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Abstract: The reliability function of variable-rate Slepian-Wolf coding is linked to the reliability
function of channel coding with constant composition codes, through which computable lower
and upper bounds are derived. The bounds coincide at rates close to the Slepian-Wolf limit,
yielding a complete characterization of the reliability function in that rate region. It is shown
that variable-rate Slepian-Wolf codes can significantly outperform fixed-rate Slepian-Wolf codes in
terms of rate-error tradeoff. Variable-rate Slepian-Wolf coding with rate below the Slepian-Wolf limit
is also analyzed. In sharp contrast with fixed-rate Slepian-Wolf codes for which the correct decoding
probability decays to zero exponentially fast if the rate is below the Slepian-Wolf limit, the correct
decoding probability of variable-rate Slepian-Wolf codes can be bounded away from zero.

Keywords: channel coding; duality; reliability function; Slepian-Wolf coding

1. Introduction

Consider the problem (see Figure 1) of compressing Xn = (X1, X2, · · · , Xn) with side information
Yn = (Y1, Y2, · · · , Yn) available only at the decoder. Here {(Xi, Yi)}∞

i=1 is a joint memoryless source
with zero-order joint probability distribution PXY on finite alphabet X × Y . Let PX and PY be the
marginal probability distributions of X and Y induced by the joint probability distribution PXY. Without
loss of generality, we shall assume PX(x) > 0, PY(y) > 0 for all x ∈ X , y ∈ Y . This problem was first
studied by Slepian and Wolf in their landmark paper [1]. They proved a surprising result that the
minimum rate for reconstructing Xn at the decoder with asymptotically zero error probability (as block
length n goes to infinity) is H(X|Y), which is the same as the case where the side information Yn is
also available at the encoder. The fundamental limit H(X|Y) is often referred to as the Slepian-Wolf
limit. We shall assume H(X|Y) > 0 throughout this paper.

Different from conventional lossless source coding, where most effort has been devoted to
variable-rate coding schemes, research on Slepian-Wolf coding has almost exclusively focused on
fixed-rate codes (see, e.g., [2–5] and the references therein). This phenomenon can be partly explained
by the influence of channel coding. It is well known that there is an intimate connection between
channel coding and Slepian-Wolf coding. Intuitively, one may view Yn as the channel output generated
by channel input Xn through discrete memoryless channel PY|X , where PY|X is the probability transition
matrix from X to Y induced by the joint probability probability distribution PXY. Since Yn is
not available at the encoder, Slepian-Wolf coding is, in a certain sense, similar to channel coding
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without feedback. In a channel coding system, there is little incentive to use variable-rate coding
schemes if no feedback link exists from the receiver to the transmitter. Therefore, it seems justifiable to
focus on fixed-rate codes in Slepian-Wolf coding.
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Figure 1. Slepian-Wolf coding.

This viewpoint turns out to be misleading. We shall show that variable-rate Slepian-Wolf
codes can significantly outperform fixed-rate codes in terms of rate-error tradeoff. Specifically, it
is revealed that variable-rate Slepian-Wolf codes can beat the sphere-packing bound for fixed-rate
Slepian-Wolf codes at rates close to the Slepian-Wolf limit. It is known [6] that the correct decoding
probability of fixed-rate Slepian-Wolf codes decays to zero exponentially fast if the rate is below the
Slepian-Wolf limit. Somewhat surprisingly, the decoding error probability of variable-rate Slepian-Wolf
codes can be bounded away from one even when they are operated below the Slepian-Wolf limit, and
the performance degrades gracefully as the rate goes to zero. Therefore, variable-rate Slepian-Wolf
coding is considerably more robust.

The rest of this paper is organized as follows. In Section 2, we review the existing bounds on
the reliability function of fixed-rate Slepian-Wolf coding, and point out the intimate connections
with their counterparts in channel coding. In Section 3, we characterize the reliability function of
variable-rate Slepian-Wolf coding by leveraging the reliability function of channel coding with constant
composition codes. Computable lower and upper bounds are derived. The bounds coincide at
rates close to the Slepian-Wolf limit. The correct decoding probability of variable-rate Slepian-Wolf
coding with rate below the Slepian-Wolf limit is studied in Section 4. An illustrative example is given
in Section 5. We conclude the paper in Section 6. Throughout this paper, we assume the logarithm
function is to base e unless specified otherwise.

2. Fixed-Rate Slepian-Wolf Coding and Channel Coding

To facilitate the comparisons between the performances of fixed-rate Slepian-Wolf coding and
variable-rate coding, we shall briefly review the existing bounds on the reliability function of fixed-rate
Slepian-Wolf coding. It turns out that a most instructive way is to first consider their counterparts in
channel coding. The reason is two-fold. First, it provides the setup to introduce several important
definitions. Second and more important, it will be clear that the reliability function of fixed-rate
Slepian-Wolf coding is closely related to that of channel coding; indeed, such a connection will be
further explored in the context of variable-rate Slepian-Wolf coding.

For any probability distributions P, Q on X and probability transition matrices V, W : X → Y ,
we use H(P), I(P, V), D(Q‖P), and D(W‖V|P) to denote the standard entropy, mutual information,
divergence, and conditional divergence functions; specifically, we have

H(P) = −∑
x

P(x) log P(x),

I(P, V) = ∑
x,y

P(x)V(y|x) log
V(y|x)

∑x′ P(x′)V(y|x′) ,
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D(Q‖P) = ∑
x

Q(x) log
Q(x)
P(x)

,

D(W‖V|P) = ∑
x,y

P(x)W(y|x) log
W(y|x)
V(y|x) .

The main technical tool we need is the method of types. First, we shall quote a few basic definitions
from [7]. Let P(X ) denote the set of all probability distributions on X . The type of a sequence xn ∈ X n,
denoted as Pxn , is the empirical probability distribution of xn. Let Pn(X ) denote the set consisting
of the possible types of sequences xn ∈ X n. For any P ∈ Pn(X ), the type class Tn(P) is the set of
sequences in X n of type P. We will make frequent use of the following elementary results:

|Pn(X )| ≤ (n + 1)|X |, (1)
1

(n + 1)|X |
enH(P) ≤ |Tn(P)| ≤ enH(P), P ∈ Pn(X ), (2)

n

∏
i=1

P(xi) = e−n[D(Q‖P)+H(Q)], xn ∈ Tn(Q), Q ∈ Pn(X ), P ∈ P(X ). (3)

A block code Cn is an ordered collection of sequences in X n. We allow Cn to contain identical
sequences. Moreover, for any set A ⊆ X n, we say that Cn ⊆ A if xn ∈ A for all xn ∈ Cn. Note that
Cn ⊆ A does not imply |Cn| ≤ |A|. The rate of Cn is defined as

R(Cn) =
1
n

log |Cn|.

Given a channel WY|X : X → Y , a block code Cn ⊆ X n, and channel output Yn ∈ Yn, the output
of the optimal maximum likelihood (ML) decoder is

X̂n = arg min
xn∈Cn

−
n

∑
i=1

log WY|X(Yi|xi),

where the ties are broken in an arbitrary manner. The average decoding error probability of block code
Cn over channel WY|X is defined as

Pe(Cn, WY|X) =
1
|Cn| ∑

xn∈Cn

Pr{X̂n 6= xn|xn is transmitted}.

The maximum decoding error probability of block code Cn over channel WY|X is defined as

Pe,max(Cn, WY|X) = max
xn∈Cn

Pr{X̂n 6= xn|xn is transmitted}.

The average correct decoding probability of block code Cn over channel WY|X is defined as

Pc(Cn, WY|X) = 1− Pe(Cn, WY|X).

Definition 1. Given a channel WY|X : X → Y , we say that an error exponent E ≥ 0 is achievable with block
codes at rate R if for any δ > 0, there exists a sequence of block codes {Cn} such that

lim inf
n→∞

R(Cn) ≥ R− δ,

lim sup
n→∞

− 1
n

log Pe(Cn, WY|X) ≥ E− δ. (4)
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The largest achievable error exponent at rate R is denoted by E(WY|X, R). The function E(WY|X, ·) is
referred to as the reliability function of channel WY|X .

Similarly, we say that a correct decoding exponent Ec ≥ 0 is achievable with block channel codes at rate R
if for any δ > 0, there exists a sequence of block codes {Cn} such that

lim inf
n→∞

R(Cn) ≥ R− δ,

lim inf
n→∞

− 1
n

log Pc(Cn, WY|X) ≤ Ec + δ.

The smallest achievable correct decoding exponent at rate R is denoted by Ec(WY|X , R). It will be seen that
Ec(WY|X , R) is positive if and only if R > C(WY|X), where C(WY|X) , maxQX I(QX , WY|X) is the capacity
of channel WY|X. Therefore, we shall refer to the function Ec(WY|X, ·) as the reliability function of channel
WY|X above the capacity.

Remark 1. Given any block code Cn of average decoding error probability Pe(Cn, WY|X), we can expurgate the
worst half of the codewords so that the maximum decoding error probability of the resulting code is bounded
above by 2Pe(Cn, WY|X). Therefore, the reliability function E(WY|X , ·) is unaffected if we replace Pe(Cn, WY|X)

by Pe,max(Cn, WY|X) in (4).

Definition 2. Given a probability distribution QX ∈ P(X ) and a channel WY|X : X → Y , we say that an
error exponent E ≥ 0 is achievable at rate R with constant composition codes of type approximately QX if for
any δ > 0, there exists a sequence of block codes {Cn} with Cn ⊆ Tn(Pn) for some Pn ∈ Pn(X ) such that

lim
n→∞

‖Pn −QX‖ = 0,

lim inf
n→∞

R(Cn) ≥ R− δ,

lim sup
n→∞

− 1
n

log Pe(Cn, WY|X) ≥ E− δ,

where ‖ · ‖ is the l1 norm.
The largest achievable error exponent at rate R for constant composition codes of type approximately QX is

denoted by E(QX, WY|X, R). The function E(QX, WY|X, ·) is referred to as the reliability function of channel
WY|X for constant composition codes of type approximately QX .

Similarly, we say that a correct decoding exponent Ec ≥ 0 is achievable at rate R with constant composition
codes of type approximately QX if for any δ > 0, there exists a sequence of block codes {Cn} with Cn ⊆ Tn(Pn)

for some Pn ∈ Pn(X ) such that

lim
n→∞

‖Pn −QX‖ = 0,

lim inf
n→∞

R(Cn) ≥ R− δ,

lim inf
n→∞

− 1
n

log Pc(Cn, WY|X) ≤ Ec + δ. (5)

The smallest achievable correct decoding exponent at rate R for constant composition codes of type
approximately QX is denoted by Ec(QX , WY|X , R).

Remark 2. The reliability function E(QX, WY|X, ·) is unaffected if we replace Pe(Cn, WY|X) by
Pe,max(Cn, WY|X) in (5).
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Let |t|+ = max{0, t} and dWY|X (x, x̃) = − log ∑y

√
WY|X(y|x)WY|X(y|x̃). Define

Eex(QX , WY|X , R) = min
QX̃|X :QX=QX̃ ,I(QX ,QX̃|X)≤R

[
EQXX̃

dWY|X (X, X̃) + I(QX , QX̃|X)− R
]

, (6)

Erc(QX , WY|X , R) = min
VY|X

[
D(VY|X‖WY|X |QX) + |I(QX , VY|X)− R|+

]
, (7)

Esp(QX , WY|X , R) = min
VY|X :I(QX ,VY|X)≤R

D(VY|X‖WY|X |QX), (8)

where in (6), QX̃ and QXX̃ are respectively the marginal probability distribution of X̃ and the joint
probability distribution of X and X̃ induced by QX and QX̃|X .

Let R∞
ex(QX , WY|X) be the smallest R ≥ 0 with Eex(QX , WY|X , R) < ∞. We have

R∞
ex(QX , WY|X) = min

QX̃|X :QX=QX̃ ,EQXX̃
dWY|X (X,X̃)<∞

I(QX , QX̃|X). (9)

It is known ([7], Exercise 5.18) that Eex(QX, WY|X, R) is a decreasing convex function of R for
R ≥ R∞

ex(QX , WY|X); moreover, the minimum in (9) is achieved at QXX̃ if and only if

QXX̃(x, x̃) =

{
cQ(x)Q(x̃) if dWY|X (x, x̃) < ∞,
0 otherwise,

where the probability distribution Q and the constant c are uniquely determined by the condition
QX = QX̃ .

It is shown in ([8], Lemma 3) that, for some R∗(QX , WY|X) ∈ [0, I(QX , WY|X)], we have

max
{

Eex(QX , WY|X , R), Erc(QX , PY|X , R)
}
=

{
Eex(QX , WY|X , R) if R ≤ R∗(QX , WY|X),
Erc(QX , WY|X , R) if R > R∗(QX , WY|X).

(10)

It is also known ([7], Corollary 5.4) that

Erc(QX , WY|X , R) =

{
Esp(QX , WY|X , R) if R ≥ Rcr(QX , WY|X),
Esp(QX , WY|X , Rcr) + Rcr − R if 0 ≤ R ≤ Rcr(QX , WY|X),

(11)

where Rcr , Rcr(QX, WY|X) is the smallest R at which the convex curve Esp(QX, WY|X, R) meets its
supporting line of slope −1. It is obvious that Rcr(QX , WY|X) ≤ I(QX , WY|X).

Proposition 1. Rcr(QX , WY|X) = I(QX , WY|X) if and only if the value of

WY|X(y|x)
∑x′ QX(x′)WY|X(y|x′)

does not depend on y for all x, y such that QX(x)WY|X(y|x) > 0.

Proof. See Appendix A

Define R∞
sp(QX , WY|X) = inf{R > 0 : Esp(QX , WY|X , R) < ∞}. It is known ([7], Exercise 5.3) that

R∞
sp(QX , WY|X) = min I(QX , VY|X), (12)
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where the minimum is taken over those VY|X’s for which VY|X(y|x) = 0 whenever WY|X(y|x) = 0;
in particular, R∞

sp(QX , WY|X) > 0 if and only if for every y ∈ Y there exists an x ∈ X with QX(x) > 0
and WY|X(y|x) = 0.

Proposition 2. The minimum in (12) is achieved at VY|X = WY|X if and only if the value of

WY|X(y|x)
∑x′ QX(x′)WY|X(y|x′)

does not depend on y for all x, y such that QX(x)WY|X(y|x) > 0.

Proof. The proof is similar to that of Proposition 1. The details are omitted.

One can readily prove the following result by combining Propositions 1 and 2.

Proposition 3. The following statements are equivalent:

1. Rcr(QX , PY|X) = I(QX , WY|X);

2. R∞
sp(QX , PY|X) = I(QX , WY|X);

3. the value of

WY|X(y|x)
∑x′ QX(x′)WY|X(y|x′)

does not depend on y for all x, y such that QX(x)WY|X(y|x) > 0.

Proposition 4.

1. E(QX , WY|X , R) ≥ max{Eex(QX , WY|X , R), Erc(QX , WY|X , R)};
2. E(QX , PY|X , R) ≤ Esp(QX , WY|X , R) with the possible exception of R = R∞

sp(QX , WY|X) at which point
the inequality not necessarily holds;

3. Ec(QX , WY|X , R) = minVY|X

[
D(VY|X‖WY|X |QX) + |R− I(QX ; VY|X)|+

]
.

Remark 3. Eex(QX, WY|X, R), Erc(QX, WY|X, R), and Esp(QX, WY|X, R) are respectively the expurgated
exponent, the random coding exponent, and the sphere packing exponent of channel WY|X for constant
composition codes of type approximately QX. The results in Proposition 4 are well known [7,9]. However,
bounding the decoding error probability of constant composition codes often serves as an intermediate step
in characterizing the reliability function for general block codes; as a consequence, the reliability function for
constant composition codes is rarely explicitly defined. Moreover, Eex(QX , WY|X , R), Erc(QX , WY|X , R), and
Esp(QX, WY|X, R) are commonly used to bound the decoding error probability of constant composition codes
for a fixed block length n; therefore, it is implicitly assumed that QX is taken from Pn(X ) (see, e.g., [7]).
In contrast, we consider a sequence of constant composition codes with block length increasing to infinity and
type converging to QX for some QX ∈ P(X ) (see Definition 2). A continuity argument is required for passing
QX from Pn(X ) to P(X ). For completeness, we supply the proof in Appendix B. Note that different from
E(QX , WY|X , ·), the function Ec(QX , WY|X , ·) has been completely characterized.

Proposition 5.

1. E(WY|X , R) = supQX
E(QX , WY|X , R),

2. Ec(WY|X , R) = infQX Ec(QX , WY|X , R).
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Remark 4. In view of the fact that Ec(QX , WY|X , R) is a continuous function of QX defined on a compact set,
we can replace “inf" with “min" in the above equation, i.e.,

Ec(WY|X , R) = min
QX

Ec(QX , WY|X , R). (13)

Proof. It is obvious that E(WY|X, R) ≥ supQX
E(QX, WY|X, R); the other direction follows from the

fact that every block code Cn contains a constant composition code C ′n with Pe,max(C ′n, WY|X) ≤
Pe,max(Cn, WY|X) and R(C ′n) ≥ R(Cn) − |X | log(n+1)

n . Similarly, it is clear that Ec(WY|X, R) ≤
infQX Ec(QX, WY|X, R); the other direction follows from the fact that given any block code Cn, one
can construct a constant composition code C ′n with Pc(C ′n, WY|X) ≤ (n + 1)|X |Pc(Cn, WY|X) and
R(C ′n) = R(Cn) [9].

The expurgated exponent, random coding exponent, and sphere packing exponent of channel
WY|X for general block codes are defined as follows:

1. expurgated exponent

Eex(WY|X , R) = max
QX

Eex(QX , WY|X , R), (14)

2. random coding exponent

Erc(WY|X , R) = max
QX

Erc(QX , WY|X , R), (15)

3. sphere packing exponent

Esp(WY|X , R) = max
QX

Esp(QX , WY|X , R). (16)

Let R∞
sp(WY|X) be the smallest R to the right of which Esp(WY|X, R) is finite. It is known ([7],

Exercise 5.3) and [10] that

R∞
sp(WY|X) = max

QX
R∞

sp(QX , WY|X)

= − log

min
QX

max
y ∑

x∈X :WY|X(y|x)>0
QX(x)

 .

By Propositions 4 and 5, we recover the following well-known result [7,10]:

max{Eex(WY|X , R), Erc(WY|X , R)} ≤ E(WY|X , R) ≤ Esp(WY|X , R) (17)

with the possible exception of R = R∞
sp(WY|X) at which point the second inequality in (17) not

necessarily holds.
Now we proceed to review the results on the reliability function of fixed-rate Slepian-Wolf coding.

A fixed-rate Slepian-Wolf code φn(·) is a mapping from X n to a set An. The rate of φn(·) is defined as

R(φn) =
1
n

log |An|.

Given φn(Xn) and Yn, the output of the optimal maximum a posteriori (MAP) decoder is

X̂n = arg min
xn :φn(xn)=φn(Xn)

−
n

∑
i=1

log PX|Y(xi|Yi)
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= arg min
xn :φn(xn)=φn(Xn)

−
n

∑
i=1

log PXY(xi, Yi),

where the ties are broken in an arbitrary manner. The decoding error probability of Slepian-Wolf code
φn(·) is defined as

Pe(φn, PXY) = Pr{X̂n 6= Xn}.

The correct decoding probability of Slepian-Wolf code φn(·) is defined as

Pc(φn, PXY) = 1− Pe(φn, PXY).

Definition 3. Given a joint probability distribution PXY, we say that an error exponent E ≥ 0 is achievable
with fixed-rate Slepian-Wolf codes at rate R if for any δ > 0, there exists a sequence of fixed-rate Slepian-Wolf
codes {φn} such that

lim sup
n→∞

R(φn) ≤ R + δ,

lim sup
n→∞

− 1
n

log Pe(φn, PXY) ≥ E− δ.

The largest achievable error exponent at rate R is denoted by E f (PXY, R). The function E f (PXY, ·) is
referred to as the reliability function of fixed-rate Slepian-Wolf coding.

Similarly, we say that a correct decoding exponent Ec ≥ 0 is achievable with fixed-rate Slepian-Wolf codes
at rate R if for any δ > 0, there exists a sequence of fixed-rate Slepian-Wolf codes {φn} such that

lim sup
n→∞

R(φn) ≤ R + δ,

lim inf
n→∞

− 1
n

log Pc(φn, PXY) ≤ Ec + δ.

The smallest achievable correct decoding exponent at rate R is denoted by Ec
f (PXY, R). It will be seen that

Ec
f (PXY, R) is positive if and only if R < H(X|Y). Therefore, we shall refer to the function Ec

f (PXY, ·) as the
reliability function of fixed-rate Slepian-Wolf coding below the Slepian-Wolf limit.

The expurgated exponent, random coding scheme, and sphere packing exponent of fixed-rate
Slepian-Wolf coding are defined as follows:

1. expurgated exponent

E f ,ex(PXY, R) = min
QX

[
D(QX‖PX) + Eex(QX , PY|X , H(QX)− R)

]
, (18)

2. random coding exponent

E f ,rc(PXY, R) = min
QX

[
D(QX‖PX) + Erc(QX , PY|X , H(QX)− R)

]
, (19)

3. sphere packing exponent

E f ,sp(PXY, R) = min
QX

[
D(QX‖PX) + Esp(QX , PY|X , H(QX)− R)

]
. (20)
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Equivalently, the random coding exponent and sphere packing exponent of fixed-rate Slepian-Wolf
coding can be written as [11]:

E f ,rc(PXY, R) = max
0≤ρ≤1

− log ∑
y

[
∑
x

PXY(x, y)
1

1+ρ

]1+ρ

+ ρR

 ,

E f ,sp(PXY, R) = sup
ρ>0

− log ∑
y

[
∑
x

PXY(x, y)
1

1+ρ

]1+ρ

+ ρR

 .

To see the connection between the random coding exponent and the sphere packing exponent, we
shall write them in the following parametric forms [11]:

R = H(X(ρ)|Y(ρ)),

E f ,sp(PXY, R) = D(PX(ρ)Y(ρ)‖PXY),

and

E f ,rc(PXY, R) =


D(PX(ρ)Y(ρ)‖PXY) if H(X|Y) ≤ R ≤ H(Xρ|Yρ)

∣∣
ρ=1 ,

− log ∑
y

[
∑
x

√
PXY(x, y)

]2
+ R if R > H(X(ρ)|Y(ρ))

∣∣∣
ρ=1

,

where the joint distribution of (X(ρ), Y(ρ)) is PX(ρ)Y(ρ) , which is specified by

PY(ρ)(y) =
PY(y)

[
∑x PX|Y(x|y)

1
1+ρ

]1+ρ

∑y′ PY(y′)
[

∑x PX|Y(x|y′)
1

1+ρ

]1+ρ
, y ∈ Y , (21)

PX(ρ) |Y(ρ)(x|y) =
PX|Y(x|y)

1
1+ρ

∑x′ PX|Y(x′|y)
1

1+ρ

, x ∈ X , y ∈ Y . (22)

Define the critical rate

R f ,cr(PXY) = H(X(ρ)|Y(ρ))
∣∣∣
ρ=1

.

Note that Erc(PXY, R) and Esp(PXY, R) coincide when R ∈ [H(X|Y), R f ,cr(PXY)]. Let R∞
f ,sp(PXY) =

sup{R : E f ,sp(PXY, R) < ∞}. It is shown in [12] that

R∞
f ,sp(PXY) = max

y
log |{x ∈ X : PX|Y(x|y) > 0}|.

It is well known [8,11,13] that the reliability function E f (PXY, ·) is upper-bounded by E f ,sp(PXY, ·)
and lower-bounded by E f ,rc(PXY, ·) and E f ,ex(PXY, ·), i.e.,

max{E f ,rc(PXY, R), E f ,ex(PXY, R)} ≤ E f (PXY, R) ≤ E f ,sp(PXY, R) (23)

with the possible exception of R = R∞
f ,sp(PXY) at which point the second inequality in (23) not

necessarily holds. Note that E f (PXY, R) is completely characterized for R ∈ [H(X|Y), R f ,cr(PXY)].
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Unlike E f (PXY, ·), the function Ec
f (PXY, ·) has been characterized for all R. Specifically, it is shown

in [6,14] that

Ec
f (PXY, R) = min

QX

[
D(QX‖PX) + Ec(QX , PY|X , H(QX)− R)

]
. (24)

Comparing (14) with (18), (15) with (19), (16) with (20), and (13) with (24), one can easily see that
there exists an intimate connection between fixed-rate Slepian-Wolf coding for source distribution PXY
and channel coding for channel PY|X . This connection can be roughly interpreted as the manifestation
of the following facts [15].

1. Given, for each type QX ∈ Pn(X ), a constant composition code Cn(QX) ⊆ Tn(QX) with
R(Cn(QX)) ≈ H(QX)− R and Pe,max(Cn(QX), PY|X) ≈ e−nE(QX), one can use Cn(QX) to partition
type class Tn(QX) into approximately enR disjoint subsets such that each subset is a constant
composition code of type QX with the maximum decoding error probability over channel PY|X
approximately equal to or less than that of Cn(QX). Note that these partitions, one for each
type class, yield a fixed-rate Slepian-Wolf code of rate approximately R with Pr{X̂n 6= Xn|Xn ∈
Tn(QX)} / e−nE(QX). Since Pr{Xn ∈ Tn(QX)} ≈ e−nD(QX‖PX) (cf. (2) and (3)), it follows that
Pr{X̂n 6= Xn, Xn ∈ Tn(QX)} / e−n[D(QX‖PX)+E(QX)]. The overall decoding error probability
Pr{X̂n 6= Xn} of the resulting Slepian-Wolf code can be upper-bounded, on the exponential
scale, by e−n[D(Q∗X‖PX)+E(Q∗X)], where Q∗X = arg minQX D(QX‖PX) + E(QX). In contrast, one has
the freedom to choose QX in channel coding, which explains why maximization (instead of
minimization) is used in (14)–(16).

2. Given a fixed-rate Slepian-Wolf code φn(·) with R(φn) ≈ R and Pe(φn, PXY) ≈ e−nE, one can,
for each type QX ∈ Pn(X ), lift out a constant composition code Cn(QX) ⊆ Tn(QX) with
R(Cn(QX)) ' H(QX)− R and Pe(Cn(QX), PY|X) / e−n[E−D(QX‖PX)].

3. The correct decoding exponents for channel coding and fixed-rate Slepian-Wolf coding can be
interpreted in a similar way. Note that in channel coding, to maximize the correct decoding
probability one has to minimize the correct decoding exponent; this is why in (13) minimization
(instead of maximization) is used.

Therefore, it should be clear that to characterize the reliability functions for channel coding
and fixed-rate Slepian-Wolf coding, it suffices to focus on constant composition codes. It will be
shown in the next section that a similar reduction holds for variable-rate Slepian-Wolf coding. Indeed,
the reliability function for constant component codes plays a predominant role in determining the
fundamental rate-error tradeoff in variable-rate Slepian-Wolf coding.

3. Variable-Rate Slepian-Wolf Coding: Above the Slepian-Wolf Limit

A variable-rate Slepian-Wolf code ϕn(·) is a mapping from X n to a binary prefix code Bn.
Let l(φn(xn)) denote the length of binary string φn(xn). The rate of variable-rate Slepian-Wolf code
φn(·) is defined as

R(ϕn, PXY) =
1

n log2 e
E[l(ϕn(Xn))].

It is worth noting that R(ϕn, PXY) depends on PXY only through PX .
Given ϕn(Xn) and Yn, the output of the optimal maximum a posteriori (MAP) decoder is

X̂n = arg min
xn :ϕn(xn)=ϕn(Xn)

−
n

∑
i=1

log PX|Y(xi|Yi)

= arg min
xn :ϕn(xn)=ϕn(Xn)

−
n

∑
i=1

log PXY(xi, Yi),
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where the ties are broken in an arbitrary manner. The decoding error probability of variable-rate
Slepian-Wolf code ϕn(·) is defined as

Pe(ϕn, PXY) = Pr{X̂n 6= Xn}.

The correct decoding probability of Slepian-Wolf code ϕn(·) is defined as

Pc(φn, PXY) = 1− Pe(ϕn, PXY).

Definition 4. Given a joint probability distribution PXY, we say that an error exponent E ≥ 0 is achievable with
variable-rate Slepian-Wolf codes at rate R if for any δ > 0, there exists a sequence of variable-rate Slepian-Wolf
codes {ϕn} such that

lim sup
n→∞

R(ϕn, PXY) ≤ R + δ,

lim sup
n→∞

− 1
n

log Pe(ϕn, PXY) ≥ E− δ.

The largest achievable error exponent at rate R is denoted by Ev(PXY, R). The function Ev(PXY, ·) is
referred to as the reliability function of variable-rate Slepian-Wolf coding.

The power of variable-rate Slepian-Wolf coding results from its flexibility in rate allocation. Since
there are only polynomial number of types for any given n (cf. (1)), the encoder can convey the
type information to the decoder using negligible amount of rate when n is large enough. Therefore,
without loss of much generality, we can assume that the type of Xn is known to the decoder. Under
this assumption, an optimal fixed-rate Slepian-Wolf encoder of rate R should partition Tn(P) into
min{|Tn(P)|, enR} disjoint subsets for each P ∈ Pn. It can be seen that the rate allocated to Tn(P) is
always R if |Tn(P)| ≥ enR. In general, the type Q∗X that dominates the error probability of fixed-rate
Slepian-Wolf coding is different from PX. In contrast, for variable-rate Slepian-Wolf coding, we can
losslessly compress the sequences of types that are bounded away PX by allocating enough rate to
those type classes (but its contribution to the overall rate is still negligible since the probability of
those type classes are extremely small), and therefore, effectively eliminate the dominant error event
in fixed-rate Slepian-Wolf coding. As a consequence, the types that can cause decoding error in
variable-rate Slepian-Wolf coding must be very close to PX. This is the main intuition underlying
the proof of the following theorem. A similar argument has been used in the context of variable-rate
Slepian-Wolf coding under mismatched decoding [16].

Theorem 1. Ev(PXY, R) = E(PX , PY|X , H(PX)− R).

Proof. The proof is divided into two parts. Firstly, we shall show that Ev(PXY, R) ≥
E(PX, PY|X, H(PX)− R). The main idea is that one can use a constant composition code Cn of type
approximately PX and rate approximately H(PX)− R to construct a variable-rate Slepian-Wolf code
ϕn′(·) with n′ ≈ n, R(ϕn′ , PXY) ≈ R, and Pe(ϕn′ , PXY) ≤ Pe,max(Cn, PY|X).

By Definition 2, for any δ > 0, there exists a sequence of constant composition codes {Cn} with
Cn ⊆ Tn(Pn) for some Pn ∈ Pn(X ) such that

lim
n→∞

‖Pn − PX‖ = 0,

lim inf
n→∞

R(Cn) ≥ H(PX)− R− δ,

lim sup
n→∞

− 1
n

log Pe,max(Cn, PY|X) ≥ E(PX , PY|X , H(PX)− R)− δ.
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Since PX(x) > 0 for all x ∈ X , we have

max
P∈Pn(X )∩E(δ)

max
x

Pn(x)
P(x)

≤ (1 + δ)2

for all sufficiently n, where

E(δ) =
{

P ∈ P(X ) : max
x

PX(x)
P(x)

≤ 1 + δ, H(P) ≤ H(PX) + δ, D(P‖PX) ≤ δ

}
.

Let kn = d(1 + δ)2ne. When n is large enough, we can, for each P ∈ Pkn(X ) ∩ E(δ), construct a
constant composition code C ′kn

(P) of length kn and type P by appending a fixed sequence in X kn−n to
each codeword in Cn. It is easy to see that

|C ′kn
(P)| = |Cn|, (25)

Pe,max(C ′kn
(P), PY|X) = Pe,max(Cn, PY|X) (26)

for all P ∈ Pkn(X ) ∩ E(δ). One can readily show by invoking the covering lemma in [17] that for each
P ∈ Pkn(X ) ∩ E(δ), there exist L(kn) permutations π1, · · · , πL(kn) of the integers 1, · · · , kn such that

L(kn)⋃
i=1

πi(C ′kn
(P)) = Tkn(P),

where

L(kn) , max
P∈Pkn (X )∩E(δ)

⌊
|C ′kn

(P)|−1|Tkn(P)| log |Tkn(P)|+ 1
⌋

.

In view of (25), we can rewrite L(kn) as

L(kn) = max
P∈Pkn (X )∩E(δ)

⌊
|Cn|−1|Tkn(P)| log |Tkn(P)|+ 1

⌋
.

Note that

Pe,max(πi(C ′kn
(P)), PY|X) = Pe,max(C ′kn

(P), PY|X), i = 1, 2, · · · , L(kn). (27)

Given π1(C ′kn
(P)), · · · , πL(kn)(C

′
kn
(P)), we can partition Tkn(P) into L(kn) disjoint subsets:

Tkn(P, 1) = π1(C ′kn
(P)),

Tkn(P, i) = πi(C ′kn
(P))

∖
i−1⋃
j=1

πi(C ′kn
(P)), i = 2, · · · , L(kn).

It is clear that

Pe,max(Tkn(P, i), PY|X) ≤ Pe,max(πi(C ′kn
(P)), PY|X), i = 1, 2, · · · , L(kn). (28)

Now construct a sequence of variable-rate Slepian-Wolf codes {φkn(·)} as follows.

1. The encoder sends the type of xkn to the decoder, where each type is uniquely represented by a
binary sequence of length m1(kn).

2. If xkn ∈ Tkn(P) for some P /∈ E(δ), the encoder sends xkn losslessly to the decoder, where each
xkn ∈ Tkn(P) is uniquely represented by a binary sequence of length m2(kn).
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3. If xkn ∈ Tkn(P) for some P ∈ E(δ), the encoder finds the set πi∗(C ′kn
(P)) that contains xkn and

sends the index i∗ to the decoder, where each index in {1, 2, · · · , L(kn)} is uniquely represented
by a binary sequence of length m3(kn).

Specifically, we choose

m1(kn) = dlog2 |Pkn(X )|e,
m2(kn) = max

P∈Pkn (X )
dlog2 |Tkn(P)|e,

m3(kn) = dlog2 L(kn)e.

Note that

R(ϕkn , PXY) =
m1(kn) + (1− θ)m2(kn) + θm3(kn)

kn log2 e
,

where

θ = ∑
P∈Pkn (X )∩E(δ)

Pr{Xkn ∈ Tkn(P)}.

It is easy to verify (cf. (1)–(3)) that

m1(kn) ≤ |X | log2(kn + 1) + 1,

m2(kn) ≤ kn log2 |X |+ 1,

1− θ ≤ (kn + 1)|X |e−knδ.

Therefore, we have

lim sup
n→∞

R(φkn , PXY) = lim sup
n→∞

m3(kn)

kn log2 e

≤ max
P∈E(δ)

H(P)− 1
(1 + δ)2 lim inf

n→∞
R(Cn)

≤ H(PX) + δ− H(PX)− R− δ

(1 + δ)2 . (29)

By (26)–(28) and the construction of ϕkn(·), it is clear that

Pe(ϕkn , PXY) = ∑
P∈Pkn (X )∩E(δ)

L(kn)

∑
i=1

Pr{Xkn ∈ Tkn(P, i)}Pr{X̂n 6= Xn|Xkn ∈ Tkn(P, i)}

≤ ∑
P∈Pkn (X )∩E(δ)

L(kn)

∑
i=1

Pr{Xkn ∈ Tkn(P, i)}Pe,max(Tkn(P, i), PY|X)

≤ ∑
P∈Pkn (X )∩E(δ)

L(kn)

∑
i=1

Pr{Xkn ∈ Tkn(P, i)}Pe,max(πi(C ′kn
(P)), PY|X)

= ∑
P∈Pkn (X )∩E(δ)

L(kn)

∑
i=1

Pr{Xkn ∈ Tkn(P, i)}Pe,max(Cn, PY|X)

≤ Pe,max(Cn, PY|X),
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which implies

lim sup
n→∞

− 1
kn

log Pe(ϕkn , PXY) ≥ lim sup
n→∞

− 1
kn

log Pe,max(Cn, PY|X)

≥
E(PX , PY|X , H(PX)− R)− δ

(1 + δ)2 . (30)

In view of (29), (30), and the fact that δ > 0 is arbitrary, we must have Ev(PXY, R) ≥
E(PX , PY|X , H(PX)− R) (cf. Definition 4).

Now we proceed to show that Ev(PXY, R) ≤ E(PX, PY|X, H(PX)− R). The main idea is that one
can extract a constant composition code of type approximately PX and rate approximately H(X)− R
or greater from a given variable-rate Slepian-Wolf code ϕn(·) of rate approximately R such that the
average decoding error probability of this constant composition code over channel PY|X is bounded
from above by γPe(ϕn, PXY), where γ is a constant that does not depend on n.

By Definition 4, for any δ > 0, there exists a sequence of variable-rate Slepian-Wolf codes {ϕn}
such that

lim sup
n→∞

R(ϕn, PXY) ≤ R + δ, (31)

lim sup
n→∞

− 1
n

log Pe(ϕn, PXY) ≥ Ev(PXY, R)− δ. (32)

Suppose ϕn(·) induces a partition of Tn(P), P ∈ Pn(X ), into Nn(P) disjoint subsets
Tn(P, 1), · · · , Tn(P, Nn(P)). Here the partition is defined as follows: ϕn(xn) = ϕn(x̃n) if xn, x̃n ∈
Tn(P, i) for some i, and ϕn(xn) 6= ϕn(x̃n) if xn ∈ Tn(P, i), x̃n ∈ Tn(P, j) for i 6= j. Let

r(Tn(P)) =
1

n log2 e
E[l(ϕn(Xn))|Xn ∈ Tn(P)], P ∈ Pn(X ).

It follows from the source coding theorem that

r(Tn(P)) ≥ 1
n

Nn(P)

∑
i=1

|Tn(P, i)|
|Tn(P)| log

|Tn(P)|
|Tn(P, i)| . (33)

Define

Fn(δ) =

{
(P, i) :

1
n

log
|Tn(P)|
|Tn(P, i)| ≤ R + 2δ, P ∈ Pn(X ), i = 1, 2, · · · , Nn(P)

}
,

F c
n(δ) = {(P, i) /∈ Fn(δ) : P ∈ Pn(X ), i = 1, 2, · · · , Nn(P)} ,

Gn(γ) =
{
(P, i) : Pr{X̂n 6= Xn|Xn ∈ Tn(P, i)} ≤ γPe(ϕn, PXY), P ∈ Pn(X ), i = 1, 2, · · · , Nn(P)

}
,

Gc
n(γ) = {(P, i) /∈ Gn(γ) : P ∈ Pn(X ), i = 1, 2, · · · , Nn(P)} ,

where

γ >
R + 2δ

δ
. (34)

Note that

R(ϕn, PXY) = ∑
P∈Pn(X )

Pr{Xn ∈ Tn(P)}r(Tn(P))

≥ 1
n ∑

P∈Pn(X )

Nn(P)

∑
i=1

Pr{Xn ∈ Tn(P, i)} log
|Tn(P)|
|Tn(P, i)| (35)
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≥ 1
n ∑

(P,i)∈F c
n(δ)

Pr{Xn ∈ Tn(P, i)} log
|Tn(P)|
|Tn(P, i)|

≥ (R + 2δ) ∑
(P,i)∈F c

n(δ)

Pr{Xn ∈ Tn(P, i)}, (36)

where (35) is due to (33). Combing (31) and (36) yields

lim sup
n→∞

∑
(P,i)∈F c

n(δ)

Pr{Xn ∈ Tn(P, i)} ≤ R + δ

R + 2δ
. (37)

Moreover, we have

∑
(P,i)∈Gc

n(γ)

Pr{Xn ∈ Tn(P, i)} ≤ 1
γ

(38)

since otherwise

Pe(ϕn, PXY) = ∑
P∈Pn(X )

Nn(P)

∑
i=1

Pr{Xn ∈ Tn(P, i)}Pr{X̂n 6= Xn|Xn ∈ Tn(P, i)}

≥ ∑
(P,i)∈Gc

n(γ)

Pr{Xn ∈ Tn(P, i)}Pr{X̂n 6= Xn|Xn ∈ Tn(P, i)}

> γPe(ϕn, PXY) ∑
(P,i)∈Gc

n(γ)

Pr{Xn ∈ Tn(P, i)}

≥ Pe(ϕn, PXY),

which is absurd.
Define

Sn(δ) =

{
P ∈ Pn(X ) : H(P) ≥ H(PX)− δ, max

x

P(x)
PX(x)

≤ 1 + δ

}
,

S c
n(δ) = Pn(X )\Sn(δ),

Dn(δ, γ) = {(P, i) : (P, i) ∈ Fn(δ) ∩ Gn(γ), P ∈ Sn(δ)} ,

Dc
n(δ, γ) = {(P, i) /∈ Dn(δ, γ) : P ∈ Pn(X ), i = 1, 2, · · · , Nn(P)} .

It follows from the weak law of large numbers that

lim
n→∞ ∑

P∈S c
n(δ)

Pr{Xn ∈ Tn(P)} = 0. (39)

We have

lim inf
n→∞ ∑

(P,i)∈Dn(δ,γ)
Pr{Xn ∈ Tn(P, i)}

= lim inf
n→∞

1− ∑
(P,i)∈Dc

n(δ,γ)
Pr{Xn ∈ Tn(P, i)}


≥ lim inf

n→∞

1− ∑
(P,i)∈F c

n(δ)

Pr{Xn ∈ Tn(P, i)} − ∑
(P,i)∈Gc

n(γ)

Pr{Xn ∈ Tn(P, i)}

− ∑
P∈S c

n(δ)

Pr{Xn ∈ Tn(P)}


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≥ 1− R + δ

R + 2δ
− 1

γ
(40)

> 0, (41)

where (40) is due to (37)– (39), and (41) is due to (34). Therefore,Dn(δ, γ) is non-empty for all sufficiently
large n. Pick an arbitrary (P∗n , i∗) from Dn(δ, γ) for each sufficiently large n. We can construct a
constant composition code Cmn of length mn = d(1 + δ)ne and type Pmn for some Pmn ∈ Pmn(X ) by
concatenating a fixed sequence in Xmn−n to each sequence in Tn(P∗n , i∗) such that

lim
n→∞

‖Pmn − PX‖ = 0. (42)

Note that
lim inf

n→∞
R(Cmn) = lim inf

n→∞
1

mn
log |Tn(P∗n , i∗)|

≥ lim inf
n→∞

n
mn

[
1
n log |Tn(P∗n )| − R− 2δ

]
≥ H(PX)−R−3δ

1+δ .

(43)

Moreover, since

Pe(Cmn , PY|X) = Pr{X̂n 6= Xn|Xn ∈ Tn(P∗n , i∗)} ≤ γPe(ϕn, PXY),

it follows from (32) that

lim sup
n→∞

− 1
mn

log Pe(Cmn , PY|X) ≥
Ev(PXY, R)− δ

1 + δ
. (44)

In view of (42)–(44) and the fact that δ > 0 is arbitrary, we must have Ev(PXY, R) ≤
E(PX , PY|X , H(PX)− R) (cf. Definition 2). The proof is complete.

The following result is an immediate consequence of Theorem 1 and Proposition 4.

Corollary 1. Define

Ev,ex(PXY, R) = Eex(PX , PY|X , H(PX)− R),

Ev,rc(PXY, R) = Erc(PX , PY|X , H(PX)− R),

Ev,sp(PXY, R) = Esp(PX , PY|X , H(PX)− R).

We have

1. Ev(PXY, R) ≥ max{Ev,ex(PXY, R), Ev,rc(PXY, R)};
2. Ev(PXY, R) ≤ Ev,sp(PXY, R) with the possible exception of R = H(PX)− R∞

sp(PX , PY|X) at which point
the inequality not necessarily holds.

Remark 5.

1. We have Ev(PXY, R) = ∞ for R > H(PX)− R∞
ex(PX, PY|X), and Ev(PXY, R) < ∞ for R < H(PX)−

R∞
sp(PX, PY|X). Therefore, H(PX) − R∞

ex(PX, PY|X) and H(PX) − R∞
sp(PX, PY|X) are respectively the

upper bound and the lower bound on the zero-error rate of variable-rate Slepian-Wolf coding.
2. In view of (11), we have

Ev(PXY, R) = Ev,sp(PXY, R) = Esp(PX , PY|X , H(PX)− R)
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for R ∈ [H(X|Y), H(PX)− Rcr(PX , PY|X)]. Note that

Ev,sp(PXY, R) ≥ E f ,sp(PXY, R) ≥ E f (PXY, R),

where the first inequality is strict unless the minimum in (20) is achieved at QX = PX , (i.e., PX(ρ) = PX ,
where PX(ρ) is the marginal distribution of X(ρ) induced by PY(ρ) and PX(ρ) |Y(ρ) in (21) and (22)).
Therefore, variable-rate Slepian-Wolf coding can outperform fixed-rate Slepian-Wolf coding in terms
of rate-error tradeoff.

For R > H(PX) − Rcr(PX, PY|X), it is possible to obtain upper bounds on Ev(PXY, R) that are
tighter than Ev,sp(PXY, R). Let Eex(PY|X , R) and Esp(PY|X , R) be respectively the expurgated exponent
and the sphere packing exponent of channel PY|X . The straight-line exponent Esl(PY|X , R) of channel
PY|X [10] is the smallest linear function of R which touches the curve Esp(PY|X , R) and also satisfies

Esl(PY|X , 0) = Eex(PY|X , 0),

where Eex(PY|X, 0) is assumed to be finite. Let Rsl(PY|X) be the point at which Esl(PY|X, R) and
Esp(PY|X, R) coincide. It is well known [10] that E(PY|X, R) ≤ Esl(PY|X, R) for R ∈ (0, Rsl(PY|X)].
Since E(PX , PY|X , R) ≤ E(PY|X , R), it follows from Theorem 1 that

Ev(PXY, R) ≤ Esl(PY|X , H(PX)− R)

for R ∈ [max{H(PX)− Rsl(PY|X), 0}, H(PX)).
Note that the straight-line exponent holds for arbitrary block codes; one can obtain

further improvement at high rates by leveraging bounds tailored to constant composition codes.
Let E∗ex(QX , PY|X , 0) be the concave upper envelope of Eex(QX , PY|X , 0) considered as a function of QX .
In view of ([7], Exercise 5.21), we have

E(QX , PY|X , R) ≤ E∗ex(QX , PY|X , 0)

for any QX ∈ P(X ) and R > 0. Now it follows from Theorem 1 that

Ev(PXY, R) ≤ E∗ex(PX , PY|X , 0)

for R < H(PX).
The following theorem provides the second order expansion of Ev(PXY, R) at the Slepian-Wolf limit.

Theorem 2. Assuming Rcr(PX, PX|Y) < I(PX, PY|X) (see Proposition 1 for the necessary and sufficient
condition), we have

lim
r↓0

Ev(PXY, H(X|Y) + r)
r2 =

1
2

∑
x,y

PXY(x, y)τ2(x, y)−∑
x

PX(x)

(
∑
y

τ(x, y)PY|X(y|x)
)2
−1

,

where τ(x, y) = log PY(y)− log PY|X(y|x).

Remark 6. If Rcr(PX, PY|X) = I(PX, PY|X), then we have Ev,rc(PXY, R) = R− H(X|Y) for R ≥ H(X|Y),
which implies

lim
r↓0

Ev(PXY, H(X|Y) + r)
r2 = ∞.
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It is also worth noting that the second order expansion of Ev(PXY, R) at the Slepian-Wolf limit
yields the redundancy-error tradeoff constant of variable-rate Slepian-Wolf coding derived in [18].

Proof. Since Rcr(PX, PX|Y) < I(PX; PY|X), it follows that H(X|Y) + r ∈ (H(X|Y), H(PX)− Rcr(PX, PY|X))

when r (r > 0) is sufficiently close to zero. In this case, we have

Ev(PXY, H(X|Y) + r)
r2 =

Esp(PX, PY|X, I(PX, PY|X)− r)
r2

= min
QY|X :I(PX ,QY|X)≤I(PX ,PY|X)−r

D(QY|X‖PY|X|PX)

r2

= min
QY|X :I(PX ,QY|X)=I(PX ,PY|X)−r

D(QY|X‖PY|X|PX)

r2 ,

where the last equality follows from the fact that Esp(PX, PY|X, R) is a strictly decreasing convex function
of R for R ∈ (R∞

sp(PX, PY|X), I(PX, PY|X)].
Let ∆(x, y) = QY|X(y|x)− PY|X(y|x) for x ∈ X , y ∈ Y . Let ∆(y) = ∑x PX(x)∆(x, y) for y ∈ Y .

By the Taylor expansion,

I(PX, QY|X) = ∑
x,y

PX(x)(PY|X(y|x) + ∆(x, y)) log(PY|X(y|x) + ∆(x, y))

−∑
y
(PY(y) + ∆(y)) log(PY(y) + ∆(y))

= ∑
x,y

PX(x)(PY|X(y|x) + ∆(x, y))

(
log PY|X(y|x) +

∆(x, y)
PY|X(y|x)

+ o(∆(x, y))

)

−∑
y
(PY(y) + ∆(y))

(
log PY(y) +

∆(y)
PY(y)

+ o(∆(y))
)

= I(PX, PY|X)−∑
y
(∆(y) + ∆(y) log PY(y) + o(∆y))

+∑
x,y

PX(x)(∆(x, y) + ∆(x, y) log PY|X(y|x) + o(∆(x, y)))

and

D(QY|X‖PY|X|PX) = ∑
x,y

PX(x)QY|X(y|x) log
QY|X(y|x)
PY|X(y|x)

= ∑
x,y

PX(x)(PY|X(y|x) + ∆(x, y)) log

(
1+

∆(x, y)
PY|X(y|x)

)

= ∑
x,y

PX(x)(PY|X(y|x) + ∆(x, y))

(
∆(x, y)

PY|X(y|x)
− ∆2(x, y)

2P2
Y|X(y|x)

+ o(∆2(x, y))

)

= ∑
x,y

PX(x)

(
∆2(x, y)

2PY|X(y|x)
+ o(∆2(x, y))

)
.

Here f (z) = o(z) means limz→0
f (z)

z = 0.
As r ↓ 0, we have ∆(y) → 0, ∆(x, y) → 0 for all x ∈ X , y ∈ Y . Therefore, by ignoring the high

order terms which do not affect the limit, we get

lim
r↓0

Ev(PXY, H(X|Y) + r)
r2 = lim

r↓0
min ∑

x,y

PX(x)∆2(x, y)
2PY|X(y|x)r2 , (45)

where the minimization is over ∆(x, y) (x ∈ X , y ∈ Y) subject to the constraints
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1. ∑y ∆(x, y) = 0 for all x ∈ X ,

2. ∑x,y PX(x)τ(x, y)∆(x, y) = r.

Introduce the Lagrange multipliers α(x) (x ∈ X ) and β for these constraints, and define

G = ∑
x,y

PX(x)∆2(x, y)
2PY|X(y|x)

−∑
x,y

α(x)∆(x, y)− β ∑
x,y

PX(x)τ(x, y)∆(x, y).

The Karush-Kuhn-Tucker conditions yield

∂G
∂∆(x, y)

= −α(x)− βPX(x)τ(x, y) +
PX(x)∆(x, y)

PY|X(y|x)
= 0, x ∈ X , y ∈ Y .

Therefore, we have

∆(x, y) = βτ(x, y)PY|X(y|x) +
PY|X(y|x)

PX(x)
α(x). (46)

Substituting (46) into constraint 1, we obtain

α(x) = −βPX(x)∑
y

τ(x, y)PY|X(y|x),

which, together with (46), yields

∆(x, y) = βτ(x, y)PY|X(y|x)− βPY|X(y|x)∑
y′

τ(x, y′)PY|X(y
′|x). (47)

Therefore, we have

∑
x,y

PX(x)∆2(x, y)
2PY|X(y|x)

=
β2

2 ∑
x,y

PXY(x, y)

τ(x, y)−∑
y′

τ(x, y′)PY|X(y
′|x)

2

=
β2

2 ∑
x,y

PXY(x, y)

τ2(x, y)− 2τ(x, y)∑
y′

τ(x, y′)PY|X(y
′|x) +

∑
y′

τ(x, y′)PY|X(y
′|x)

2


=
β2

2

∑
x,y

PXY(x, y)τ2(x, y)−∑
x

PX(x)

(
∑
y

τ(x, y)PY|X(y|x)
)2
 . (48)

Constraint 2 and (47) together yield

r2

β2 =
1
β2

(
∑
x,y

PX(x)τ(x, y)∆(x, y)

)2

=

∑
x,y

PX(x)τ(x, y)

τ(x, y)PY|X(y|x)− PY|X(y|x)∑
y′

τ(x, y′)PY|X(y
′|x)

2

=

∑
x,y

PXY(x, y)τ2(x, y)−∑
x

PX(x)

(
∑
y

τ(x, y)PY|X(y|x)
)2
2

. (49)
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The proof is complete by substituting (48) and (49) back into (45).

4. Variable-Rate Slepian-Wolf Coding: Below the Slepian-Wolf Limit

Definition 5. Given a joint probability distribution PXY, we say that a correct decoding exponent Ec ≥ 0 is
achievable with variable-rate Slepian-Wolf codes at rate R if for any δ > 0, there exists a sequence of variable-rate
Slepian-Wolf codes {ϕn} such that

lim sup
n→∞

R(ϕn, PXY) ≤ R + δ,

lim inf
n→∞

− 1
n

log Pc(ϕn, PXY) ≤ Ec + δ.

The smallest achievable correct decoding exponent at rate R is denoted by Ec
v(PXY, R).

In view of Theorem 1, it is tempting to conjecture that Ec
v(PXY, R) = Ec(PX, PY|X, H(PX)− R).

It turns out this is not true. We shall show that Ec
v(PXY, R) = 0 for all R. Actually we have a stronger

result—the correct decoding probability of variable-rate Slepian-Wolf coding can be bounded away
from zero even when R < H(X|Y). This is in sharp contrast with fixed-rate Slepian-Wolf coding
for which the correct decoding probability decays to zero exponentially fast if the rate is below the
Slepian-Wolf limit. To make the statement more precise, we need the following definition.

Definition 6. Given a joint probability distribution PXY, we say that a correct decoding probability Pc,v(PXY, R)
is achievable with variable-rate Slepian-Wolf codes at rate R if for any δ > 0, there exists a sequence of
variable-rate Slepian-Wolf codes {ϕn} such that

lim sup
n→∞

R(ϕn, PXY) ≤ R + δ,

lim sup
n→∞

Pc(ϕn, PXY) ≥ Pc,v(PXY, R)− δ.

The largest achievable correct decoding probability at rate R is denoted by Pmax
c,v (PXY, R).

Theorem 3. Pmax
c,v (PXY, R) = R

H(X|Y) for R ∈ (0, H(X|Y)].

Remark 7. It is obvious that Pmax
c,v (PXY, R) = 1 for R > H(X|Y). Moreover, since Pmax

c,v (PXY, R) is a
monotonically increasing function of R, it follows that Pmax

c,v (PXY, 0) = 0.

Proof. The intuition underlying the proof is as follows. Assume the rate is below the Slepian-Wolf
limit, i.e., R < H(X|Y). For each type P in the neighborhood of PX, the rate allocated to the type class
Tn(P) should be no less than H(X|Y) in order to correctly decode the sequences in Tn(P). However,
since almost all the probability are captured by the type classes whose types are in the neighborhood
of PX, there is no enough rate to protect all of them. Note that if the rate is evenly allocated among
these type classes, none of them can get enough rate; consequently, the correct decoding probability
goes to zero. A good way is to protect only a portion of them to accumulate enough rate. Specifically,
we can protect R

H(X|Y) fraction of these type classes so that the rate allocated to each of them is about
H(X|Y) and leave the remaining type classes unprotected. It turns out this strategy achieves the
maximum correct decoding probability as the block length n goes to infinity. Somewhat interestingly,
although Ec

v(PXY, R) 6= Ec(PX, PY|X, H(PX)− R), the function Ec(PX, PY|X, ·) does play a fundamental
role in establishing the correct result.

The proof is divided into two parts. Firstly, we shall show that Pmax
c,v (PXY, R) ≥ R

H(X|Y) .
For any ε > 0, define

U(ε) = {P ∈ P(X ) : ‖P− PX‖ ≤ ε} .
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Since PX(x) > 0 for all x ∈ X , we can choose ε small enough so that

qmin(ε) , min
P∈U(ε),x∈X

P(x) > 0.

Using Stirling’s approximation

√
2πm

(m
e

)m
e

1
12m+1 < m! <

√
2πm

(m
e

)m
e

1
12m ,

we have, for any P ∈ U(ε)∩Pn(X ),

Pr(Xn ∈ Tn(P)) =
n!

∏x(nP(x))! ∏
x
[PX(x)]

nP(x)

≤
√

2πne
1

12n

∏x
√

2πnP(x)
e−nD(P‖PX)

≤
√

2πe
1

12n

∏x
√

2πP(x)
n−

|X |−1
2

≤
√

2πe
1

12n

∏x
√

2πqmin(ε)
n−

|X |−1
2 ,

which implies that Pr(Xn ∈ Tn(P)) converges uniformly to zero as n→ ∞ for all P ∈ U(ε)∩Pn(X ).
Moreover, it follows from the weak law of large numbers that

lim
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr(Xn ∈ Tn(P)) = 1.

Therefore, for any δ > 0, R ∈ (0, H(X|Y)], and sufficiently large n, we can find a set Sn ⊆
U(ε)∩Pn(X ) such that

R
H(X|Y) − δ ≤ ∑

P∈Sn

Pr(Xn ∈ Tn(P)) ≤
R

H(X|Y) .

Now consider a sequence of variable-rate Slepian-Wolf codes {ϕn(·)} specified as follows.

1. The encoder sends of type of Xn to the decoder, where each type is uniquely represented by a
binary sequence of length dlog2 |Pn(X )|e.

2. For each P ∈ Sn, the encoder partitions the type class Tn(P) into Ln subsets
Tn(P, 1),Tn(P, 2), · · · ,Tn(P, Ln). If Xn ∈ Tn(P) for some P ∈ Sn, the encoder finds the subset
Tn(P, i∗) that contains Xn and sends the index i∗ to the decoder, where each index in {1, 2, · · · , Ln}
is uniquely represented by a binary sequence of length dlog2 Lne.

3. The remaining type classes are left uncoded.

Specifically, we let

Ln =
⌈(

2(n + 1)|X |
2
en(H(X|Y)+δ)

)⌉
.

It follows from ([8], Theorem 2) that for each P ∈ Sn, it is possible to partition the type class Tn(P)
into Ln disjoint subsets Tn(P, 1),Tn(P, 2), · · · ,Tn(P, Ln) so that

− 1
n

log Pr(X̂n 6= Xn|Xn ∈ Tn(P)) ≥ min
QX∈U(ε)

[
Erc(QX, PY|X, H(QX)− H(X|Y)− δ)− ε

]
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uniformly for all P ∈ Sn when n is sufficiently large. In view of the fact that Erc(PX, PY|X, I(PX, PY|X)−
δ) > 0 and that Erc(QX, PY|X, R) as a function of the pair (QX, R) is uniformly equicontinuous, we have

min
QX∈U(ε)

[
Erc(QX, PY|X, H(QX)− H(X|Y)− δ)− ε

]
, κ1 > 0

for sufficiently small ε.
For this sequence of constructed variable-rate Slepian-wolf codes {ϕn(·)}, it can be readily

verified that

lim sup
n→∞

R(ϕn, PXY) = lim sup
n→∞

1
n log2 e

[
dlog2 |Pn(X )|e+ ∑

P∈Sn

Pr{Xn ∈ Tn(P)}dlog2 Lne
]

≤ R
H(X|Y) (H(X|Y) + δ)

and

lim sup
n→∞

Pc(ϕn, R) ≥ lim sup
n→∞

∑
P∈Sn

Pr{Xn ∈ Tn(P)}
[
1− Pr{X̂n 6= Xn|Xn ∈ Tn(P)}

]
≥ lim sup

n→∞
∑

P∈Sn

Pr{Xn ∈ Tn(P)}
(
1− e−nκ1

)
≥ R

H(X|Y) − δ.

Since δ > 0 is arbitrary, it follows from Definition 6 that Pmax
c,v (PXY, R) ≥ R

H(X|Y) .
Now we proceed to prove the other direction. It follows from Definition 6 that for any δ > 0, there

exists a sequence of variable-rate Slepian-Wolf codes {ϕn(·)} with

lim sup
n→∞

R(ϕn, PXY) ≤ R + δ,

lim sup
n→∞

Pc(ϕn, PXY) ≥ Pmax
c,v (R)− δ.

Recall the definition of Tn(P, 1), · · · ,Tn(P, Nn(P)) as well as r(Tn(P)) in the proof of Theorem 1.
For P ∈ Pn(X ), define

In(P, δ) =

{
i :

1
n

log
|Tn(P)|
|Tn(P, i)| ≤ H(X|Y)− δ, i = 1, 2, · · · , Nn(P)

}
,

Ic
n(P, δ) =

{
i :

1
n

log
|Tn(P)|
|Tn(P, i)| > H(X|Y)− δ, i = 1, 2, · · · , Nn(P)

}
.

Note that

∑
i∈In(P,δ)

|Tn(P, i)|
|Tn(P)|

≥ 1− r(Tn(P))
H(X|Y)− δ

since

r(Tn(P)) ≥
1
n

Nn(P)

∑
i=1

|Tn(P, i)|
|Tn(P)|

log
|Tn(P)|
|Tn(P, i)| (50)

≥ 1
n ∑

i∈Ic
n(P,δ)

|Tn(P, i)|
|Tn(P)|

log
|Tn(P)|
|Tn(P, i)|

≥ (H(X|Y)− δ) ∑
i∈Ic

n(P,δ)

|Tn(P, i)|
|Tn(P)|

,
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where (50) is due to (33).
Each Tn(P, i) can be viewed as a constant composition code of type P and we have

Pr{X̂n = Xn|Xn ∈ Tn(P, i)} = Pc(Tn(P, i), PY|X).

Note that for P ∈ U(ε)∩Pn(X ) and i ∈ In(P, δ),

1
n

log |Tn(P, i)| ≥ 1
n

log |Tn(P)| − H(X|Y) + δ

≥ H(P)− H(X|Y) + δ− |X | log(n + 1)
n

.

Therefore, it follows from ([9], Lemma 5) that

− 1
n

log Pc(Tn(P, i), PY|X) ≥ min
QX∈U(ε)

Ec(QX, PY|X, H(QX)− H(X|Y) + δ− ε)− ε

uniformly for all P ∈ U(ε)∩Pn(X ) and i ∈ In(P, δ) when n is sufficiently large. In view of the fact that
Ec(PX, PY|X, I(PX, PY|X) + δ) > 0 and that Ec(QX, PY|X, R) as a function of the pair (QX, R) is uniformly
equicontinuous, we have

min
QX∈U(ε)

[
Ec(QX, PY|X, H(QX)− H(X|Y) + δ− ε)− ε

]
, κ2 > 0

for sufficiently small ε.
Now it is easy to see that

lim inf
n→∞

Pe(ϕn, PXY)

≥ lim inf
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr{Xn ∈ Tn(P)} ∑

i∈In(P,δ)

|Tn(P, i)|
|Tn(P)|

(
1− Pr{X̂n = Xn|Xn ∈ Tn(P, i)}

)
≥ lim inf

n→∞ ∑
P∈U(ε)∩Pn(X )

Pr{Xn ∈ Tn(P)} ∑
i∈In(P,δ)

|Tn(P, i)|
|Tn(P)|

(1− e−nκ2)

≥ lim inf
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr{Xn ∈ Tn(P)}

(
1− r(Tn(P))

H(X|Y)− δ

)
(1− e−nκ2)

≥ lim inf
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr{Xn ∈ Tn(P)}(1− e−nκ2)

− lim sup
n→∞

∑
P∈U(ε)∩Pn(X )

Pr{Xn ∈ Tn(P)}
r(Tn(P))

H(X|Y)− δ
(1− e−nκ2)

≥ lim inf
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr{Xn ∈ Tn(P)}(1− e−nκ2)

− lim sup
n→∞

∑
P∈Pn(X )

Pr{Xn ∈ Tn(P)}
r(Tn(P))

H(X|Y)− δ
(1− e−nκ2)

= lim inf
n→∞ ∑

P∈U(ε)∩Pn(X )
Pr{Xn ∈ Tn(P)}(1− e−nκ2)

− lim sup
n→∞

R(ϕn, PXY)

H(X|Y)− δ
(1− e−nκ2)

= 1− R + δ

H(X|Y)− δ
,
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which implies

lim sup
n→∞

Pc(ϕn, PXY) ≤
R + δ

H(X|Y)− δ
.

Therefore, we have

Pmax
c,v (PXY, R)− δ ≤ R + δ

H(X|Y)− δ
.

Since δ > 0 is arbitrary, this completes the proof.

5. Example

Consider the joint distribution PXY over Z2 ×Z2 with PX|Y(1|0) = PX|Y(0|1) = p and PY(0) = τ.
We assume p ∈ (0, 1

2), τ ∈ (0, 1
2 ]. It is easy to compute that

PX(0) = 1− PX(1) = τ(1− p) + (1− τ)p,

PY|X(1|0) = 1− PY|X(0|0) =
(1− τ)p

τ(1− p) + (1− τ)p
,

PY|X(0|1) = 1− PY|X(1|1) =
τp

τp + (1− τ)(1− p))
.

For this joint distribution, we have H(X|Y) = Hb(p), where Hb(·) is the binary entropy function
(i.e., Hb(p) = −p log p− (1− p) log(1− p)). Given R ∈ [0, log 2], let q be the unique number satisfying
Hb(q) = R and q ≤ 1

2 . It can be verified that

E f ,sp(PXY, R) = D(q‖p), R ∈ [Hb(p), log 2],

Ec
f (PXY, R) = D(q‖p), R ∈ [0, Hb(p)].

Note that

Eex(QX, PY|X, 0) = −∑
x,x′

QX(x)QX(x′) log

[
∑
y

√
PY|X(y|x)PY|X(y|x′)

]

= −2QX(0)QX(1) log

[
∑
y

√
PY|X(y|0)PY|X(y|1)

]
,

which is a concave function of QX. Therefore,

E∗ex(PX, PY|X, 0) = Eex(PX, PY|X, 0).

Moreover, we have

Eex(PY|X, 0) = max
QX

Eex(QX, PY|X, 0)

= −1
2

log

[
∑
y

√
PY|X(y|0)PY|X(y|1)

]
.

It is easy to show that

Ev,sp(PXY, H(PX)) = Esp(PX, PX|Y, 0)

= min
QY

∑
x

PX(x)∑
y

QY(y) log
QY(y)

PY|X(y|x)
,
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where the minimizer Q∗Y is given by

Q∗Y(y) =
∏x PY|X(y|x)PX(x)

∑y′ ∏x PY|X(y′|x)PX(x)
, y ∈ Y .

Define

E f ,er(PXY, R) = max{E f ,ex(PXY, R), E f ,rc(PXY, R)},
Ev,er(PXY, R) = max{Ev,ex(PXY, R), Ev,rc(PXY, R)}.

We have

E f (PXY, R) ≥ E f ,er(PXY, R),

Ev(PXY, R) ≥ Ev,er(PXY, R).

It can be seen from Figure 2 that the achievable error exponent Ev,er(PXY, R) of variable-rate
Slepian-Wolf coding can completely dominate the sphere packing exponent E f ,sp(PXY, R) of
fixed-rate Slepian-Wolf coding. The gain of variable-rate coding gradually diminishes as τ → 1

2
(see Figures 3 and 4).
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Figure 2. p = 0.05, τ = 0.12.
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Figure 3. p = 0.05, τ = 0.35.
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Figure 4. p = 0.05, τ = 0.50.

6. Concluding Remarks

We have studied the reliability function of variable-rate Slepian-Wolf coding. An intimate connection
between variable-rate Slepian-Wolf codes and constant composition codes has been revealed. It is shown
that variable-rate Slepian-Wolf coding can outperform fixed-rate Slepian-Wolf coding in terms of
rate-error tradeoff. Finally, we would like to mention that Theorem 1 has been generalized by
Weinberger and Merhav in their recent paper on the optimal tradeoff between the error exponent and
the excess-rate exponent of variable-rate Slepian-Wolf coding [19].
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Appendix A. Proof of Proposition 1

In view of (7) and (11), we have Rcr(QX , WY|X) = I(QX , WY|X) if and only if the minimum of the
convex optimization problem

min
VY|X

D(VY|X‖WY|X |QX) + I(QX , VY|X) (A1)

is achieved at VY|X = WY|X. Let V∗Y|X be a minimizer to the above optimization problem. Note that
for x, y such that QX(x)WY|X(y|x) = 0, there is no loss of generality in setting V∗Y|X(y|x) = WY|X(y|x).
Let A = {x ∈ X : QX(x) > 0} and Bx = {y ∈ Y : WY|X(y|x) > 0} for x ∈ A. We can rewrite (A1) in
the following equivalent form:

min
VY|X(y|x):x∈A,y∈Bx

∑
x∈A,y∈Bx

QX(x)VY|X(y|x) log
V2

Y|X(y|x)
WY|X(y|x)∑x′∈A QX(x′)VY|X(y|x′)

subject to

VY|X(y|x) ≥ 0 for all x ∈ A, y ∈ Bx,

∑
y∈Bx

VY|X(y|x) = 1 for all x ∈ A.
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Define

G′ = ∑
x∈A,y∈Bx

QX(x)VY|X(y|x) log
V2

Y|X(y|x)
WY|X(y|x)∑x′∈A QX(x′)VY|X(y|x′)

− ∑
x∈A,y∈Bx

α(x, y)VY|X(y|x)− ∑
x∈A,y∈Bx

β(x)VY|X(y|x),

where α(x, y) ∈ R+ (x ∈ A, y ∈ Bx) and β(x) ∈ R (x ∈ A). The Karush-Kuhn-Tucker conditions yield

∂G′

∂VY|X(y∗|x∗)

∣∣∣∣∣
VY|X(y∗ |x∗)=V∗Y|X(y

∗ |x∗)
= 2QX(x∗) log V∗Y|X(y

∗|x∗) + QX(x∗)−QX(x∗) log WY|X(y
∗|x∗)

−QX(x∗) log ∑
x′∈A

QX(x′)V∗Y|X(y
∗|x′)− α(x∗, y∗)− β(x∗)

= 0 for all x∗ ∈ A, y∗ ∈ Bx∗ ,

V∗Y|X(y
∗|x∗) ≥ 0 for all x∗ ∈ A, y∗ ∈ Bx∗ ,

∑
y∗∈Bx∗

V∗Y|X(y
∗|x∗) = 1 for all x∗ ∈ A,

α(x∗, y∗)V∗Y|X(y
∗|x∗) = 0 for all x∗ ∈ A, y∗ ∈ Bx∗ .

By the complementary slackness conditions (i.e., V∗Y|X(y
∗|x∗) > 0 ⇒ α(x∗, y∗) = 0), we have

V∗Y|X = WY|X if and only if for all x∗ ∈ A, y∗ ∈ Bx∗ ,

QX(x∗) log WY|X(y
∗|x∗) + QX(x∗)−QX(x∗) log ∑

x′∈A
QX(x′)WY|X(y

∗|x′)− β(x∗) = 0,

i.e., the value of

WY|X(y|x)
∑x′ QX(x′)WY|X(y|x′)

does not depend on y for all x, y such that QX(x)WY|X(y|x) > 0.

Appendix B. Proof of Proposition 4

1. It is known ([7], Exercise 5.17) that for every R > 0, δ > 0, and P ∈ Pn(X ) there exists a constant
composition code Cn ⊆ Tn(P) such that

R(Cn) ≥ R− δ,

− 1
n

log Pe,max(Cn, WY|X) ≥ Eex(P, WY|X , R)− δ

whenever n ≥ n0(|X |, |Y|, δ). Let Pn be a sequence of types with Pn ∈ Pn(X ) and

lim
n→∞

‖Pn −QX‖ = 0.

Define

V∗n = arg min

[
∑
x,x̃

Pn(x)Vn(x̃|x)dWY|X (x, x̃) + I(Pn, Vn)− R

]
,
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where the minimization is over Vn : X → X subject to the constraints

∑
x

Pn(x)Vn(x̃|x) = Pn(x̃) for all x̃ ∈ X ,

I(Pn, Vn) ≤ R.

Note that {V∗n }must contain a converging subsequence {V∗nk
}. Define

V∗ = lim
k→∞

V∗nk
.

It is easy to verify that

∑
x∈X

QX(x)V∗(x̃|x) = lim
k→∞

∑
x∈X

Pnk (x)V∗nk
(x̃|x)

= lim
k→∞

Pnk (x̃)

= QX(x̃) for all x̃ ∈ X ,

I(QX , V∗) = lim
k→∞

I(Pnk , V∗nk
)

≤ R.

Therefore, we have

lim sup
n→∞

Eex(Pn, WY|X , R)

≥ lim sup
k→∞

Eex(Pnk , WY|X , R)

= lim sup
k→∞

∑
x,x̃∈X

Pnk (x)V∗nk
(x̃|x)dWY|X (x, x̃) + I(Pnk , Vnk )− R

≥ ∑
x,x̃∈X

QX(x)V∗(x̃|x)dPY|X (x, x̃) + I(QX , V∗)− R

≥ Eex(QX , WY|X , R).

It is also known ([7], Theorem 5.2) that for every R > 0, δ > 0, and P ∈ Pn(X ) there exists a
constant composition code Cn ⊆ Tn(P) such that

R(Cn) ≥ R− δ,

− 1
n

log Pe,max(Cn, WY|X) ≥ Erc(P, WY|X , R)− δ

whenever n ≥ n0(|X |, |Y|, δ). So it can be readily shown that

E(QX , WY|X , R) ≥ Erc(QX , WY|X , R)

by invoking the fact that Erc(P, WY|X, R) as a function of the pair (P, R) is uniformly
equicontinuous ([7], Lemma 5.5). The proof is complete.

2. By Definition 2, for every R > 0, δ > 0 there exists a sequence of block channel codes {Cn} with
Cn ⊆ Tn(Pn) for some Pn ∈ Pn(X ) such that

lim
n→∞

‖Pn −QX‖ = 0,

lim inf
n→∞

R(Cn) ≥ R− δ,
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lim sup
n→∞

− 1
n

log Pe,max(Cn, WY|X) ≥ E(QX , WY|X , R)− δ. (A2)

For simplicity, we assume R(Cn) ≥ R− δ for all n. Now it follows from ([7], Theorem 5.3) that

− 1
n

log
[
2Pe,max(Cn, WY|X)

]
≤ Esp(Pn, WY|X , R− 2δ)(1 + δ) (A3)

whenever n ≥ n0(|X |, |Y|, δ). Let

V∗Y|X = arg min
VY|X :I(QX ,VY|X)≤R−3δ

D(VY|X‖WY|X |QX).

Without loss of generality, we can set V∗Y|X(·|x) = WY|X(·|x) for all x ∈ {x′ ∈ X : QX(x′) = 0}.
It is easy to see that there exists an ε > 0 such that

I(P, V∗Y|X) ≤ R− 2δ,

D(V∗Y|X‖WY|X |P) ≤ D(V∗Y|X‖WY|X |QX) + δ

for all P ∈ P(X ) with ‖P−QX‖ ≤ ε. Therefore, for all sufficiently large n,

Esp(Pn, WY|X , R− 2δ) = min
VY|X :I(Pn ,VY|X)≤R−2δ

D(VY|X‖WY|X |Pn)

≤ D(V∗Y|X‖WY|X |Pn)

≤ D(V∗Y|X‖WY|X |QX) + δ

= Esp(QX , WY|X , R− 3δ) + δ. (A4)

Combining (A2)–(A4), we get

E(QX , WY|X , R)− δ ≤ [Esp(QX , WY|X , R− 3δ) + δ](1 + δ).

In view of the fact that δ > 0 is arbitrary and that for fixed P and WY|X, Esp(P, WY|X, R) is a
decreasing continuous convex function of R in the interval where it is finite ([7], Lemma 5.4), the
proof is complete.

3. It is known ([9], Lemma 5) that every constant composition code Cn of common type P for some
P ∈ Pn(X ) and rate R(Cn) ≥ R + δ (with R > 0 and δ > 0) has

− 1
n

log Pc(Cn, WY|X) ≥ min
VY|X

[
D(VY|X‖WY|X |P) + |R− I(P, VY|X)|+

]
− δ

whenever n ≥ n0(|X |, |Y|, δ). Moreover, it is also known ([9], Lemma 2) ([7], Exercise 5.16) that
for every R > 0, δ > 0, and P ∈ Pn(X ) there exists a constant composition code Cn ⊆ Tn(P)
such that

R(Cn) ≥ R− δ,

− 1
n

log Pc(Cn, WY|X) ≤ min
VY|X

[
D(VY|X‖WY|X |P) + |R− I(P, VY|X)|+

]
+ δ

whenever n ≥ n0(|X |, |Y|, δ). In view of the fact that minVY|X [D(VY|X‖WY|X |P) +
|R− I(P, VY|X)|+] as a function of the pair (P, R) is uniformly equicontinuous, it can be readily
shown that
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Ec(QX , WY|X , R) = min
VY|X

[
D(VY|X‖WY|X |QX) + |R− I(P, VY|X)|+

]
.

The proof is complete.
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