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Abstract: Geophysical time series have a complex nature that poses challenges to reaching assertive
conclusions, and require advanced mathematical and computational tools to unravel embedded
information. In this paper, time–frequency methods and hierarchical clustering (HC) techniques
are combined for processing and visualizing tidal information. In a first phase, the raw data are
pre-processed for estimating missing values and obtaining dimensionless reliable time series. In a
second phase, the Jensen–Shannon divergence is adopted for measuring dissimilarities between data
collected at several stations. The signals are compared in the frequency and time–frequency domains,
and the HC is applied to visualize hidden relationships. In a third phase, the long-range behavior of
tides is studied by means of power law functions. Numerical examples demonstrate the effectiveness
of the approach when dealing with a large volume of real-world data.
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power law; tidal time series

1. Introduction

Geophysical time series (TS) can be interpreted as the output of multidimensional dynamical
systems influenced by many distinct factors at different scales in space and time. In light of
Takens’ embedding theorem, these TS can reveal—at least partially—the underlying dynamics of the
corresponding systems [1].

Some common properties of geophysical TS are their complex structure, non-linearity, and
non-stationarity [2,3]. These characteristics pose difficulties in processing the data that are not
easily addressed by means of tools such as Fourier analysis [4,5]. To overcome such limitations,
other techniques for spectral estimation are adopted, such as the least-squares [6] and singular
spectrum analysis [7], the multitaper method (MM) [8], and the autoregressive moving average [9] and
maximum entropy techniques [10]. Alternatively, time–frequency methods [11] have proven powerful
for processing non-linear and non-stationary data. We can mention not only the fractional [12,13], short
time [14,15], and windowed Fourier [16,17] transforms, but also the Gabor [18,19], wavelet [20,21],
Hilbert–Huang [22,23], and S [24,25] transforms. Additionally, distinct complexity measures
(e.g., entropy, Lyapunov exponent, Komologrov estimates, and fractal dimension) [26], detrended
fluctuation analysis [27], and recurrence plots [28], among others [3,29–33], are also adopted for
analyzing complex TS.

Jalón-Rojas et al. [34] compared different spectral methods for the analysis of high-frequency and
long TS collected at the Girond estuary. They considered specific evaluation criteria and concluded
that the combination of distinct methods could be a good strategy for dealing with data measured
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at coastal waters. Grinsted et al. [35] adopted the cross wavelet transform and wavelet coherence
for examining relationships in time and frequency between two TS. They applied these methods
to the Arctic Oscillation index and the Baltic maximum sea ice extent record. Vautard et al. [7]
used the singular-spectrum analysis, demonstrating the effectiveness of the technique when dealing
with short and noisy TS. Malamud and Turcotte [36] introduced the self-affine TS, characterized
by a power spectral density (PSD) that is described by a power law (PL) function of the frequency.
They addressed a variety of techniques to quantify the strength of long-range persistence—namely,
the Fourier power spectral, semivariogram, rescaled-range, average extreme-event, and wavelet
variance analysis. Ding and Chao [9] adopted autoregressive methods for detecting harmonic signals
with exponential decay or growth contained in noisy TS. Donelan et al. [10] used the maximum
likelihood, maximum entropy, and wavelets for estimating the directional spectra of water waves.
Gong et al. [37] adopted the S-transform for analyzing seismic data. Huang et al. [22] proposed
empirical mode decomposition and the Hilbert–Huang transform. First, a TS is decomposed into a
finite and often small number of intrinsic mode functions, and then the Hilbert transform is applied to
the modes. Forootan and Kusche [38] used independent component analysis to separate unknown
mixtures of deterministic sinusoids with non-null trend. Doner et al. [39] explored recurrence networks,
interpreting the recurrence matrix of a TS as the adjacency matrix of an associated complex network
that links different points in time if the considered states are closely neighbored in the phase space.
The recurrence matrix yields new quantitative characteristics (such as average path length, clustering
coefficient, or centrality measures of the recurrence network) related to the dynamical complexity of
the TS. Lopes at al. [32,40,41] investigated geophysical data by means of multidimensional scaling and
fractional order techniques.

Tides are variations in the sea level mainly caused by astronomical components, such as
gravitational forces exerted by the Moon, the Sun, and the rotation of the Earth, but also reflect
non-astronomical sources such as the weather [42]. Understanding the sea-level variations is of great
importance for both safe navigation and for planning and promoting the sustainable development of
coastal areas. Moreover, sea-level observations provide valuable data to ocean sciences, geodynamics,
and geosciences [43,44]. Tides can be measured by means of gauges, with respect to a datum, and the
values are recorded over time. A large volume of tidal information is presently available for scientific
research. Tidal TS include harmonic constituents and other components with multiple time scales that
span from hours to decades. On such time scales, tidal data are often non-stationary, and as with most
geophysical TS, standard mathematical tools are insufficient to satisfactorily assess the information
that they embed.

In this paper we combine time–frequency methods and hierarchical clustering (HC) techniques
to process and visualize tidal information. In a first phase, we pre-process the raw data (i.e., we fill
the gaps in the TS with values calculated with a suitable tidal model), and then we normalize the
data to obtain dimensionless TS. In a second phase, we use the Jensen–Shannon divergence (JSD) to
measure the dissimilarities between TS collected at several stations located worldwide. The TS are
compared in the frequency and time–frequency domains. The frequency domain information consists
of the PSD generated by the MM. The time–frequency information corresponds to the magnitudes of
the fractional Fourier transform (FrFT) and the continuous wavelet transform (CWT) of the TS. In the
three cases, HC generates maps that are interpreted based on the emerging clusters of the points that
represent tidal stations. In a third phase, the long-range behavior of tides is modeled by means of PL
functions using the TS spectra at low frequencies. Numerical examples demonstrate the effectiveness
of the approach when dealing with a large volume of real-world data.

In this line of thought, the structure of the paper is as follows. Section 2 presents the main
mathematical tools used for processing the TS. Section 3 introduces the data set and the pre-processing
used to generate well-formatted TS. Section 4 applies the HC method and discusses the results.
Section 5 studies the long-range behavior of tides by means of PL functions. Finally, Section 6 draws
the main conclusions.
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2. Mathematical Fundamentals

This section introduces the main mathematical tools adopted for data processing; namely,
the MM, FrFt, CWT, JSD, and HC techniques. These tools are well-suited to TS generated by most
naturally-occurring phenomena, as is the case of biological, climatic, and geophysical processes.

2.1. Multitaper Method

The MM is a robust numerical algorithm for estimating the PSD of a signal. Given an N-length
sequence x(t), its PSD can be estimated by the single-taper, or modified periodogram function, T( f ),
derived directly from the FT of x(t) [45]. Therefore, we have:

T( f ) =

∣∣∣∣∣N−1

∑
t=0

x(t)a(t)e−j2π f t

∣∣∣∣∣
2

, (1)

where t and f denote time and frequency, respectively, and j =
√
−1. The function a(t) is called a

taper, or window, and represents a series of weights that verify the condition ∑N−1
t=0 |a(t)| = 1. If a(t) is

a rectangular (or boxcar) function, then (1) yields the standard periodogram of x(t) [46].
Expression (1) leads to a biased estimate of the PSD due to both spectral leakage (i.e., power

spreading from strong peaks at a given frequency towards neighboring frequencies) and variance of
T( f ) (i.e., noise affecting the spectra). To avoid these artifacts, the MM method was introduced by
Thomson [47]. In this method, x(t) is multiplied by a set of orthogonal sequences, or tapers, to obtain
a set of single-taper periodograms. The set is then averaged to yield an improved estimate of the PSD,
S̄( f ), given by:

S̄( f ) =
1
K

K

∑
k=1

Tk( f ), (2)

where Tk( f ) = |Yk( f )|2, k = 1, · · · , K, are spectral estimates, or eigenspectra functions, and Yk( f ) are
the eigencomponents:

Yk( f ) =
N−1

∑
t=0

x(t)vk(t)e−j2π f t, (3)

obtained with K Slepian sequences, vk(t), that verify [48]:

N−1

∑
t=0

vj(t)vk(t) = δjk, i, j = 1, · · · , K. (4)

Instead of (2), a weighted average is often adopted that minimizes some measure of discrepancy
of Yk, yielding the estimate:

Ŝ( f ) =

N−1

∑
t=0

d2
k( f )|Yk( f )|2

N−1

∑
t=0

d2
k( f )

, (5)

where dk( f ) are weights [47].
Some variants of the MM can process TS with gaps [49,50], but we consider herein the “standard”

MM implementation, which requires evenly sampled TS without gaps.

2.2. Fractional Fourier Transform

The FrFT of order a ∈ R, F a, is a linear integral operator that maps a given function (or signal)
x(t) onto xa(τ), {t, τ} ∈ R, by the expression [51]:
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xa(τ) = F a(τ) =
∫ ∞

−∞
Ka(τ, t)x(t)dt, (6)

where, setting α = aπ/2, the kernel Ka(τ, t) is defined as:

Ka(τ, t) = Cα exp
{
−jπ

(
2

tτ
sin α

− (t2 + τ2) cot α

)}
, (7)

with

Cα =
√

1− j cot α =
exp{−j[π sgn(sin α)/4− α/2]}√

| sin α|
. (8)

For a = 2k, k ∈ Z, α ∈ πk, we should take limiting values. Furthermore, when a = 4k and
a = 2 + 4k, the FrFT becomes f4k(τ) = f (τ) and f2+4k(τ) = f (−τ), respectively, and the kernels are:

K4k(t, τ) = δ(τ − t), (9a)

K2+4k(t, τ) = δ(τ + t). (9b)

When a = 1 + 4k, we have F a = F 1 that corresponds to the ordinary Fourier transform (FT),
and when a = 3 + 4k, we have F a = F 3 = F 2F 1. Therefore, the operator F a can be interpreted as the
ath power of the ordinary FT, that may be considered modulo 4 [51,52]. For the digital computation
of F a, different algorithms were proposed [51]. Here we adopt the Fast Approximate FrFT [51]
(https://nalag.cs.kuleuven.be/research/software/FRFT/). The signal x(t) must be evenly sampled
and without gaps.

2.3. Wavelet Transform

The wavelet transform converts a given function, x(t), from standard time into the generalized
time–frequency domain, and represents a powerful tool for identifying intermittent periodicities in the
data. The discrete wavelet transform is particularly useful for noise reduction and data compression,
while the CWT is better for feature extraction [35].

The CWT of x(t) is given by [53–55]:

[
Wψx(t)

]
(a, b) =

1√
a

∫ +∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, a > 0, (10)

where ψ denotes the mother wavelet function, (·)∗ represents the complex conjugate of the argument,
and the parameters (a, b) represent the dyadic dilation and translation of ψ, respectively.

The CWT processes data at different scales. The temporal analysis is performed with a contracted
version of the prototype wavelet, while frequency analysis is derived with a dilated version of ψ.
The parameter a is related to frequency, and b often represents time or space.

The choice of an appropriate mother wavelet represents a key issue in the analysis [53,56].
Some initial knowledge about the signal characteristics is important, but we often choose based on
several trials and the results obtained. Therefore, the best ψ is the one that more assertively highlights
the features that we are looking for.

Two TS can be compared directly by computing their wavelet coherence as a function of time
and frequency. In other words, wavelet coherence measures time-varying correlations as a function of
frequency [35,44,57].

Given two TS, xi(t) and xj(t), their wavelet coherence is given by [35,44,58]:

Cij =

∣∣∣S ({[W∗ψxi(t)
]
(a, b)

} {[
Wψxj(t)

]
(a, b)

})∣∣∣2
S
(∣∣{[Wψxi(t)

]
(a, b)

}∣∣2) S (∣∣{[Wψxj(t)
]
(a, b)

}∣∣2) , (11)

https://nalag.cs.kuleuven.be/research/software/FRFT/
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where S(·) is a smoothing function in time and frequency.
Similarly to the MM and FrFT, the CWT can be applied to TS evenly sampled and without

missing data.

2.4. Jensen–Shannon Divergence

The JSD measures the dissimilarity between two probability distributions, P and Q [59], and is the
smoothed and symmetrical version of the Kullback–Leibler divergence, or relative entropy, given by:

KLD (P, Q) = ∑
k

p(k) ln
p(k)
q(k)

. (12)

The JSD is formulated as:

JSD (P, Q) =
1
2
[KLD (P, M) + KLD (Q, M)] , (13)

where M = P+Q
2 is a mixture distribution.

Alternatively, we can write:

JSD (P, Q) =
1
2

[
∑
k

p(k) ln p(k) + ∑
k

q(k) ln q(k)

]
−∑

k
m(k) ln m(k). (14)

2.5. Hierarchichal Clustering

Clustering analysis groups objects that are similar to each other in some sense. In HC, a hierarchy
of object clusters is built based on one of two alternative algorithms. In agglomerative clustering,
each object starts in its own singleton cluster, and at each step the two most similar clusters are greedily
merged. The algorithm stops when all objects are in the same cluster. In divisive clustering, all objects
start in one cluster, and at each step the algorithm removes the outsiders from the least cohesive cluster.
The iterations stop when each object is in its own singleton cluster. The clusters are combined (split) for
agglomerative (divisive) clustering based on their dissimilarity. Therefore, given two clusters, I and J,
a metric is specified to measure the distance, δ(xi, xj), between objects xi ∈ I and xj ∈ J, and the
dissimilarity between clusters, d(I, J), is calculated by the maximum, minimum, or average linkage,
given by:

dmax (I, J) = max
xi∈I,xj∈J

d
(
xi, xj

)
, (15)

dmin (I, J) = min
xi∈I,xj∈J

d
(
xi, xj

)
, (16)

dave (I, J) =
1

‖ I ‖‖ J ‖ ∑
xi∈I,xj∈J

d
(

xi, xj
)

. (17)

The results of HC are usually presented in a dendrogram or a tree diagram.

3. Dataset

The tidal information are available at the University of Hawaii Sea Level Center (http://uhslc.
soest.hawaii.edu/). Worldwide stations have records covering different time periods. We consider
hourly data collected between January, 1 1994 and December, 31 2014 at s = 75 stations. Their labels,
names, and percentage of missing data are shown in Table 1. The stations’ geographical location is
depicted in Figure 1.

(http://uhslc.soest.hawaii.edu/)
(http://uhslc.soest.hawaii.edu/)
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Table 1. Stations’ labels, names, and percentage of missing data.

Label Name Missing Data (%) Label Name Missing Data (%) Label Name Missing Data (%)

1 Antofagasta 5.4 26 Granger Bay 47.1 51 Pensacola 4.3
2 Atlantic City 3.5 27 Guam 11.4 52 Petersburg 0.6
3 Balboa 1.8 28 Kahului Harbor 0.3 53 Ponta Delgada 16.7
4 Boston 0.5 29 Kaohsiung 4.8 54 Port Isabel 0.4
5 Broome 1.7 30 Keelung 23.2 55 Portland 0.9
6 Buenaventura 12.9 31 Knysna 40.4 56 Prince Rupert 0.2
7 Callao 4.4 32 Ko Lak 5.3 57 Pte Des Galets 23.1
8 Charlotte Amalie 3.9 33 Langkawi 1.4 58 Puerto Montt 5.3
9 Chichijima 0 34 Legaspi 16.9 59 Richard’s Bay 36.4

10 Christmas Is 6.9 35 Lime Tree Bay 0.4 60 Rockport 0.1
11 Cocos Is. 0.9 36 Lobos de Afuera 14.8 61 Rorvik 15.2
12 Cuxhaven 0 37 Luderitz 63.8 62 Saipan 13.5
13 Darwin 0.2 38 Maisaka 0.1 63 Salalah 14.7
14 Durban 39.6 39 Malakal 1 64 San Juan Puerto Rico 1
15 Dzaoudzi 65.6 40 Marseille 31.5 65 Santa Monica 1.5
16 East London 37.6 41 Mera 0 66 Simon’s Bay 41.3
17 Eastport 2.4 42 Mombasa 30.5 67 Spring Bay 0.6
18 Esperance 2.5 43 Nain 50.8 68 Tofino 2.8
19 Fort Denison 1 44 Napier 19.4 69 Toyama 0
20 Fort-de-France 57.5 45 New York 13.1 70 Vardoe 1.3
21 Fremantle 0 46 Newport 0.3 71 Victoria 0.4
22 Funafuti 1.9 47 Ny-Alesund 0.3 72 Wakkanai 0
23 Galveston 2.2 48 Pago Pago 3.3 73 Walvis Bay 59
24 Gan 0.2 49 Paita 10.9 74 Yap 9
25 Grand Isle 3.1 50 Papeete 3.3 75 Zanzibar 5.3

Antofagasta

Atlantic City
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Figure 1. Geographic location of the s = 75 stations considered in the study.

Occasional gaps in the TS, x(t), must be filled before applying the MM and CWT processing tools.
The missing values are replaced by artificial data generated by a tidal model, x̂(t), given by:

x̂(t) = U0 +
T

∑
k=1

Uk cos(2π fkt + φk), (18)

where U0 = 〈x(t)〉 denotes the average value of x(t), and the sinusoidal terms represent standard
tidal constituents of known frequency, fk, k = 1, · · · , T, according to the International Hydrographic
Organization (https://www.iho.int/srv1/index.php?lang=en). The amplitude and phase shift, Uk and
φk, are computed by the least-squares method.

https://www.iho.int/srv1/index.php?lang=en
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Herein, we adopt T = 37 and the components listed in Table 2. For example, Figure 2 depicts
the original, x(t), and the reconstructed, x̃(t), TS of Boston, illustrating the effectiveness of the model.
Identical results are obtained for other tidal stations.

Table 2. Standard tidal constituents.

Name Symbol Period (h) Speed (◦/h)

Higher Harmonics

Shallow water overtides of principal lunar M4 6.210300601 57.9682084
Shallow water overtides of principal lunar M6 4.140200401 86.9523127
Shallow water terdiurnal MK3 8.177140247 44.0251729
Shallow water overtides of principal solar S4 6 60
Shallow water quarter diurnal MN4 6.269173724 57.4238337
Shallow water overtides of principal solar S6 4 90
Lunar terdiurnal M3 8.280400802 43.4761563
Shallow water terdiurnal 2”MK3 8.38630265 42.9271398
Shallow water eighth diurnal M8 3.105150301 115.9364166
Shallow water quarter diurnal MS4 6.103339275 58.9841042

Semi-Diurnal

Principal lunar semidiurnal M2 12.4206012 28.9841042
Principal solar semidiurnal S2 12 30
Larger lunar elliptic semidiurnal N2 12.65834751 28.4397295
Larger lunar evectional ν2 12.62600509 28.5125831
Variational MU2 12.8717576 27.9682084
Lunar elliptical semidiurnal second-order 2”N2 12.90537297 27.8953548
Smaller lunar evectional λ2 12.22177348 29.4556253
Larger solar elliptic T2 12.01644934 29.9589333
Smaller solar elliptic R2 11.98359564 30.0410667
Shallow water semidiurnal 2SM2 11.60695157 31.0158958
Smaller lunar elliptic semidiurnal L2 12.19162085 29.5284789
Lunisolar semidiurnal K2 11.96723606 30.0821373

Diurnal

Lunar diurnal K1 23.93447213 15.0410686
Lunar diurnal O1 25.81933871 13.9430356
Lunar diurnal OO1 22.30608083 16.1391017
Solar diurnal S1 24 15
Smaller lunar elliptic diurnal M1 24.84120241 14.4920521
Smaller lunar elliptic diurnal J1 23.09848146 15.5854433
Larger lunar evectional diurnal ρ 26.72305326 13.4715145
Larger lunar elliptic diurnal Q1 26.86835 13.3986609
Larger elliptic diurnal 2Q1 28.00621204 12.8542862
Solar diurnal P1 24.06588766 14.9589314

Long Period

Lunar monthly Mm 661.3111655 0.5443747
Solar semiannual Ssa 4383.076325 0.0821373
Solar annual Sa 8766.15265 0.0410686
Lunisolar synodic fortnightly Ms f 354.3670666 1.0158958
Lunisolar fortnightly M f 327.8599387 1.0980331
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Figure 2. Original, x(t), and the reconstructed, x̃(t), time series (TS) of Boston.

4. Analysis and Visualization of Tidal Data

In this section, we use HC for visualizing the relationships between s = 75 tidal TS. The signals,
xi(t), i = 1, · · · , s, are first normalized to zero mean and unit variance in order to get a dimensionless TS:

x̃i(t) =
xi(t)− µi

σi
, (19)

where µi and σi represent the mean and standard deviation values of xi(t), respectively.
In Subsections 4.1 and 4.2, we use the JSD to measure the dissimilarities between the tidal data in

the frequency and time–frequency domains, respectively, and we apply the HC algorithm to visualize
relationships. It should be noted that other dissimilarity measures are possible [32,33], but several
numerical experiments led to the conclusion that the JSD yields reliable results.

4.1. HC Analysis in the Frequency Domain

Data in the frequency domain corresponds to the TS PSD estimates, Ŝ( f ), calculated with the MM
as defined in (5). The superiority of the MM over the standard periodogram is illustrated in Figure 3
for data collected at the Boston tidal station (lat: 42.35◦, lon: −71.05◦). We observe that the variance
(spectral noise) of Ŝ( f ) is considerably smaller than the one obtained for the classical periodogram,
T( f ). We obtain similar results for other tidal stations.

We normalize the PSD estimates, Ŝ( f ), by calculating the ratio:

Φ( f ) =
Ŝ( f )

∑ f Ŝ( f )
, (20)

where Φ( f ) is interpreted as a probability distribution [60], and we feed the HC with the matrix
∆ = [δij], i, j = 1, ..., 75, where δij = JSD(Φi, Φj) represents the JDS between the normalized PSD
estimates (Φi, Φj). Figure 4 depicts the tree generated by applying the successive (agglomerative) and
average-linkage methods [32,40]. The software PHYLIP was used for generating the graph [61].
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Figure 3. The power spectral density (PSD) for Boston tidal TS calculated through the classical
periodogram, T( f ), and multitaper method (MM) Ŝ( f ).

Figure 4. The hierarchical tree resulting from [δij], i, j = 1, ..., 75, with δij = JSD(Φi, Φj), and Φ
calculated based on the MM. JSD: Jensen–Shannon divergence.

We observe not only the emergence of two main (level 1) clusters, C1 and C2, but also the presence
of various sub-clusters at different lower levels. For example, cluster C1 is composed of level 2
sub-clusters C11 and C12, while C2 comprises C21, C22, and the “outlier” station 50. Nevertheless,
at lower levels of the hierarchical tree, the elements of certain sub-clusters emerge very close to each
other, making visualization more difficult.
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4.2. HC Analysis in the Time–Frequency Domain

4.2.1. The FFrT-Based Approach

The FrFT converts a function to a continuum of intermediate domains between the orthogonal
time (or space) and frequency domains. Therefore, it can be thought of as an operator that rotates a
signal by any angle, instead of just π/2 radians as performed by the ordinary FT.

Figure 5 depicts the log magnitude of the FrFT versus parameter a ∈ [0, 1] and τ ∈ [1, 184057] h
for Boston (lat: 42.35◦, lon: −71.05◦) and Christmas Is. (lat: 1.983◦, lon: −157.467◦) tidal stations.
For a = 0, the FrFT corresponds to the time domain signal. For a = 1, the FrFT yields the ordinary FT.
The main peaks observed in the time domain propagate along the continuum of pseudofrequency
(or time–frequency) domains (as a increases), originating high-energy paths that determine the shape
of the FrFT charts. Close to τ = 92028 (i.e., to half of the total number of samples of the TS), we observe
a high-energy component that corresponds to the DC frequency, but other details are difficult to
perceive. We obtain similar patterns for other tidal stations.

Figure 5. Locus of magnitude of the fractional Fourier transform (FrFT) (in log scale) versus (a, τ) for
Boston (lat: 42.35◦, lon: −71.05◦) and Christmas Is. (lat: 1.983◦, lon: −157.467◦) tidal stations.

The structure of the FrFT plots reflect the characteristics of the TS. Nevertheless, to the authors
best knowledge, there are not yet assertive tools to explore this three-dimensional information.

For each TS, we calculate the corresponding FrFT, and we generate an L × N dimensional
complex-valued matrix, W, where L and N denote the number of points in frequency and time,
respectively. We then compute the P = LN dimensional vector w(p), p = 1, · · · , P, composed of the
columns of |W|, and we perform the normalization:

Ω(p) =
w(p)

∑p w(p)
, (21)

where the function Ω(p) is interpreted as a probability distribution. Finally, we feed the HC with the
matrix ∆ = [δij], i, j = 1, ..., 75, where δij = JSD(Ωi, Ωj) represents the JSD between the normalized
vectors (Ωi, Ωj).

Figure 6 depicts the tree generated by the HC. As before, the successive (agglomerative) and
average-linkage methods were used [32,40]. We observe two main clusters, U1 and U2, that are similar
to the ones identified by the MM-based approach, C1 and C2, respectively, revealing good consistency
between the two processing alternatives.
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Figure 6. The hierarchical tree resulting from [δij], i, j = 1, ..., 75, with δij = JSD(Ωi, Ωj), and Ω
calculated based on the FrFT.

4.2.2. The CWT-Based Approach

The CWT is well suited to non-stationary signals and establishes a compromise between precision
analysis in the time and frequency domains [62]. We adopt here the complex Morlet wavelet, since several
numerical experiments were revealed to be a good choice in the context of continuous analysis and
feature extraction [35,44]. The complex Morlet wavelet is defined as:

ψ(t) =
1√
π fb

ei2π fcte
− t2

fb , (22)

where fb is related to the wavelet bandwidth and fc is its center frequency. These constants can be
interpreted as the parameters of a time-localized filtering, or correlation, operator.

Figure 7 depicts the CWT for Boston (lat: 42.35◦, lon: −71.05◦) and Christmas Is. (lat: 1.983◦,
lon: −157.467◦) tidal stations. We observe two main patterns at frequencies around f = 0.08 h−1 and
f = 0.042 h−1, corresponding to the semi-diurnal and diurnal tidal components, but other objects are
difficult to identify. For other tidal stations we obtain similar patterns.

Figure 8 shows the similarities between the two station pairs Boston (lat: 42.35◦, lon: −71.05◦)
vs. Christmas Is. (lat: 1.983◦, lon: −157.467◦) and Boston (lat: 42.35◦, lon: −71.05◦) vs. New York
(lat: 40.7◦, lon: −74.02◦). That is, we present one pair of distant and one pair of neighbor stations.
We verify that coherence between neighbors is higher and—as expected—we observe regions of strong
coherence at the frequencies of the main tidal components (Table 2). However, other strong coherence
regions emerge throughout the data which are difficult to infer from the bare CWT charts. Therefore,
from Figure 8 we conclude that wavelet coherence is a powerful tool for unveiling hidden similarities
between data. Yet, since it produces one chart per TS pair, a large amount of data is generated for all
combinations of pairs, and the global perspective is difficult to obtain. To overcome these problems,
in the follow up, we combine CWT and HC tools.
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Figure 7. The continuous wavelet transform (CWT) for Boston (lat: 42.35◦, lon: −71.05◦) and Christmas
Is. (lat: 1.983◦, lon: −157.467◦) tidal stations. The dashed white lines represent the cones on influence.

Figure 8. The wavelet coherence between Boston (lat: 42.35◦, lon: −71.05◦) vs. Christmas Is. (lat: 1.983◦,
lon: −157.467◦) and Boston (lat: 42.35◦, lon: −71.05◦) vs. New York (lat: 40.7◦, lon: −74.02◦) tidal
stations. The dashed white lines represent the cones on influence.

For all TS, we determine the corresponding CWT, and as described in Subsection 4.2.1, we calculate
the function Ω(p), where w(p) now denotes a vector obtained from |W|, with W generated by the
CWT. Finally, we feed the HC with the matrix ∆ = [δij], i, j = 1, ..., 75.

Figure 9 depicts the tree generated for matrix ∆. We observe two main clusters, V1 and V2, that are
similar to those already identified in the MM- and FrFT-based trees. For example, relative to C1 and C2,
the main differences are for stations 30 (Keelung) and 50 (Papeete), which swapped places. Sub-clusters
at lower levels are now well separated, demonstrating the superiority of the time–frequency analysis
in discriminating differences between the data.

In conclusion, the trees from Figures 4–9 reveal the same type of clusters, with slightly distinct
levels of discrimination of the sub-clusters, Figure 9 apparently being slightly superior to the others.
This global comparison shows that geographically close stations can behave differently from each
other due to local factors. However, this may be not perceived when using standard processing tools.



Entropy 2017, 19, 390 13 of 18

Figure 9. The hierarchical tree resulting from [δij], i, j = 1, ..., 75, with δij = JSD(Ωi, Ωj), and Ω
calculated based on the CWT.

5. Long-Range Behavior of Tides

The previous analysis revealed similarities embedded into distinct TS, but does not focus on
long memory effects that often occur in complex systems. Having this fact in mind, in this section we
study the long-range behavior of tides based on the characteristics of the TS PSD at low frequencies.
Therefore, we model the MM estimates, Ŝi( f ), i = 1, · · · , 75, within the bandwidth f ∈ [ fL, fH ], where
fL and fH denote the lower and upper frequency limits by means of PL functions:

Ŝi( f ) ' a f−b, a, b ∈ R+. (23)

In this perspective, “low frequencies” means the bandwidth bellow the first harmonics with
significant amplitude; that is, f ≈ 24 h−1.

The values obtained for parameter b reveal underlying characteristics of the tidal dynamics;
namely, a fractional value of b may be indicative of dynamical properties similar to those usually
found in fractional-order systems [41,63,64]. Moreover, Equation (23) implies a relationship between
PL behavior and fractional Brownian motion (fBm) [30,65] (1/ f noise [66]), since for many systems
fBm represents a signature of complexity [67].

Figure 10 illustrates the procedure for data from the Boston tidal station (lat: 42.35◦, lon: −71.05◦),
f ∈ [10−5, 10−2] h−1 (i.e., 4 days to 11.5 years), and the PL parameters determined by means of least
squares fitting, yielding (a, b) = (58.86, 0.32).
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Figure 10. The Ŝ( f ), f ∈ [10−5, 10−2] h−1, and PL approximation for Boston tidal station, yielding
(a, b) = (58.86, 0.32).

The parameters (a, b) are computed for the whole set of time-series (s = 75 in total), and the
corresponding locus is depicted in Figure 11. The size and color of the markers are proportional to
the value of the root mean squared error (RMSE) of the PL fit. We verify that b has values between
0.2 and 0.8, corresponding to TS including long memory effects typical of fBm. Values of b close to
zero mean that tidal TS are close to white noise; that is, to a random signal having equal intensity at
different frequencies. On the other hand, values of b close to 1 follow the so-called pink or 1/ f noise,
which occurs in many physical and biological systems. In general, for non-integer values of b, signals
are related to the ubiquitous fractional Brownian noise. So, we can say loosely that the smaller/higher
the values of b, the less/more correlated are consecutive signal samples and the smaller/larger is the
content of long-range memory effects.

In Figure 11, we group points in the locus (a, b) into four clusters Li, i = 1, · · · , 4, loosely having
the correspondence V11 ∪V12 → L1, V21 → L2, and V22 → L3 ∪L4. Therefore, we find that the clusters
previously identified with the tree diagrams for the global time scale have a distinct arrangement
in the long-range perspective. The chart also includes the approximation curves to Li, i = 1, · · · , 4,
yielding lines resembling isoclines in a vector field. Third-order polynomials (i.e., degree n = 3)
were interpolated since they lead to a good compromise between reducing the RMSE of the fit and
avoiding overfitting. From the gradient generated by the isoclines approximation, we observe not
only a gradual and smooth evolution between the four isoclines, but also a clear separation between
them, with particular emphasis on L3 and L4. This property was not clear in the previous diagram
trees. Long-range memory effects are diluted when handling TS simultaneously with long and short
time scales, but the (a, b) locus unveils properties that reflect distinct classes of phenomena, and their
identification needs further study.

We should also note that the low-frequency range covers time scales between 1 year and several
decades. So, the results demonstrate the presence of phenomena influencing tides during long periods
of time. The limits of such time scales remain to be explored, since present-day TS do not include
sufficiently long records. In other words, the results point toward obtaining longer TS, since relevant
phenomena may be not completely captured with the available data.
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Figure 11. Locus of the (a, b) parameters and the polynomial (degree n = 3) fit to Li, i = 1, · · · , 4.
The size and color of the markers are proportional to the value of the root mean squared error (RMSE)
of the PL fit to the MM estimates, Ŝi( f ), i = 1, · · · , 75.

6. Conclusions

Tidal TS embed rich information contributed by a plethora of factors at different scales. Local
features—namely, geography (e.g., shape of the shoreline, bays, estuaries, and inlets, presence of
shallow waters) and weather (e.g., wind, atmospheric pressure, and rainfall/river discharge)—may
have a non-negligible effect on tides. This means that, for example, geographically close stations may
register quite different tidal behavior. Knowing the relationships between worldwide distributed
stations may be important to better understanding tides. However, disclosing such relationships
requires powerful tools for TS analysis that are able to unveil all details embedded in the data.

A method for analyzing tidal TS that combines time–frequency signal processing and HC was
proposed. Real world information from worldwide tidal stations was pre-processed to obtain TS
with reliable quality. Frequency and time–frequency data were generated by means of the MM, FrFT,
and CWT. The JSD was used to measure dissimilarities, and the HC was applied for visualizing
information. PL functions were adopted for investigating the long-range dynamics of tides. Numerical
analysis showed that the combination of CWT and HC leads to a good graphical representation of
the relationships between tidal TS. The two distinct perspectives of study reveal similar regularities
embedded into the raw TS and motivate their adoption with other geophysical information.
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