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Abstract: In a given problem, the Bayesian statistical paradigm requires the specification of a prior
distribution that quantifies relevant information about the unknowns of main interest external to
the data. In cases where little such information is available, the problem under study may possess
an invariance under a transformation group that encodes a lack of information, leading to a unique
prior—this idea was explored at length by E.T. Jaynes. Previous successful examples have included
location-scale invariance under linear transformation, multiplicative invariance of the rate at which
events in a counting process are observed, and the derivation of the Haldane prior for a Bernoulli
success probability. In this paper we show that this method can be extended, by generalizing Jaynes,
in two ways: (1) to yield families of approximately invariant priors; and (2) to the infinite-dimensional
setting, yielding families of priors on spaces of distribution functions. Our results can be used to
describe conditions under which a particular Dirichlet Process posterior arises from an optimal
Bayesian analysis, in the sense that invariances in the prior and likelihood lead to one and only one
posterior distribution.

Keywords: Bayesian nonparametrics; Dirichlet process; functional equations; Hyers–Ulam–Rassias
stability; improper prior; invariance; optimal Bayesian analysis; transformation group

1. Introduction

Consider a statistician working on a problem P in which a vector y = (y1, .., yn) of real-valued
outcomes is to be observed, and—prior to, i.e., without observing y—the statistician’s uncertainty
is exchangeable, in the usual sense of being invariant under permutation of the order in which the
outcomes are listed in y. This situation has extremely broad real-world applicability, including (but not
limited to) the analysis of a completely randomized controlled trial, in which participants—ideally,
similar to elements of a population to which it is desired to generalize inferentially—are randomized.
Each participant is assigned either to a control group that receives the current best treatment, or to an
experimental group that receives a new treatment whose causal effect on y is of interest. This design,
while extremely simple, has proven to be highly useful over the past 90 years, in fields as disparate as
agriculture [1], medicine [2], and (in contemporary usage) A/B testing in data science on a massive
scale [3]. We use randomized controlled trials as a motivating example below, but we emphasize that
they constitute only one of many settings to which the results of this paper apply.

Focusing just on the experimental group in the randomized controlled trial, the exchangeability
inherent in y implies via de Finetti’s Theorem [4] that the statistician’s state of information may be
represented by the hierarchical model

yi | F iid∼ F F ∼ π(F) (1)

for i = 1, .., n, where F is a cumulative distribution function (CDF) on R and π(F) is a prior on the
space of all such CDFs, i.e., the infinite-dimensional probability simplex S∞. Note that (1) has uniquely
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specified the likelihood in a Bayesian nonparametric model for y, and all that remains is specification
of π(F).

Speaking now more generally (not just in the context of a randomized controlled trial), suppose that
the nature of the problem P enables the analyst to identify an alternative statistical problem P̃ in which

P̃ = g(P) such that g ∈ G , (2)

where G is a collection of transformations g from one problem to another having the property that,
without having seen any data, P̃ and P are the exact same problem. Then, the prior π̃ under P̃ must be
the same as the prior π under P! Furthermore, since this holds for any g ∈ G, the result will be, as
long as G is endowed with enough structure, that there is one and only one prior π, for use in P, that
respects the inherent invariance of the problem under study. Bayes’ Rule then implies that there is one
and only one posterior distribution under P. When this occurs—when both the likelihood function
and the prior are uniquely specified, as in the example above—we say that the problem P admits an
optimal Bayesian analysis.

The logic underlying the above argument has been used to motivate and formalize the notion of
noninformative priors for decades. Indeed, in the special case where F is parametric and G is a group of
transformations encoding invariance with respect to monotonically-transformed units of measurement,
Jeffreys [5] derived the resulting prior distribution. As another example, Jaynes [6] derived the prior
distribution for the mean number of arrivals of a Poisson process by using its characterization as a Lévy
counting process to specify an appropriate transformation group. Notably, the resulting prior distribution
is not the Jeffreys prior, because the problem’s invariance and corresponding transformation group are
different. See Eaton [7] for additional work on this subject.

Having studied this line of reasoning, it is natural to ponder its generality. In this paper we show
that the argument can be made quite general—we prove that the argument’s formal notions

(a) can be generalized to include approximately invariant priors in an ε–δ sense; and
(b) can be extended to infinite-dimensional priors on spaces of CDFs.

We focus on the setting described in (1) and defer more general situations to future work. In this
setting we derive a number of results, ultimately showing that the Dirichlet Process [8] prior DP(ε, F0)

is an approximately invariant stochastic process for any CDF F0 on R and sufficiently small ε > 0.
Together with de Finetti’s Theorem, this demonstrates that the posterior distribution

F | y ∼ DP
(

n, F̂n

)
, (3)

where F̂n is the empirical CDF, corresponds in a certain sense to an optimal Bayesian analysis—see
Section 3 for more on this point.

Not all approaches to noninformative priors are based on group invariance. Perhaps the earliest
approach can be traced back to Laplace [9], who proposed a Principle of Indifference under which,
if all that is known about a quantity θ is that θ ∈ Θ (for some set Θ of possible values), then the
prior should be uniform on Θ. For example, consider Θ = (0, 1): the fact that θ ∼ U(0, 1) is not
consistent with f (θ) ∼ U(0, 1) for any monotonic nonlinear f requires that the problem P under
study must uniquely identify the scale on which uniformity should hold for the principle to be
valid—this was a major reason for the rise of non-Bayesian theories of inference in the 19th century [10].
Bernardo [11] has proposed a notion of noninformative priors that is defined by studying their effect
on posterior distributions, and choosing priors that ensure that prior impact is minimized. Jaynes [12]
has proposed the Maximum Entropy Principle, which defines noninformative prior distributions via
information-theoretic arguments, for use in settings in which invariance considerations do not lead to
a unique prior. All of these notions are different, and applicable to problems where the corresponding
notions of noninformativeness arise most naturally.
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Most of the work on noninformative priors has focused on the parametric setting, in which
the number of unknown quantities is finite. In contrast, Bush et al. [13] and Lee et al. [14] have
derived results on noninformative priors in Dirichlet Process Mixture models. Their notion of
noninformativeness is completely different from our own, as it is a posteriori, i.e., it involves examining
the behavior of the posterior distribution under the priors studied. This makes their approach largely
complementary to ours: in specifying priors, it is helpful to understand both the prior’s effect on the
posterior and the prior’s behavior a priori without considering any data.

Here we study noninformative prior specification from a strictly a priori perspective. We do not
consider the prior’s effect on the posterior distribution. There is no data or discussion of computation.

Our motivation is a generalization of the following argument by Jaynes [12]. Suppose that in
the randomized controlled trial described above, the outcome y of interest is binary. By de Finetti’s
Theorem, we know that

yi | θ1
iid∼ Ber(θ1) (4)

is the unique likelihood for (e.g., the treatment group in) this problem. Suppose further that the
statistician’s state of information about θ1 external to the data set y is what Jaynes calls “complete initial
ignorance” except for the fact that θ = (θ1, θ2) is such that

{0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1, θ1 + θ2 = 1} . (5)

Jaynes argues that this state of information is equivalent to the statistician possessing complete
initial ignorance about all possible rescaled and renormalized versions of θ, namely

θ′ =

(
c1θ1

c1θ1 + c2θ2
,

c2θ2

c1θ1 + c2θ2

)
(6)

for all positive c1, c2. Jaynes shows that this leads uniquely to the Haldane prior

π(θ1) ∝
1

θ1(1− θ1)
or equivalently π(θ1, θ2) ∝

1
θ1θ2

, (7)

where θ2 = 1− θ1. Combining this result with the unique Bernoulli likelihood under exchangeability,
in our language Jaynes has therefore identified an instance of optimal Bayesian analysis. In what
follows we (a) extend Jaynes’s argument to the multinomial setting with p outcome categories for
arbitrary finite p and (b) show how this generalization leads to a unique noninformative prior on S∞.

Table 1. Notation. Bold symbols refer to vectors. Improper distributions are considered only as limits
of conjugate families—we do not attempt to define DP(0) directly as a non-normalizable measure.
CDF: cumulative distribution function.

Expression Description

Dir(α) The Dirichlet distribution with concentration vector α.
Dir(α, F0) The Dirichlet distribution with concentration parameter α and mean probability vector F0.

Dir(0) The improper Dirichlet distribution corresponding to limα→0 Dir(α, F0) for F0 arbitrary.
DP(α, F0) The Dirichlet Process with concentration parameter α and mean CDF F0.
DP(n, F̂n) The Dirichlet Process whose mean CDF F̂n is the empirical CDF of the data set y of size n.

DP(0) The improper Dirichlet Process corresponding to limα→0 DP(α, F0) for arbitrary F0.

The DP(n, F̂n) posterior and implied DP(0) prior—see Table 1 for the notational conventions used
in this work—have not been subject to the same level of formal study as Dirichlet Process Mixture
priors and other priors over CDFs, in part due to the simplicity and discrete nature of DP(n, F̂n). On the
other hand, Dirichlet and Dirichlet Process priors with small concentration parameters have been used
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as low-information priors in a variety of settings (e.g., [15]), without much formal justification. In this
paper we offer a mathematical foundation showing that the use of DP(0) is statistically sound.

2. Results

2.1. Preliminaries

To begin our discussion, we first introduce the notion of an invariant distribution, which describes
what we mean by the term noninformative.

Definition 1. [Invariant Distribution] A density π(θ) is invariant with respect to a transformation group
G if for all π̃(θ) = π[g(θ)] with g ∈ G, and all measurable sets A,

∫
A

π(θ)dθ =
∫

A
π[g(θ)]dg(θ) =

∫
A

π̃(θ)

∣∣∣∣∣∂[g(θ)]∂(θ)

∣∣∣∣∣dθ , (8)

where
∣∣∣ ∂[g(θ)]

∂(θ)

∣∣∣ is the Jacobian of the transformation.

Note that in Equation (8), if we were to instead take A in the middle and right integrals to
be g−1(A), we would exactly get the classical integration by substitution formula, which under
appropriate conditions is always true. We are interested in the inverse problem: given a set of
transformations in G, does there exist a unique π satisfying (8)?

In a number of practically-relevant cases, G is uniquely specified by the context of the problem
being studied. If this leads to a unique prior distribution π, and when additionally a unique likelihood
also arises, for example via exchangeability, an optimal Bayesian analysis is possible, as defined in
Section 1. It is often the case that the prior distributions that result from this line of reasoning are limits
of conjugate families, making them easy to work with—this occurs in our results below, in which the
corresponding posterior distributions are Dirichlet.

The above definition is intuitive, but not sufficiently general to be applicable to spaces of functions.
There are multiple technical issues:

(a) in many cases, π cannot be taken to integrate to 1;
(b) probability distributions on spaces of functions may not admit Riemann-integrable densities;
(c) G may be defined via equivalence classes of transformations, leading to singular Jacobians; and
(d) infinite-dimensional measures that are non-normalizable are not well-behaved mathematically.

As a result, the above definition needs to be extended to a measure-theoretic setting. We call a
transformation group G acting on a measure space nonsingular if for g ∈ G with π̃(θ) = π[g(θ)], we
have π � π̃ � π, where� denotes absolute continuity of measures.

Definition 2. [Invariant Measure] Let G be a nonsingular transformation group acting on a measure space.
We say that a measure π is invariant with respect to G if for any g ∈ G with π̃(θ) = π[g(θ)] and for any
measurable subset A we have ∫

Ω
IA dπ =

∫
Ω

IA
dπ̃

dπ
dπ̃ , (9)

where Ω is the domain of π, IA is the indicator function of the set A, and dπ̃
dπ is the Radon–Nikodym derivative

of π̃ with respect to π.

It can be seen by taking π to be absolutely continuous with respect to the Lebesgue measure that
Equation (9) is a direct extension of Equation (8).

We would ultimately like to extend the above definition to the infinite-dimensional setting.
Doing so directly is challenging, because π may be non-normalizable, in which case Kolmogorov’s
Consistency Theorem and other analytic tools for infinite-dimensional probability measures do not
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apply. Here we sidestep this problem by instead extending the definition of invariance to allow us
to define a sequence of approximately invariant measures, which in our setting can be taken to be
probability measures. To do so, two additional definitions are needed.

Definition 3 (ε-invariant Measure). Let G be a nonsingular transformation group acting on a measure space
with invariant measure π̂. We say that a sequence of measures {π(ε) : ε > 0} is ε-invariant with respect to G
if for any g ∈ G with π̃(ε)(θ) = π(ε)[g(θ)] and each measurable subset A, the inequality∣∣∣∣∣

∫
Ω

IA dπ(ε) −
∫

Ω
IA

dπ̃(ε)

dπ(ε)
dπ̃(ε)

∣∣∣∣∣ < ε (10)

implies that ∣∣∣π(ε)(A)− π̂(A)
∣∣∣ ≤ δµ(A) , (11)

where µ(A) is a function, ε→ 0 implies that δ→ 0, and Ω is the domain of π(ε) for all ε.

Definition 4 (ε-invariant Process). Let {Π(ε) : ε > 0} be a sequence of stochastic processes, and let G be a
nonsingular transformation group. Let I be an arbitrary finite subset of the index set of the process, let π

(ε)
I be

the finite-dimensional measure of Π(ε) under I, and let GI be a finite-dimensional homomorphism of G with
invariant measure π̂I . We say that the sequence of processes Π(ε) is ε-invariant if, for each I, each gI ∈ GI with
π̃
(ε)
I (θ) = π

(ε)
I [gI(θ)] and each measurable subset A, the inequality∣∣∣∣∣∣

∫
ΩI

IA dπ
(ε)
I −

∫
ΩI

IA
dπ̃

(ε)
I

dπ
(ε)
I

dπ̃
(ε)
I

∣∣∣∣∣∣ < ε (12)

implies that ∣∣∣π(ε)
I (A)− π̂I(A)

∣∣∣ ≤ δµI(A) , (13)

where µI(A) is a function, ε→ 0 implies that δ→ 0, ΩI is the domain of π
(ε)
I for all ε, and (ε, δ) can be taken

to be identical for all I.

Definition 4 has been explicitly chosen to formalize the notion of noninformativeness on a space
of functions without constructing a non-normalizable infinite-dimensional measure.

To complete our assumptions, we need to specify G. Our definitions constitute a direct generalization
of the transformation group used by Jaynes to derive the Haldane prior for p = 2—see Section 1.

Definition 5 (Probability Function Transformation Group). Let

G∞ =
{

g : S∞ → S∞

}
(14)

be a nonsingular group of measurable functions under composition acting on the infinite-dimensional simplex S∞.

Definition 6 (Probability Vector Transformation Group). For non-negative integer p and any vector
(c1, .., cp) of non-negative constants, let

Gp =

g : (θ1, .., θp)→
(

c1θ1

∑
p
i=1 ciθi

, ..,
cpθp

∑
p
i=1 ciθi

) (15)

be a nonsingular group under composition acting on the p-dimensional simplex Sp, where each element g ∈ G
represents an equivalence class of the transformations (15).
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Note that Gp is a p-dimensional homomorphism of G∞—we use this property in our proofs below.
It can also readily be seen that for any g, the constants ci are only determined up to proportionality.

Proposition 1 (Radon–Nikodym Derivative). For each g ∈ Gp and π̃(θ) = π[g(θ)], the Radon–Nikodym
derivative of π̃ with respect to π is

dπ̃

dπ
(θ) =

∏
p
i=1 ci(

∑
p
i=1 ciθi

)p . (16)

Proof. Let λ be the Lebesgue measure on the p-dimensional probability simplex, and define
λ̃(θ) = λ[g(θ)]. Note first that λ� λ̃� π � π̃ � λ. Note also that

dπ

dλ
=

dπ̃

dλ̃
, (17)

because the same transformation g is used in defining π̃ and λ̃. Then, note that

dπ̃

dπ
=

dπ̃

dπ

dλ̃

dλ

dλ

dλ̃
=

dλ

dπ

dλ̃

dλ

dπ̃

dλ̃
=

dλ̃

dλ
, (18)

and hence it suffices to consider the transformation g applied to the Lebesgue measure. Consider an
arbitrary hypercube B. We have

λ(B) = λ1(B1) .. λp(Bp) , (19)

where λi are 1-dimensional Lebesgue measures, for which we have that

λi(Bi) = bi − ai , (20)

where [ai, bi] is the one-dimensional projection of the hypercube B in dimension i. Consider now the
transformation g. We may decompose g into d and n where

d : (θ1, .., θp)→ (c1θ1, .., cpθp) n : (θ1, .., θp)→
(

θ1

∑
p
i=1 θi

, ..,
θp

∑
p
i=1 θp

)
. (21)

Now consider the effect of d and n on λi. We have

λi[d(Bi)] = ci(bi − ai) and λi[n(Bi)] =
bi − ai

∑
p
i=1(bi − ai)

, (22)

hence

λi[g(Bi)] =
ci(bi − ai)

∑
p
j=1 cj(bj − aj)

. (23)

Therefore

λ[g(B)] =
p

∏
i=1

ci(bi − ai)

∑
p
j=1 cj(bj − aj)

(24)

and we can compute the ratio

λ̃(B)
λ(B)

=
λ[g(B)]

λ(B)
=

p

∏
i=1

ci(bi − ai)

∑
p
j=1 cj(bj − aj)

[
p

∏
i=1

(bi − ai)

]−1

=
∏

p
i=1 ci[

∑
p
i=1 ci(bi − ai)

]p . (25)
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This holds for all B, hence the Radon–Nikodym derivative is just

dλ̃

dλ
(θ) =

∏
p
i=1 ci(

∑
p
i=1 ciθi

)p , (26)

which is the desired result.

Since we are working with non-normalizable measures as improper priors, we cannot rigorously
talk about their probability densities. In many cases, such improper priors can be shown to be limits of
families of conjugate priors for which the limiting posterior distribution is well-defined, making them
usable in practice. To make our discussion of improper priors rigorous, we need the following definition.

Definition 7 (Generalized Density). Let π be a measure on Rp (for p a positive integer) such that
π � λ� π, where λ is Lebesgue measure on Rp. Suppose that the Radon–Nikodym derivative of π with
respect to λ is Riemann-integrable, and define a family of functions equal to the Radon–Nikodym derivative up
to a proportionality constant. We call any function in this family a generalized density of π.

2.2. Main Results

Remark 1 (Notation). In the following results, we will assume that (θ1, .., θp) is a probability vector of
dimension p ≥ 2. G∞ and Gp will be the transformation groups identified in Definitions 5 and 6, respectively.
As noted previously in Table 1, Dir(α, F0) will denote the Dirichlet distribution under the alternative
parametrization based on concentration parameter α and mean probability vector F0. This is equivalent
to the usual parameterization in terms of concentration vector α by the identity α = αF0—we refer to this as the
Dir(α) distribution. Similarly, DP(α, F0) will refer to the Dirichlet Process with concentration parameter α and
mean function F0. We will refer to the improper priors defined via the conjugate limits as α→ 0 of Dir(α, F0)

and DP(α, F0) for arbitrary F0 as Dir(0) and DP(0), respectively.

We are now ready to introduce our first result. The argument below is a direct generalization of
the line of reasoning in Jaynes [12]: the Haldane prior obtained is a special case of our result for p = 2.

Theorem 1. Among the class of measures that admit generalized densities, the measure π with generalized density

π
(

θ1, .., θp

)
∝

1

∏
p
i=1 θi

, (27)

which we call Dir(0), is the unique invariant measure under Gp.

Proof. An invariant measure π under Gp needs to satisfy the equation

∫
Sp

IA dπ =
∫

Sp
IA

dπ̃

dπ
dπ̃ , (28)

where Sp is the p-dimensional simplex and π̃(θ) = π[g(θ)] for some g ∈ Gp. Since π is assumed to
admit a generalized density, we can rewrite (28) as a Riemann integral. In addition, we substitute in
the transformation and Radon–Nikodym derivative, and get

∫
A

π
(

θ1, .., θp

)
dθ1.. dθp =

∫
A

π

(
c1θ1

∑
p
i=1 ciθi

, ..,
cpθp

∑
p
i=1 ciθi

)
∏

p
i=1 ci(

∑
p
i=1 ciθi

)p dθ1.. dθp . (29)

This formula needs to hold for all measurable sets A, and hence the functions inside the integrals
need to be equal pointwise. This yields the functional equation
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π
(

θ1, .., θp

)
= π

(
c1θ1

∑
p
i=1 ciθi

, ..,
cpθp

∑
p
i=1 ciθi

)
∏

p
i=1 ci(

∑
p
i=1 ciθi

)p , (30)

which will be the main subject of further study. This is a multivariate functional equation that at first
may appear fearsome, but is in fact solvable via elementary methods. To solve it, recognizing that (30)
must hold for all probability vectors (θ1, .., θp) and all vectors (c1, .., cp) of positive constants ci, we set

(
θ1, .., θp

)
=
(

p−1, .., p−1
)

and
p

∑
i=1

ci = 1 , (31)

which yields

π
(

p−1, .., p−1
)
= π

(
c1 p−1

p−1 ∑
p
i=1 ci

, ..,
cp p−1

p−1 ∑
p
i=1 ci

)
∏

p
i=1 ci(

p−1 ∑
p
i=1 ci

)p . (32)

Then, by swapping ci for θi, (32) rearranges into

π
(

θ1, .., θp

)
=

π
(

p−1, .., p−1
)

p−p

∏
p
i=1 θi

∝
1

∏
p
i=1 θi

, (33)

since the numerator is not a function of any θi, and it can easily be checked that all such generalized
densities are valid solutions to the original equation. Thus (33) is the functional equation’s unique
solution and therefore the unique invariant measure under Gp.

The same technique used to solve the functional equation in Theorem 1 can be used to prove a
much stronger result: if the functional equation is true approximately, its solutions will approximate
those of the exact equation. In the next result we make use of the definition of stability of a functional
equation due to Hyers, Ulam and Rassias—see Jung [16] for details.

Corollary 1 (Hyers–Ulam–Rassias Stability). Suppose we have∣∣∣∣∣∣∣π
(

θ1, .., θp

)
− π

(
c1θ1

∑
p
i=1 ciθi

, ..,
cpθp

∑
p
i=1 ciθi

)
∏

p
i=1 ci(

∑
p
i=1 ciθi

)p

∣∣∣∣∣∣∣ < δ. (34)

Then∣∣∣π (θ1, .., θp

)
− π̂

(
θ1, .., θp

)∣∣∣ < δ
ee−1

∏
p
i=1 θi

, where π̂
(

θ1, .., θp

)
∝

1

∏
p
i=1 θi

. (35)

Proof. By repeating the technique from the previous proof, we have∣∣∣∣∣π (p−1, .., p−1
)
− π

(
c1, .., cp

) ∏
p
i=1 ci

p−p

∣∣∣∣∣ < δ , (36)

which can be rewritten∣∣∣∣∣∣∣π
(

θ1, .., θp

)
−

π
(

p−1, .., p−1
)

p−p

∏
p
i=1 θi

∣∣∣∣∣∣∣ < δ
p−p

∏
p
i=1 θi

< δ
ee−1

∏
p
i=1 θi

, (37)
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where the last inequality is strict because p is a positive integer. Letting

π
(

p−1, .., p−1
)

p−p

∏
p
i=1 θi

∝
1

∏
p
i=1 θi

∝ π̂
(

θ1, .., θp

)
, (38)

we get ∣∣∣π (θ1, .., θp

)
− π̂

(
θ1, .., θp

)∣∣∣ < δ
ee−1

∏
p
i=1 θi

, (39)

which is the stability result desired.

This suffices to prove our result for the Dirichlet distribution.

Theorem 2. Dir(ε, F0) is an ε-invariant measure under Gp for all F0.

Proof. By repeating the steps of Theorem 1 and combining them with Corollary 1, we obtain that
Dir(ε, F0) is ε-invariant under Gp if and only if it satisfies

∣∣∣π(ε)
(

θ1, .., θp

)
− π̂

(
θ1, .., θp

)∣∣∣ < δ
ee−1

∏
p
i=1 θi

for some π̂
(

θ1, .., θp

)
∝

1

∏
p
i=1 θi

. (40)

Substituting in Dir(ε, F0), and choosing the constant Cε of the generalized density π̂ to be the
same as for the Dirichlet, we get∣∣∣∣∣Cε

p

∏
i=1

θ
εF0i−1
i − Cε

∏
p
i=1 θi

∣∣∣∣∣ < δ
ee−1

∏
p
i=1 θi

, (41)

where F0i are the components of the probability vector F0, and this expression simplifies to

Cε ee

∣∣∣∣∣ p

∏
i=1

θ
εF0i
i − 1

∣∣∣∣∣ < δ. (42)

Since 0 ≤ θi ≤ 1 for all i, the product is upper bounded by 1 and lower bounded by 0. Thus the
inequality holds near zero if

Cε < δ (43)

for all (θ1, .., θp), and since Cε → 0 we get that, as ε → 0, we can choose δ such that δ → 0.
Thus, Dir(ε, F0) is ε-invariant for all F0.

We now extend Theorem 2 to get an analogous result for the Dirichlet Process.

Theorem 3. DP(ε, F0) is an ε-invariant process under G∞ for all F0.

Proof. Consider an arbitrary finite-dimensional index I with corresponding homomorphism GI and
finite-dimensional measure π

(ε)
I . It follows from Theorem 2 that π

(ε)
I is ε-invariant with

Cε < δ. (44)

This inequality depends only on Cε, so it suffices to show that this constant can be bounded
by another constant that is not a function of p and approaches 0. Cε is an instance of the inverse
multivariate beta function, which is a ratio of gamma functions. It is well known that

lim
x→0

[
1
x
− Γ(x)

]
= γ, (45)
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where γ is the Euler-Mascheroni constant. Therefore, we have

Cε =
Γ(ε)

∏
p
i=1 Γ(εF0i)

=
O(1/ε)

∏
p
i=1 O(1/ε)

≤ O(1/ε)

∏2
i=1 O(1/ε)

= O(ε)→ 0 (46)

as ε → 0. Thus, for each ε, we can choose a δ to satisfy the required expressions under all
finite-dimensional index sets, and DP(ε, F0) is therefore an ε-invariant process.

We conclude our theoretical investigation with a conjecture: the ε-invariance of all finite-dimensional
distributions with a uniform δ should suffice for invariance with respect to the original group acting
on the infinite-dimensional space.

Conjecture 4. A stochastic process is an ε-invariant process if and only if the measure of its sample paths is an
ε-invariant measure.

One approach to attempting a proof of this conjecture would involve appropriately extending
Kolmogorov’s Consistency Theorem to σ-finite infinite-dimensional measures. This can be done, but
the notions involved are quite technical—see Yamasaki [17] for more details.

3. Discussion

To see how our results may be applied, consider again the randomized controlled trial of Section 1,
and suppose now that the outcome yi for participant i in the experimental group is categorical with p
levels. Under exchangeability, a minor extension of de Finetti’s Theorem for dichotomous outcomes
then yields that the likelihood can be expressed as

yi | θ
iid∼ MN(1, θ) , (47)

in which MN(k, θ) is the multinomial distribution with parameters k and θ. Theorem 1 implies that,
modulo inherent abuse of notation under improper priors,

(θ1, .., θp) ∼ Dir(0) (48)

is the unique prior that obeys the fundamental invariance possessed by the problem—namely,
invariance with respect to all transformations of probability vectors that preserve normalization.
Thus we have extended Jaynes’s result for binomial outcomes to the multinomial setting, yielding
another instance of optimal Bayesian analysis.

Generalizing to the setting where y is an exchangeable sequence of real-valued outcomes,
de Finetti’s most general representation theorem implies that

yi | F iid∼ F (49)

is the unique likelihood. If little is known about F, and it is therefore approximately invariant under
all measurable functions—i.e., under G∞, see Definition 5—the prior given by Theorem 3 is

F ∼ DP(ε, F0) . (50)

By the usual conjugate updating in the Dirichlet Process setting, the posterior on F given y with
the prior in (50) is

F | y ∼ DP
(

ε + n,
ε

ε + n
F0 +

n
ε + n

F̂n

)
, (51)

in which F̂n is the empirical CDF based on y. Since ε may be taken as close to zero as one wishes, it is
natural to regard
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F | y ∼ DP
(

n, F̂n

)
(52)

as an instance of approximately optimal Bayesian analysis for all ε. Conjecture 4 would strengthen this
assertion—provided DP(0) can be rigorously constructed as an infinite-dimensional σ-finite measure,
which is beyond the scope of this work.

Though the simplicity of this analysis may at first make it seem limited, its appeal comes from its
extremely general ability to characterize uncertainty. See, e.g., Terenin and Draper [18] for an example
of a DP(n, F̂n) analysis in two randomized controlled trials in e-commerce, one with sample sizes in
the tens of millions. Furthermore, sampling from DP(n, F̂n) on a discrete domain has recently been
shown in a completely different setting—see Appendix B of Terenin et al. [19]—to be asymptotically
equivalent to the widely-used frequentist bootstrap of Efron [20]. This also applies to the Bayesian
bootstrap of Rubin [21], since it is asymptotically equivalent to the frequentist version. Our analysis
provides a Bayesian nonparametric justification for this class of methods.

Bayesian analysis cannot proceed without the specification of a stochastic model—prior and
sampling distribution—relating known quantities to unknown quantities: data to parameters. One of
the great challenges of applied statistics is that the model is not necessarily uniquely determined by
the context of the problem under study, giving rise to model uncertainty, which if not assessed and
correctly propagated can cause badly calibrated and unreliable inference, prediction and decision—see,
e.g., Draper [22]. Perhaps the simplest way to avoid model uncertainty is to recognize settings in
which it does not exist—situations where broad and simple mathematical assumptions, rendered true
by problem context, lead to unique posterior distributions. Our term for this is optimal Bayesian analysis.
It seems worthwhile (a) to catalog situations in which optimal analysis is possible and (b) to work to
extend the list of such situations—Theorems 1 and 3 are two contributions to this effort.
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