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Abstract: In this paper a two-input, two-output (TITO) fractional order mathematical model of a
laboratory prototype of a hydraulic canal is proposed. This canal is made up of two pools that have a
strong interaction between them. The inputs of the TITO model are the pump flow and the opening
of an intermediate gate, and the two outputs are the water levels in the two pools. Based on the
experiments developed in a laboratory prototype the parameters of the mathematical models have
been identified. Then, considering the TITO model, a first control loop of the pump is closed to
reproduce real-world conditions in which the water level of the first pool is not dependent on the
opening of the upstream gate, thus leading to an equivalent single input, single output (SISO) system.
The comparison of the resulting system with the classical first order systems typically utilized to
model hydraulic canals shows that the proposed model has significantly lower error: about 50%,
and, therefore, higher accuracy in capturing the canal dynamics. This model has also been utilized to
optimize the design of the controller of the pump of the canal, thus achieving a faster response to step
commands and thus minimizing the interaction between the two pools of the experimental platform.

Keywords: hydraulic canal prototype; TITO fractional-order mathematical model; model validation;
canal control

1. Introduction

The scarcity of fresh water has become a progressively-growing problem worldwide [1].
Water usage has grown by more than twice the rate of the world population increase during the
last century, causing frequent conflicts between different users [2]. Water use by agriculture sector
represents approximately 70% of all available freshwater on our planet [3], and irrigation has been
classified as one of the activities that requires the largest volume of fresh water in the world [1,4]. At the
same time, irrigation contributes to about 40% of the total food production, and it is a vital activity
in many regions of the world [2]. However, in the near future, it is predicted that there will be less
available water for irrigation due to competition with the industrial and domestic sectors [5]. At the
same time, it will be necessary to increase food production to feed the growing world population [3].
The world’s population is expected to grow to almost 10 billion by 2050 [2]. Therefore, with less
available water for irrigation, a growing population, and the negative impacts of intensifying climate
change, the agriculture sector will face enormous challenges, consisting of producing more food with
less water [2]. One way to meet these challenges is to reduce the user’s water demand by improving
the hydraulic efficiency of irrigation systems [6]. Consequently, the studies related with the accurate
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management of available water resources in irrigation systems have a high economic, social, and
strategic interest [7,8].

Currently, a major part of the 250 million ha irrigated worldwide is served by surface canal
systems. In many cases, their performance is lower than mediocre [9]. There is a critical need for
improvements in terms of water resource management, efficiency of main irrigation canals, service to
irrigated agriculture, and cost effectiveness of infrastructure management [9,10].

The main irrigation canals are inherently complex and exhibit great variability of their dynamic
parameters over a range of temporal and spatial scales [1,6]. Knowing, understanding, and predicting
this variability is essential for the design of effective and robust controllers of this class of dynamic
systems. The entropy may help to determine the variability range of the dynamic parameters of
these hydraulics systems and the scales in which the organization of these systems occurs. Recently,
information entropy has been applied in irrigation canals [5,11,12]. As main irrigation canals become
more complex, entropy theory enables hydraulic and control engineers to quantify uncertainties,
determine risk and reliability, estimate parameters, model processes, and design more robust and
reliable hydraulic canals control systems.

Automation in canal irrigation delivery systems has been demonstrated to increase the global
hydraulic efficiency of the irrigation main canals, from less than 40% for traditional irrigation
canals, up to more than 90% for modern canals equipped with automatic control systems [1,13–15].
Automation also enables an improvement in the quality of the water delivery service to users and
safeguards the canal infrastructures during emergencies, such as strong rainstorms or technical
failures [9].

Nowadays, many of the new irrigation main canals have been designed and built, using modern
technologies with advanced control systems [10]. Still, more than 90% of the irrigation canals worldwide
continue to use traditional technologies and manual operation principles [14]. Some reasons are the
lack of operators trained in the modern technologies and the unwillingness of the irrigation systems
managers to change to unknown systems with new equipment and new operation and maintenance
methods [9]. Despite of the changing technological context of the irrigation systems, the operators of
these systems continue to be trained in the same traditional way that only prepares them to maintain
hydraulic infrastructures and not to control and manage these systems in effective ways [9,14].

Therefore, the development of the prototype laboratory hydraulic canals equipped with flexible
electronic platforms of automatic controllers for the training of operators and engineers in the new
technologies of control and management of irrigation systems has a high scientific-technical interest.

Currently, different companies in the world offer these types of hydraulic laboratory canals
conformed by a small upstream reservoir and a downstream canal pool, but without automatic control
due to the complex and rapid dynamic behavior that these canal present. Consequently, the design of
effective and robust control systems for this class of laboratory-scale prototype canals constitutes an
open research problem.

However, the design and implementation of control systems of irrigation canals need mathematical
models that accurately describe their dynamic behavior under realistic conditions [1,7,16,17].
Mathematical models have also been used to understand the hydraulic behavior of complex and
large irrigation networks, especially for evaluation and improvement of control system performance.
However, it is well known that the achievement of these mathematical models is not a simple task [1,15].

In order to obtain a mathematical model suitable for the control system design of irrigation main
canals, two main methods have been proposed: the use of linearized Saint-Venant equations [1,4] and
the use of system identification approaches [18]. Currently, mathematical models based on system
identification procedures are as accurate as models attained through Saint-Venant equations with
estimated parameters, and they are easier to use [6].

A review of the main procedures used in the development of models for main irrigation canals
was carried out in [19]. It includes: the Saint-Venant linearization model, an infinite order linear
transfer function, a finite order non-linear model, a finite order linear state space model, a finite order
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linear transfer function, a neural network model, a fuzzy model, and a Petri net model. Some of the
mathematical models of irrigation canals that have been proposed in the last decades are cited below.

An integrator with a delay model (ID) was obtained in [17] for a canal under backwater flow
conditions. This model was also used to generate state-space MIMO (multiple input/multiple output)
models of complete canals [20]. Some improvements to the ID model [17] were additionally proposed
in [8]. Nonlinear irrigation canal models were developed in [21]. Some models of the water level
evolution in an irrigation canal pool were proposed in [16]. These models were obtained based on a
system identification approach, and they do not have any physical or hydraulic meaning. In addition,
various SISO (simple-input/simple output) second-order models with dominant time delays of a
main irrigation canal pool were obtained in [22–24] using different system identification procedures.
However, the degree of adequacy of the cited models for the design of high performance control
systems is not that required due to the nonlinear and distributed behavior of the canal, as well as to
model parameter uncertainties, e.g., [6]. This means that there are still significant unsolved problems
in this field.

In recent years, increasing attention has been paid to fractional-order calculus as a powerful
tool with which to model and control a broad range of real industrial processes, e.g., [7,25–34].
In particular, fractional order differential equations are more adequate than integer-order equations
when modeling certain processes in which distributed dynamics are dominant, as occurs in
electrochemical processes [35,36], thermal processes [37,38], or hydraulic processes [39,40].

Fractional-order models allows the design of fractional-order controllers that are more effective
than traditional integer-order controllers (e.g., [39]). However, the problems related to developing
useful MIMO fractional order-models, estimating their parameters, and using those in the control
system design of irrigation canals have not been completely researched in the control literature.

This article proposes to increase the accuracy of the linearized models of canal pool dynamics
by including fractional-order derivative operators. A TITO (two input/two output) fractional-order
model of a canal with two pools is proposed, which has been derived based on a prototype laboratory
hydraulic canal. This model is obtained by means of a direct system identification approach [41],
which allows the immediate derivation of a continuous-time model using continuous-time model
identification tools [42].

The combination of the TITO model and a control loop of the pump of the system to keep the
upstream water level constant to mimic the experimental system allow to reproduce the experimental
results with a higher fidelity (up to a 50% of improvement) than the linearized MIMO models
traditionally proposed in the literature. Additionally, the dynamics of the TITO system is utilized to
propose a systematic methodology to design a proportional integral (PI) controller for the pump that
outperforms the PID utilized experimentally, which was designed by trial and error.

2. The Laboratory Prototype of the Hydraulic Canal

The laboratory prototype of the hydraulic canal studied in this article is a variable slope
rectangular water canal with glass walls and a methacrylate bottom located in the Fluid Mechanics
Laboratory of the Castilla-La Mancha University (Spain). This canal is used in the training of operators
and engineers in the new technologies of control and management of irrigation systems.

The canal is 5 m long and 8 cm wide, while its walls are 25 cm high. It consists of a closed-loop
water canal with an instrumental platform that integrates electro-mechanical sensors and actuators,
a PLC (programmable logic controller) SIMATIC S7-300 (SIEMENS, Germany), and a SCADA (data
acquisition and supervisory system). The canal has motorized and manual adjustable slide gates
that allow it to be divided into pools of different lengths. The current configuration of the canal is
composed of two pools: the first one acting basically as a reservoir, and the second one acting as a main
canal pool of approximately 4.7 m in length with a downstream end operation (delivering the required
water flow at its downstream end). The upstream gate of this main pool is a motorized undershot
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gate, which connects the two pools, and the downstream gate is a manually-adjustable overshot gate.
A schematic representation of this laboratory prototype of the hydraulic canal is shown in Figure 1.
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Figure 1. Schematic representation of the laboratory prototype of the hydraulic canal under study.

The water flows in a closed circuit from an upstream reservoir to a downstream storage reservoir
in order to avoid water losses. The return of the water to the upstream reservoir is guaranteed by an
electric motor-pump. This motor-pump operates with a speed variator, thus allowing adjustments
in frequency from 0 to 50 Hz. The total canal inflow is adjustable from 0 to 9 m3/h (≈2.5 L/s).
The laboratory canal has a water extraction system with which to simulate user’s water offtakes.
Two ultrasonic level sensors (ULS), positioned outside the top of the canal, are used to monitor
and control the upstream and downstream water levels. A third ultrasonic sensor measures the
downstream end water level. The motorized slide undershot gate is equipped with a DC motor and
a gate position sensor (GPS). The canal is also equipped with a flowmeter (FS), which is located in
the water return tube and measures the canal water inflow pumped by the motor-pump from the
downstream storage reservoir toward the upstream reservoir. This canal is also equipped with a PC
(personal computer), which is used as a canal control station. A SCADA application is installed on this
PC to guarantee the supervision of the canal.

3. TITO Models

As it was mentioned in the previous section, the inputs to our experimental system are the control
signal of the pump (u1) given in Hz, and the control signal for the actuator of the upstream gate
opening (u2) in mm. The outputs of this system are the water levels of the two pools of our canal
(yup for the reservoir pool and ydwe for the main canal pool).

These two inputs and outputs define a TITO system where the behavior of the system is highly
nonlinear and depends on the operating regime. To obtain a linearized model of our system, the
operating regime is defined by a pump control value u10= 19.5 Hz (a flow of 3.25 m3/h) and an
upstream gate opening u20 = 35 mm. From now on, incremental variables around this operating point
will be used, which will be represented by adding the increment symbol to the name of the variable.

We are interested in assessing if fractional-order models can improve the description of our canal
dynamics provided by integer order models. We mention, that the identification of the fractional order
dynamics of a system can be obtained from either its frequency response [35] or its time response to
step or pulse inputs [36]. In this work, models will be fitted to time responses and step inputs.

3.1. Identified Models

Several models of the incremental linearized 2 × 2 TITO were obtained in [43]. In particular,
a standard multivariable model based on integer order transfer functions with a delay of the form:(

∆Yup(s)
∆Ydwe(s)

)
= G(s)·

(
∆U1(s)
∆U2(s)

)
, G(s) =

( K11
(1+TA11s)(1+TB11s) e−τ11s K12

(1+TA12s)(1+TB12s) e−τ12s

K21
(1+TA21s)(1+TB21s) e−τ21s K22s

(1+TA22s)(1+TB22s) e−τ22s

)
, (1)
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and a multivariable model based on fractional-order transfer functions with a delay of the form:(
∆Yup(s)
∆Ydwe(s)

)
= G(s)·

(
∆U1(s)
∆U2(s)

)
, G(s) =

( K11
1+T11sα11 e−τ11s K12

1+T12sα12 e−τ12s

K21
1+T21sα21 e−τ21s K22sβ22

1+T22sα22 e−τ22s

)
, (2)

were experimentally obtained. Let us here denote the element of the i row and the j column of matrix
G(s) as Gij(s).

In both cases, in order to estimate the parameters of the transfer functions that compose the
matrices G(s), a normalization of the integral square error (ISE) index was utilized to measure the
fitting between the experimental results and the ones produced by simulating the models. Equation (1)
is often used in practice, and its transfer functions have only four parameters to be identified (Kij, TAij

TBij, and τij). The estimated values of the parameters of these models are shown in Table 1.

Table 1. Parameters of the integer order models fitted to the experimental responses.

Index Kij TAij TBij øij

11 2.056 5.041 0 1.05

12 −0.3563 2.572 0 0.45

21 0.8653 4.798 0 5.4

22 0.500 1.86 1.86 4.05

Equation (2) is more complex as it presents one additional parameter in each of its transfer
functions—the fractional-order αij—with the exception of G22(s) that also presents the parameter β22.
However, this model captures the dynamics of the system with greater accuracy, as can be seen from
the percentage of improvement shown in Table 2.

Table 2. Parameters of the fractional order models fitted to the experimental response.

Index Kij Tij øij ffij fiij Percentage of Improvement (%)

11 2.056 4.0 1.05 0.91 - 45

12 −0.3563 2.7 0.45 1.03 - 1.4

21 0.8653 3.7 5.4 0.89 - 33.3

22 0.291 1.5 4.05 1.1 0.88 41.03

All the previous values were obtained in [43], and demonstrate that there is an important
improvement in the agreement between the experimental data and the simulated results when
the fractional order transfer functions are employed in the TITO system in order to reproduce the
experimental results. There is only one exception: the case of the transfer function G12 in which the
improvement is nearly negligible.

3.2. Controlling the Water Level of the First Pool

As it was stated in the previous section, in order to avoid water loses, the water flows in a closed
circuit from an upstream reservoir to a downstream storage reservoir. However, the dimensions of
that upstream reservoir are relatively small. In order to emulate with this reservoir a pool of a canal
with a very large amount of water, in which the water level yup remains approximately constant in
spite of the pool water being discharged to the following pool through a gate, the water level of this
reservoir is controlled by closing a loop in which the pump is the input (the input signal is u1).

With the purpose of reproducing real-world conditions, in which the water level of the first pool
is not dependent on the opening of the upstream gate, it is very important to optimize the performance
of the above-mentioned control loop of the first pool. It intends to quickly remove any variation of the
water level of this pool caused by the opening of the gate.
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Typically, a proportional integral derivative (PID) regulator is utilized to overcome the issues
produced by the small dimensions of the upstream reservoir [44]. Figure 2 shows a PID scheme,
where KP and Ki are the proportional and integral gains respectively, and they are set to KP = 0.2,
Ki = 0.08, and Kd = 0.02, and the parameter µ = 0.01 is chosen small enough to not noticeably modify
the dynamics of the regulator and make it implementable. As a consequence of closing this feedback
loop, our original TITO system is transformed into a SISO system whose single input is ∆U2(s) (the
other input ∆U1(s) has been substituted by a constant reference ∆Y∗

up(s) which becomes a null input
in the linearized model) and a single output ∆Yup(s).
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Once the PID controller that keeps the upstream water level in a fixed reference has been designed,
several maneuvers were performed by the upstream gate to identify the remaining dynamics basically
associated to the second pool. The upstream reference is kept equal to 60 mm and 12 steps of different
amplitudes were applied to the opening of the gate. The amplitude of these steps and the variations of
the downstream level are depicted in Figure 3.
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From the experimental data obtained in [44] it was observed that the dynamic response of the
system presents a strong dependence with the operating point of the system and, thus, different
behaviors can be obtained depending on the opening of the gate. The most representative examples of
these different dynamics are the responses to steps 5–7 (encircled in Figure 3).

To analyze the fitting between the experimental responses in these cases and the identified models
of these responses we have to define the fitting index E as follows:

E =

√
1
t f

∫ t f

o

(
∆ye(t)

∆ys
− ∆ym(t)

∆ys

)2
dt , (3)

where ∆ye(t) is the incremental experimental response, ∆ym(t) is the response provided by the
proposed model, t f is the duration of the experimental data (t f = 40), and ∆ys is the steady state value
of the experimental data.
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Once steps 5–7 have been analyzed, three different behaviors are observed:
(1) The dynamics of step 5 are close to an integer first-order plus time delay system. Figure 4

shows the experimental response and the simulated response of the system:

G11,1(s) =
0.1056

s + 0.33
e−5s, (4)

which has been fitted to the experimental data by minimizing Equation (3). The fitting index obtained
is E = 0.057.
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(2) The dynamics of step 6 are close to a fractional-order plus time delay system. Figure 5 shows
the experimental response and the simulated responses of the systems:

G11,1(s) =
0.03255
s + 0.35

e−5s, G11,2(s) =
0.0534

s0.85 + 0.59
e−5s, (5)

which have also been fitted to the experimental data by minimizing Equation (3). The fitting indices
obtained for G11,1(s) and G11,2(s) are E = 0.092 and E = 0.090, respectively. These values and Figure 5
show that, in this case, the experimental response cannot be accurately fitted by an integer order plus
time delay model. A fractional order plus time delay model slightly improves this fitting, however,
it still does not reproduce an oscillation that appears at the beginning of the response when it is rising.
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(3) The dynamics of step 7, which show a behavior with a complex transient response that cannot
be accurately described by any of the previous models. Figure 6 shows the experimental response and
the simulated responses of some models with different structures:

G11,1(s) = 0.0435
s+0.3 e−5s, G11,2(s) = 0.093

s0.73+0.63 e−5s,

G11,3(s) =
0.0522(s+0.5)

s+0.18 e−5s, G11,4(s) = 0.77372
(s+0.29)(s+18.4) e−5s,

G11,5(s) = 2.827442
(s+0.29)(s2+67.24) e−5s,

(6)

whose parameters have been fitted to the experimental data by minimizing Equation (3). The fitting
indices obtained for G11,1(s), G11,2(s), G11,3(s), G11,4(s), and G11,5(s) are E = 0.1698, E = 0.1437,
E = 0.1332, E = 0.1698, and E = 0.1697, respectively. These values and Figure 6 show that, in this
case, the experimental response cannot be fitted, neither by the integer-order nor the fractional-order
plus time delay models, or by higher-order SISO models. The oscillation that appears at the beginning
of the response is in this case more significant than in the previous case, and prevents the accurate
fitting of any of these models.

Entropy 2017, 19, 401 8 of 19 

 

(3) The dynamics of step 7, which show a behavior with a complex transient response that cannot 
be accurately described by any of the previous models. Figure 6 shows the experimental response 
and the simulated responses of some models with different structures: ܩଵଵ,ଵ(ݏ) = ݏ0.0435 + 0.3 ݁ିହ௦, (ݏ)ଵଵ,ଶܩ = ଴.଻ଷݏ0.093 + 0.63 ݁ିହ௦, ܩଵଵ,ଷ(ݏ) = ݏ)0.0522 + ݏ(0.5 + 0.18 ݁ିହ௦, (ݏ)ଵଵ,ସܩ = ݏ)0.77372 + ݏ)(0.29 + 18.4) ݁ିହ௦, 	ܩଵଵ,ହ(ݏ) = ݏ)2.827442 + ଶݏ)(0.29 + 67.24) ݁ିହ௦, 

(6) 

whose parameters have been fitted to the experimental data by minimizing Equation (3). The fitting 
indices obtained for ܩଵଵ,ଵ(ݏ) (ݏ)ଵଵ,ଶܩ , , (ݏ)ଵଵ,ଷܩ	 (ݏ)ଵଵ,ସܩ , , and ܩଵଵ,ହ(ݏ)  are E = 0.1698, E = 0.1437,  
E = 0.1332, E = 0.1698, and E = 0.1697, respectively. These values and Figure 6 show that, in this case, 
the experimental response cannot be fitted, neither by the integer-order nor the fractional-order plus 
time delay models, or by higher-order SISO models. The oscillation that appears at the beginning of 
the response is in this case more significant than in the previous case, and prevents the accurate fitting 
of any of these models. 

 

Figure 6. Fitting of the previous models to the experimental water level response of the second pool 
to step 7 in the gate opening ݑଶ(ݐ). 

4. Obtaining an Accurate Theoretical Model of the Complex Transient Response of the Canal 

As it has been showed in the previous section, there are several steps like step 7 that present a 
transient response with complex dynamics that cannot be captured by neither using a classical first 
order system plus time delay nor a simple fractional-order system plus time delay. In order to 
develop a more accurate model, we utilize the TITO model and obtain the equivalent transfer 
function obtained after closing the loop of the pump of the canal.  

If we denote the PID regulator as R(s), according to the control scheme showed in Figure 2, the 
incremental input signal to the pump is: ∆Uଵ(ݏ) = ൫∆ ௨ܻ௣∗ (ݏ) − ∆ ௨ܻ௣(ݏ)൯ ∙  (7) .(ݏ)ܴ

Substituting Equation (7) in the TITO model given by Equation (1) or (2), and assuming a constant 
reference of the upstream water level is set (∆ ௨ܻ௣∗ (ݏ) = 0), the TITO system can be expressed as: ൬ ∆ ௨ܻ௣(ݏ)∆ ௗܻ௪௘(ݏ)൰ = ൬ܩଵଵ(ݏ) (ݏ)ଶଵܩ(ݏ)ଵଶܩ ൰(ݏ)ଶଶܩ ∙ ൬−ܴ(ݏ) ∙ ∆ ௨ܻ௣(ݏ)∆ܷଶ(ݏ) ൰. (8) 

Operating this expression yields: 

Figure 6. Fitting of the previous models to the experimental water level response of the second pool to
step 7 in the gate opening u2(t).

4. Obtaining an Accurate Theoretical Model of the Complex Transient Response of the Canal

As it has been showed in the previous section, there are several steps like step 7 that present a
transient response with complex dynamics that cannot be captured by neither using a classical first
order system plus time delay nor a simple fractional-order system plus time delay. In order to develop
a more accurate model, we utilize the TITO model and obtain the equivalent transfer function obtained
after closing the loop of the pump of the canal.

If we denote the PID regulator as R(s), according to the control scheme showed in Figure 2,
the incremental input signal to the pump is:

∆U1(s) =
(

∆Y∗
up(s)− ∆Yup(s)

)
·R(s). (7)

Substituting Equation (7) in the TITO model given by Equation (1) or (2), and assuming a constant
reference of the upstream water level is set (∆Y∗

up(s) = 0), the TITO system can be expressed as:(
∆Yup(s)
∆Ydwe(s)

)
=

(
G11(s) G12(s)
G21(s) G22(s)

)
·
(

−R(s)·∆Yup(s)
∆U2(s)

)
. (8)
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Operating this expression yields:

∆Yup(s) =
G12(s)∆U2(s)

1 + G11(s)R(s)
, (9)

and, thus, the TITO model can be reduced to a SISO model that relates the water level at the end of the
second pool with the opening of the gate as follows:

∆Ydwe(s)
∆U2(s)

=
G22(s) + (G11(s)·G22(s)− G21(s)·G22(s))R(s)

1 + G11(s)R(s)
. (10)

Subsequently, we assess if this model can potentially capture the recorded experimental dynamics
better than the models presented in Section 3.2, i.e., if the dynamics described in Figure 6 can be better
fitted by Equation (10). We consider two cases in our study: (1) utilizing the transfer functions given
by the integer-order TITO model (Equation (1)) with the parameters of Table 1 and (2) utilizing the
transfer functions given by the fractional-order TITO model (Equation (2)) with the parameters of
Table 2.

The identification methodology used in Section 3.2 implies that the values of all the parameters of
the model are obtained from an optimization procedure that minimizes the ISE index (Equation (3)).
However, Equation (10) has too many parameters to be tuned (20 parameters). We have made the
decision of tuning only three parameters of the transfer function (Equation (10)) and maintain the
17 remaining parameters in the values identified in [43] (values given in Table 1 for the integer-order
model and in Table 2 for the fractional-order model). Figure 7 shows the experimental response and the
simulated responses obtained after tuning these three parameters in the transfer functions (Equation
(10)) in the cases of using the integer-order and the fractional-order TITO models.
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Figure 7. Fitting of the water level response of the second pool to a step in the gate opening u2(t) to
integer-order and fractional-order TITO systems.

It can be seen in this figure that the fractional-order fitting reproduces the experimental dynamics
with better accuracy (which is a foreseeable result, since the fractional model presented a great
improvement compared to the integer-order model as seen in Table 2). The obtained values of
the fitting index for the integer order and the fractional order models are E = 0.087 and E = 0.066,
respectively. There is a percentage of improvement equal to 24.1% when the integer order and fractional
order are compared. On the other hand, it is important to note that if we compare the fitting index
produced by the fractional version of this model (E = 0.066) and the best result produced by the
fitting of a SISO system in the previous section G11,3(s) (which yielded a fitting index E = 0.1332),
an improvement equal to 50.5% is obtained if the proposed fractional TITO model is utilized to
reproduce the experimental response.
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Additionally, in order to illustrate the flexibility of the proposed TITO model (Equation (2)),
this model was also identified in the operating points that correspond to the steps 5 and 6, and then
the experimental responses corresponding to these steps were fitted by following the aforementioned
procedure. The numerical values obtained in each operating point are showed in Table 3.

Table 3. Parameters of the fractional order models fitted to the operating points of steps 5 and 6.

Index Kij Tij øij ffij fiij Operating Point

11 1.9 14 1.05 1.1 - Step 5
12 −0.1 0.1 0.45 1.7 - Step 5
21 5.8 22 5.4 1.1 - Step 5
22 3 10 4.05 1.2 1.2 Step 5
11 4.1 6 1.05 0.90 - Step 6
12 −0.3 8 0.45 0.9 - Step 6
21 2 2 5.4 0.9 - Step 6
22 1.2 10 4.05 0.9 1 Step 6

Once the TITO models for the different operating points are obtained we can reproduce the
experimental responses with a great accuracy as it can be seen in Figures 8 and 9. In these cases the
fitting indexes were E = 0.055 for the step 5 and E = 0.094 for the step 6. If we compare these results
with the best fittings produced by the SISO systems in these operating points (E = 0.057 for the step 5
and E = 0.090 for step 6), we can see that the results obtained using TITO models and SISO models are
very close. This can be justified because these experimental responses of the system are very smooth
and do not present complex transient responses, which are the cases in which the advantages of the
TITO model may be fully exploited.
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The transfer function of the resulting fractional order fitted model can be obtained if we substitute
the values of Equation (2) into Equation (10), leading to the following expression:

∆Ydwe(s)
∆U2(s)

=

K22sβ22

1+T22sα22 e−τ22s+

 K11
1+T11sα11

K22sβ22

1+T22sα22 e−s(τ22+τ11)−
K12

1+T12sα12
K21

1+T21sα21 e−s(τ12+τ21)

 Kds2+Kps+Ki
s(µs+1)

1+ K11
1+T11sα11 e−τ11s Kds2+Kps+Ki

s(µs+1)

.

(11)
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This can be expressed as:

∆Ydwe(s)
∆U2(s)

= e−τ22s

K22sβ22

1+T22sα22 +

 K11
1+T11sα11

K22sβ22

1+T22sα22 e−sτ11−
K12

1+T12sα12
K21

1+T21sα21 e−s(τ12+τ21−τ22)

 Kds2+Kps+Ki
s(µs+1)

1+ K11
1+T11sα11 e−τ11s Kds2+Kps+Ki

s(µs+1)

.

(12)

Since the values of delays τ11, and (τ12 + τ21 − τ22) are very small when compared with τ22,
we can utilize the first order Padé of the time delay to approximate their behaviour:

e−τs ≈ −s + 2/τ

s + 2/τ
. (13)

We can compute an approximation of Equation (12) as follows:

∆Ydwe(s)
∆U2(s)

= e−τ22s

K22sβ22

1+T22sα22 +


K11

1+T11sα11
K22sβ22

1+T22sα22

(
−s+2/τ11
s+2/τ11

)
−

K12
1+T12sα12

K21
1+T21sα21

(
−s+2/(τ12+τ21−τ22)
s+2/(τ12+τ21−τ22)

)  Kds2+Kps+Ki
s(µs+1)

1+ K11
1+T11sα11

Kds2+Kps+Ki
s(µs+1)

(−s+2/τ11
s+2/τ11

) .

(14)

Equation (14) is a general expression that can be particularized to the integer-order TITO model by
substituting the parameters of Table 1.Entropy 2017, 19, 401 11 of 19 
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Figure 9. Fitting of a fractional order TITO systems to the experimental water level response of the
second pool to step 5 in the gate opening u2(t).

5. Improving the Control of the Water Level of the First Pool

Usually, the parameters of the PID controller in charge of maintaining the water level of the first
pool are tuned assuming that the system is characterized by only the transfer function G11(s) of G(s).
Then the coupling existing between pools caused by the discharge of water from the first to the second
pool through the upstream gate (which is represented by G12(s) in Equations (1) and (2)) is considered
as an external disturbance.

The PID controller used in the previous sections was tuned by a trial and error procedure because
in the past we did not have a reliable model of the process. Since a reasonably accurate model
(Equation (2)) was obtained in [43], this section proposes to design an improved controller based on
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this model. Moreover, we will assess the impact produced on the controlled system performance
by the fact of designing the controller using the integer-order TITO model (Equation (1)) or the
fractional-order TITO model (2).

In order to maintain constant the water level of the first pool and remove any external perturbation
as quickly as possible, it would be desirable to provide a simple way in which to tune its controller
according to a minimum performance or robustness criteria. In [45] for example, a method with which
to tune a robust distant downstream PI controller for an irrigation canal pool based on gain and phase
margin requirements was developed. This section designs a PI controller for the first pool using a mix
of frequency and time specifications.

In order to design the controller, the following specifications are proposed: (I) a desired phase
margin ∅m which guarantees the desired nominal damping and robustness to changes in the delay;
(II) a response with zero steady error to step changes in the set point as well as to step disturbances
in the process input; and (III) a minimum settling time. Specification (II) is guaranteed by means
of the integral term of the PI controller. Specification (I) can be expressed in a compact form by the
complex equation:

G11(jωc)
KP(jωc) + Ki

(jωc)
= ej(−(π−∅m)) = −ej∅m , (15)

where ωc is the gain crossover frequency. Since the fractional order model G11(s) of Equation (2) is a
generalization of the integer-order version given in Equation (1), substituting this into Equation (15)
gives the complex design condition:

(KP(jωc) + Ki)

1 + T1(jωc)
α = −ωc

K
ej(∅m+ωcτ+ π

2 ), (16)

which is valid for both G11(s) transfer functions of Specifications (I) and (II). It can be seen in this
expression that, for a given value of ∅m (which has a fairly standard value ∅m = 60◦), different pairs
of parameters of the PI controller are obtained, depending on the value of ωc. In this design, ωc was
varied in the interval [0, 1] rad/s. The relationship between the settling time and the gain crossover
frequency ωc for a fixed value ∅m = 60◦ was obtained for the two cases: the integer order and the
fractional order transfer functions G11(s). These functions are plotted in Figure 10 and were used
to design the PI controller that minimized the settling time, considered as the time required for the
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The controller that minimizes the settling time, obtained using the integer-order model, is:

R(s) =
1.401s + 0.2223

s
, (17)

and the controller that minimizes the settling time, obtained using the fractional-order model, is:

R(s) =
1.051s + 0.3175

s
, (18)

Figure 11 shows: (a) the simulated closed-loop responses of the fractional order model G11(s) to a
unity step command when Equations (17) and (18) are used; and (b) the control signals applied to the
pump by these regulators. It can be observed, comparing both responses, that Equation (17), i.e., the
one designed based on the integer order model of G11(s), degrades its performance when it is faced
to control the more accurate fractional-order model of the experimental platform (the settling time is
larger than the value given by Figure 10). Additionally, it can be seen that the control signal applied
to the pump has smaller amplitude with Equation (18), which means that a lower control effort is
necessary to drive the pump.
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Figure 11 also shows the simulated response of the fractional-order model G11(s) controlled with
a PID designed by trial and error, based on the experience acquired by the operator when working
with the experimental system. This result is included to illustrate that the performance of the system is
dramatically improved when a systematic methodology based on a quantitative model of the process
is employed to design the control scheme of the system.

Table 4 shows the numerical values of the settling time and the maximum peak achieved by
the regulators whose responses were drawn in Figure 11. From these data it can be seen that the
PI controller designed considering the fractional order model of the system has the lowest settling
time, and thus the fastest response of all the cases, and it can also be seen that this model significantly
outperforms the PID controller designed by trial and error.
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Table 4. Parameters of the time response of the PI and PID regulators to a unity step command.

Case Settling Time (s) Peak Value (mm)

Equation (17) applied to fractional-order system 7.35 1.081
Equation (18) applied to fractional-order system 6.00 1.089

Experimental PID applied to fractional-order system 15.0 1.05

The experimental validation of the results is showed in Figure 12, where the experimental
responses of Equations (17) and (18) in the nominal conditions are compared with the simulated results.
It can be seen that they reasonably reproduce the behavior obtained in simulation despite there being
a significant noise in the experimental results.
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Additionally, in order to evaluate the robustness of the proposed Equations (17) and (18), they
were applied to different operating points, i.e., with gate openings of 10 mm and 30 mm. The obtained
results are shown in Figure 13.Entropy 2017, 19, 401 15 of 19 
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Table 5 shows the settling time and the maximum peak values of the experimental results achieved
by these regulators, whose responses were drawn in Figures 12 and 13. From these data, it can be seen
that the PI controller designed considering the fractional order model of the system has the best and
fastest response in each situation.

Table 5. Parameters of the experimental time response of the PI regulators to a unity step command.

Case Settling Time (s) Peak Value (mm)

Equation (17). Nominal operation point 8.19 1.11
Equation (18). Nominal operation point 5.02 1.097

Equation (17). 10 mm gate opening 14.4 1.30
Equation (18). 10 mm gate opening 6.3 1.25
Equation (17). 30 mm gate opening 8.8 1.02
Equation (18). 30 mm gate opening 5.9 1.03

In order to illustrate the impact of the design of the PI controller in the behavior of the downstream
water level, the frequency responses of Equation (12) using Equations (17) and (18) are shown in
Figure 14 for comparison purposes. These simulations show that the PI controller designed by
considering a fractional-order model of the canal provides a wider bandwidth and, thus, a faster
response to step commands, than the PI designed from the integer-order model. This faster response
is also illustrated by means of simulation in Figure 15, where it is depicted the evolution of the
downstream water level ∆Ydwe when a unity step signal is applied to the gate opening ∆U2 in the cases
of the two controllers.Entropy 2017, 19, 401 16 of 19 
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6. Conclusions

This article has explored the dynamic modelling and control of a laboratory prototype of
a hydraulic canal. Its starting point has been two multivariable models of this canal that were
experimentally obtained in [43]. The first one was an integer-order model and the second one a
fractional-order model.

Based on these models, this article studied the dynamics of this canal assuming that a system to
control the water level of the first pool had been implemented. This control system is necessary in
order to attain a behavior of the first pool similar to the one of a real canal pool. However, closing this
loop yielded, in some cases, complex time responses of the second pool that could not be accurately
explained neither by standard first order plus time delay models nor more advanced fractional-order
plus time delay models. This article has shown that these complex responses can be accurately
described by a TITO fractional-order plus time delay model combined with the mentioned control
loop of the water level of the first pool. However, the standard TITO first-order plus time delay model
combined with such a control system cannot describe such behavior.

Moreover, the fractional-order model of the first pool reported in [43] has been used to design a
new water level control system of this pool that outperforms the previously existing one. It has also
been shown that the same controller design procedure applied to the integer-order model of this plant
also given in [43] yields a controller with a clearly inferior performance.

The above two studies that have been carried out in this paper demonstrate that incorporating
information about the fractional order dynamics of canals in their mathematical models helps to
understand the complex dynamics that they sometimes exhibit (at least in the case of our laboratory
prototype of a hydraulic canal). Additionally, it allows the improvement in the performance of the
control systems whose designs are based on these hydraulic models. It also illustrates that including
information about the mathematical model of the canal dramatically improved the performance of any
control scheme that could be implemented by using the experience of the operator of the system with
no further information.

Our future work includes designing a control loop for the downstream water level of the second
loop. The results of this article will have a double impact in the expected performance: (1) because
the fractional-order model that mostly defines these dynamics, which is G22(s), also describes more
accurately these dynamics than the integer-order model; and (2) because of the impact of the controller
of the first pool that has been designed in this work, which yields faster responses than the controllers
designed from integer-order models, which allows the assumption that the water level of the first
pool remains approximately constant in spite of the disturbance caused by the water discharge on the
second pool.

Thus, the results presented in this paper allow us to utilize the laboratory canals currently
distributed commercially by different companies to reproduce, at a laboratory-scale, the real-world
canals and their dynamics with better accuracy, therefore allowing better training of the operators of
these canals, as well as the design of better automatic control systems for these processes.
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