

One important point that can be emphasized is the difference between the entropic indices in
the Maxwell relations. Those differences could indicate that there are additional ways to interpret
the possible existence of the so-called q-triplet [35]. A large updated bibliography can be found in
Reference [36] pursuing the task of contextualizing the entropic index as something beyond a simple
parameter of data adjustment, and that has been researched and justified. Even though it is not one
of the objectives of this article, we suggest that the entropic index is related to the metric, which in
turn is related to the existing interactions. So, we call the reader’s attention to the possible relation
between the entropic index and the metric, justifying the use of the appropriate metric derivative to
each physical phenomenon.

3.1.3. Emergence of Rényi Entropy from Sq as Tsallis Entropy

Consider that from Equation (27) d&Qq = TPhysdSq as the inexact deformed heat transfer, we are
led to

dSq =
d&Qq

TPhys
, (28)

or

(dS)q =
d&Qq

Tq
× 1

[1 + (1− q)Sq]
=

dsq

[1 + (1− q)Sq]
. (29)

Note that the above expression is consistent with the differentiation in the fractal continuous space
given by [26]

(dqx) =
dxq

[1 + (1− q)xq]
. (30)

A direct integration leads to

(4S)R
q =

1
1− q

ln[1 + (1− q)ST
q ]. (31)

That is the relation between Rényi–Tsallis entropies which is also given in Reference [24] and can
indicate an emergence of micro to macro properties.

Rényi introduced a family of entropy functionals called the alpha entropies by using the
Kolmogorov–Nagumo averages [37]. According to Reference [37], the role of scale translation would
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be studied in a systematic manner, since the procedure of estimating parameters is sensitive to the
scale on which the experimental data are presented.

The Rényi entropy is additive, while the Tsallis entropy is not. This means that the thermodynamic
macroscopic additivity for the entropy emerges even from a starting point for entropy based on
nonadditivity. There is a nonlinear scale for the connection of the Rényi–Tsallis entropies, and this
could indicate the possible emergence of additivity. This can be a consequence of complexity, in the
sense that there are repeating patterns to form new complex patterns.

Here, the entropic form Sq can be seen as metric entropy from a microscopic view. On the other
hand, considering the standard second law in the Clausius form, (4S)R

q leads to the validity of the
second law for the metric entropy Sq :

d&Qq

Tq
≥ 0, (32)

That is, dSq ≥ 0.

3.2. Conformable Deformed Maxwell Relations

In order to build up the Maxwell relations with the conformable derivatives, we expand a given
function f with an equivalent form of Taylor expansion using integer polynomials to the first order [38],
instead of noninteger [39] order polynomial. This merely reflects the fact that the space of concerned
functions is considered differentiable.

The α-total differentiation of a differentiable function can be developed by the infinitesimal
difference:

dα f ≡ f (x + εxx1−α, y + x + εxx1−αεyy1−α)− f (x, y), (33)

which can be written in terms of conformable partial derivatives as

dα f = f (x + εxx1−α, y + x + εxx1−αεyy1−α)− f (x, y)

= f (x + εxx1−α, y + εyy1−α)− f (x + εxx1−α, y) + f (x + εxx1−α, y)− f (x, y)

=
∂α f
∂x

εx +
∂α f
∂y

εy =
∂α f
∂x

(dx) +
∂α f
∂y

(dy). (34)

Next, following the analogous approach of q-derivative to obtain Legendre Transform and Helmholtz
free energy, enthalpy, and Gibbs free energy, we can obtain the α-deformed Maxwell relations that we
collect in Table 2.

This is almost identical to the results in Reference [6], except for the gamma function pre factor.
Here α is different from that work as well. All procedures to obtain a fractal equation of state are simpler
than in Reference [6], and can be done to compare with experimental data. A further investigation
along this line will be presented in a future work.

Table 2. α-Deformed Maxwell relations.

∂αUα
∂V |Sα

= −PαV1−α, ∂αUα
∂Sα
|V= TαS1−α

α ,

∂α Fα
∂V |Tα

= −PαV1−α, ∂α Fα
∂Tα
|V= −SαT1−α

α ,

∂α Hα
∂Pα
|Sα

= VP1−α
α , ∂α Hα

∂Sα
|Pα

= TαS1−α
α ,

∂αGα
∂Pα
|Tα

= −VP1−α
α , ∂αGα

∂Tα
|Pα

= −SαT1−α
α ,

In each of the above Maxwell relations, the α-parameter does not necessarily need to be the
same for all Maxwell relations. In this study, we maintain the same in order to compare to results in
Reference [6].
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Note that in Reference [6], the parameter α is very close to 1. This is important to for the
approximation there to be valid; that is, only lower order for i parameter (i = 0) in the expansion
A3,A4 are kept. This in fact makes the procedure used there local. Apparently, the use of complicated
fractional calculus seems unnecessary compared to the conformable or the q-deformed MD procedures.

Considering dU = TPhysdSα, we can write

dSα =
dQ

Tphys
=

dQ
T
× 1

S1−α
=

dS
S1−α

, (35)

which is consistent with the Improper Riemann integral [23]:

Iα
a ( f )(t) =

ˆ t

a
f (x)dαx =

tˆ

a

f (x)xα−1dx, (36)

where dxα = 1
x1−α dx. Integrating Equation (35) will give

(4S)α =
Sα

α
. (37)

Changing the variable S→ 1 + S
l0

in Equation (35), we obtain, after integration, the result l0
(

1 + S
l0

)α
,

which is related to the Hausdorff derivative up to a constant and is valid for differentiable functions [2].
Consequently, we have

(4S)α =
l0(1 + S

l0
)α

α
. (38)

If we consider α = 1−r
1−q and l0 =

l′0
1−q , the result is

(4S)α =
l′0(1 + (1− q) S

l′0
)

1−r
1−q

1− r
. (39)

For l
′
0 = 1, this is related to the Sharma–Mittal (SM) and Tsallis entropic forms

(4S)α = SSM
q,r +

1
1− r

=
[1 + (1− q)ST

q ]
1−r
1−q

1− r
. (40)

It is well-known that for q = r, the Tsallis entropy is the result. For the limit r → 1, q 6= 1, the
Rényi entropy emerges. For r → 1, q → 1, the Boltzmann–Gibbs is the limiting entropic form. We
conclude that the SM entropy is a kind of re-parametrized geometric average of the Tsallis entropy,
which is on its own an exponentiation of Rényi entropic form. The Rényi entropy is a smoothing of
both the Tsallis and the Sharma–Mittal entropic forms.

4. Conclusions and Outlook

All foregoing presented results give strong evidence to support the paradigm of the MD
in the attempt to generalize the thermodynamics. In short, we summarize our findings by the
following remarks:

Considering a mapping to the continuous fractal space, we have obtained the generalized
Maxwell relations with the use of the MD such as the q-derivative in the nonextensive context and the
conformable derivative.

To obtain the q-deformed and α-deformed Maxwell relations, the q-total derivative and the α-total
derivative were developed. The physical temperature, TPhys, in Reference [24] appears naturally in our
formalism.
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The emergence of the Rényi entropy in the nonextensive context and the Sharma–Mittal-like
entropy is obvious.

For the cases studied, the Maxwell relations of classical thermodynamics are recovered for α→ 1,
q→ 1.

In future works, we intend to study the applications of the MD toward the development of a
generalized thermodynamics on a solid physical basis within fractal, multifractal under complex
systems context.

Additionally, as an outlook for possible research, Reference [40] and some approximate approaches
in References [41–43], there are indications that the use of MD and variational principles, that
perspectives of applications seem to open for modeling quantum systems, including the representation
of quantum mechanics by hydrodynamic models, including those with stochastic processes [44].
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