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Abstract: We present a stylized model of controlled equilibration of a small system in a fluctuating
environment. We derive the optimal control equations steering in finite-time the system between
two equilibrium states. The corresponding thermodynamic transition is optimal in the sense that
it occurs at minimum entropy if the set of admissible controls is restricted by certain bounds on
the time derivatives of the protocols. We apply our equations to the engineered equilibration of an
optical trap considered in a recent proof of principle experiment. We also analyze an elementary
model of nucleation previously considered by Landauer to discuss the thermodynamic cost of one
bit of information erasure. We expect our model to be a useful benchmark for experiment design
as it exhibits the same integrability properties of well-known models of optimal mass transport by
a compressible velocity field.
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1. Introduction

An increasing number of applications in micro- and sub-micro-scale physics calls for the
development of general techniques for engineered finite-time equilibration of systems operating
in a thermally-fluctuating environment. Possible concrete examples are the design of nano-thermal
engines [1,2] or of micro-mechanical oscillators used for high precision timing or sensing of mass and
forces [3].

A recent experiment [4] exhibited the feasibility of driving a micro-system between two equilibria
over a control time several orders of magnitude faster than the natural equilibration time. The
system was a colloidal micro-sphere trapped in an optical potential. There is consensus that
non-equilibrium thermodynamics (see, e.g., [5]) of optically-trapped micron-sized beads is well
captured by Langevin–Smoluchowski equations [6]. In particular, the authors of [4] took care of
showing that it is accurate to conceptualize the outcome of their experiment as the evolution of
a Gaussian probability density according to a controlled Langevin–Smoluchowski dynamics with
gradient drift and constant diffusion coefficient. Finite time equilibration means that at the end of
the control horizon, the probability density is the solution of the stationary Fokker–Planck equation.
The experimental demonstration consisted of a compression of the confining potential. In such a case,
the protocol steering the equilibration process is specified by the choice of the time evolution of the
stiffness of the quadratic potential whose gradient yields the drift in the Langevin–Smoluchowski
equation. As a result, the set of admissible controls is infinite. The selection of the control in [4] was
then based on simplicity of implementation considerations.
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A compelling question is whether and how the selection of the protocol may stem from a notion
of optimal efficiency. A natural indicator of efficiency in finite-time thermodynamics is entropy
production. Transitions occurring at minimum entropy production set a lower bound in the Clausius
inequality. Optimal control of these transitions is, thus, equivalent to a refinement of the second law of
thermodynamics in the form of an equality.

In the Langevin–Smoluchowski framework, entropy production optimal control takes
a particularly simple form if states at the end of the transition are specified by sufficiently regular
probability densities [7]. Namely, the problem admits an exact mapping into the well-known
Monge–Kantorovich optimal mass transport [8]. This feature is particularly useful because the
dynamics of the Monge–Kantorovich problem is exactly solvable. Mass transport occurs along
free-streaming Lagrangian particle trajectories. These trajectories satisfy boundary conditions
determined by the map, called the Lagrangian map, transforming into each other the data of the
problem, the initial and the final probability densities. Rigorous mathematical results [9–11] preside
over the existence, qualitative properties and reconstruction algorithms for the Lagrangian map.

The aforementioned results cannot be directly applied to optimal protocols for engineered
equilibration. Optimal protocols in finite-time unavoidably attain minimum entropy by leaving the
end probability densities out of equilibrium. The qualitative reason is that optimization is carried over
the set of drifts sufficiently smooth to mimic all controllable degrees of freedom of the micro-system.
Controllable degrees of freedom are defined as those varying over typical time scales much slower
than the time scales of Brownian forces [12]. The set of admissible protocols defined in this way is
too large for optimal engineered equilibration. The set of admissible controls for equilibration must
take into account also extra constraints coming from the characteristic time scales of the forces acting
on the system. From the experimental slant, we expect these restrictions to be strongly contingent
on the nature and configuration of peripherals in the laboratory setup. From the theoretical point of
view, the self-consistence of Langevin–Smoluchowski modeling imposes a general restriction. The
time variation of drift fields controlling the dynamics must be slow in comparison to Brownian and
inertial forces.

In the present contribution, we propose a refinement of the entropy production optimal control
adapted to engineered equilibration. We do this by restricting the set of admissible controls to those
satisfying a non-holonomic constraint on accelerations. The constraint relates the bound on admissible
accelerations to the path-wise displacement of the system degrees of freedom across the control horizon.
Such displacement is a deterministic quantity, intrinsically stemming from the boundary conditions
inasmuch as we determine it from the Lagrangian map.

This choice of the constraint has several inherent advantages. It yields an intuitive hold on the
realizability of the optimal process. It also preserves the integrability properties of the optimal control
problem specifying the lower bound to the second law. This is so because the constraint allows us to
maintain protocols within the admissible set by exerting on them uniform accelerating or decelerating
forces. On the technical side, the optimal control problem can be handled by a direct application of
the Pontryagin maximum principle [13]. For the same reasons as for the refinement of the second
law [7], the resulting optimal control is of the deterministic type. This circumstance yields a technical
simplification, but it is not a necessary condition in view of extensions of our approach. We will return
to this point in the conclusions.

The structure of the paper is as follows. In Section 2 we briefly review the Langevin–Smoluchowski
approach to non-equilibrium thermodynamics [14]. This section can be skipped by readers familiar
with the topic. In Section 3, we introduce the problem of optimizing the entropy production.
In particular we explain its relation with the Schrödinger diffusion problem [15,16]. This relation,
already pointed out in [17], has recently attracted the attention of mathematicians and probabilists
interested in rigorous application of variational principles in hydrodynamics [18]. In Section 4,
we formulate the Pontryagin principle for our problem. Our main result follows in Section 5,
where we solve in explicit form the optimal protocols. Sections 6 and 7 are devoted to applications.
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In Section 6, we revisit the theoretical model of the experiment [4], the primary motivation of our
work. In Section 7, we apply our results to a stylized model of controlled nucleation obtained by
manipulating a double-well potential. Landauer and Bennett availed themselves of this model to
discuss the existence of an intrinsic thermodynamic cost of computing [19,20]. Optimal control of this
model has motivated in more recent years in several theoretical [21] and experimental works [22–24].

Finally, in Section 8, we compare the optimal control we found with those of [25]. This reference
applied a regularization technique coming from instanton calculus [26] to give a precise meaning to
otherwise ill-defined problems in non-equilibrium thermodynamics, where terminal cost seems to
depend on the control rather than being a given function of the final state of the system.

In the conclusions, we discuss possible extensions of the present work. The style of the
presentation is meant to be discursive, but relies on notions in between non-equilibrium physics,
optimal control theory and probability theory. For this reason, we include in the Appendices some
auxiliary information as a service to the interested reader.

2. Kinematics and Thermodynamics of the Model

We consider a physical process in a d-dimensional Euclidean space (Rd) modeled by
a Langevin–Smoluchowski dynamics:

dξt = −∂ξt
U(ξt, t)dt +

√
2
β

dωt (1)

The stochastic differential dωt stands here for the increment of a standard d-dimensional Wiener
process at time t [6]. U : Rd ⊗R 7→ R denotes a smooth scalar potential, and β−1 is a constant sharing
the same canonical dimensions as U. We also suppose that the initial state of the system is specified by
a smooth probability density:

P(q ≤ ξtι
< q + dq) = pι(q)ddq (2)

Under rather general hypotheses, the Langevin–Smoluchowski Equation (1) can be derived
as the scaling limit of the overdamped non-equilibrium dynamics of a classical system weakly
coupled to a heat bath [27]. The Wiener process in (1) thus embodies thermal fluctuations of order
β−1. The fundamental simplification entailed by (1) is the possibility to establish a framework of
elementary relations linking the dynamical to the statistical levels of description of a non-equilibrium
process [14,28]. In fact, the kinematics of (1) ensures that for any time-autonomous, confining potential,
the dynamics tends to a unique Boltzmann equilibrium state.

peq(q) ∝ exp
(
− β U(q)

)
Building on the foregoing observations [14], we may then identify U over a finite-time horizon

with the internal energy of the system. The differential of U:

dU(ξt, t) = dt ∂tU(ξt, t) + dξt
1/2· ∂ξt

U(ξt, t) (3)

yields the energy balance in the presence of thermal fluctuations due to interactions with the

environment. We use the notation
1/2· for the Stratonovich differential [6]. From (3), we recover

the first law of thermodynamics by averaging over the realizations of the Wiener process. In particular,
we interpret:

W = E
∫ t f

to
dt ∂tU(ξt, t) (4)
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as the average work done on the system. Correspondingly,

Q = −E
∫ t f

to
dξt

1/2· ∂ξt
U(ξt, t) (5)

is the average heat discarded by the system into the heat bath, and therefore:

W −Q = E
(

U(ξtf
, tf)−U(ξtf

, tf)
)

(6)

is the embodiment of the first law.
The kinematics of stochastic processes [29] allows us also to write a meaningful expression for

the second law of thermodynamics. The expectation value of a Stratonovich differential is in general
amenable to the form:

Q = −E
∫ t f

tι

dt (v · ∂ξt
U)(ξt, t) (7)

where:

v(q, t) = −∂q

(
U(q, t) +

1
β

ln p(q, t)
)

(8)

is the current velocity. For a potential drift, the current velocity vanishes identically at equilibrium. As is
well known from stochastic mechanics [30,31], the current velocity permits couching the Fokker–Planck
equation into the form of a deterministic mass transport equation (see also appendix B). Hence, upon
observing that:

E
∫ t f

tι

dt (v · ∂ξt
ln p)(ξtf

, tf) = E
∫ t f

tι

dt
(

∂t + vt · ∂ξt

)
ln p(ξtf

, tf) = E ln
p(ξtf

, tf)

p(ξtι
, tι)

(9)

we can recast (7) into the form:

QT = Q− 1
β

E ln
p(ξtf

, tf)

p(ξtι
, tι)

= E
∫ t f

tι

dt ‖ v(ξt, t) ‖2 (10)

which we interpret as the second law of thermodynamics (see, e.g., [32]). Namely, if we define
E = βQT as the total entropy change in [tι tf], (10) states that the sum of the entropy generated by
heat released into the environment plus the change of the Gibbs–Shannon entropy of the system is
positive definite and vanishes only at equilibrium. The second law in the form (10) immediately
implies a bound on the average work done on the system. To evince this fact, we avail ourselves of the
equality:

W = E

(
U(ξtf

, tf)−U(ξtι
, tι) +

1
β

ln
p(ξtf

, tf)

p(ξtι
, tι)

)
+QT (11)

and define the current velocity potential:

F(q, t) = U(q, t) +
1
β

ln p(q, t)

We then obtain:

W = E
(

F(ξtf
, tf)− F(ξtι

, tι)
)
+QT ≥ E

(
F(ξtf

, tf)− F(ξtι
, tι)
)
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In equilibrium thermodynamics, the Helmholtz free energy is defined as the difference:

F = U − β−1 S

between the internal energy U and entropy S of a system at temperature β−1. This relation
admits a non-equilibrium extension by noticing that the information content [33] of the system
probability density:

S(q, t) = − ln p(q, t)

weighs the contribution of individual realizations of (1) to the Gibbs–Shannon entropy. We refer to [29]
for the kinematic and thermodynamic interpretation of the information content as the osmotic potential.
We also emphasize that the notions above can be given an intrinsic meaning using the framework of
stochastic differential geometry [17,31]. Finally, it is worth noticing that the above relations can be
regarded as a special case of macroscopic fluctuation theory [34].

3. Non-Equilibrium Thermodynamics and Schrödinger Diffusion

We are interested in thermodynamic transitions between an initial state (2) at time tι and
a pre-assigned final state at time tf also specified by a smooth probability density:

P(q ≤ ξtf
< q + dq) = pf (q)d

dq (12)

We also suppose that the cumulative distribution functions of (2) and (12) are related by
a Lagrangian map ` : Rd 7→ Rd such that:

P(ξtι
< q) = P(ξtf

< `(q)) (13)

According to the Langevin–Smoluchowski dynamics (1), the evolution of probability densities
obeys a Fokker–Planck equation, a first order in time partial differential equation. As a consequence, the
price we pay to steer transitions between assigned states is to regard the drift in (1) not as an assigned
quantity, but as a control. A priori, a control is only implicitly characterized by the set of conditions that
make it admissible. Informally speaking, admissible controls are all those drifts steering the process{

ξt, t ∈ [tι , tf]
}

between the assigned end states (2) and (12) while ensuring that at any time t ∈ [tι , tf],
the Langevin–Smoluchowski dynamics remains well defined.

Schrödinger [15] considered already in 1931 the problem of controlling a diffusion process between
assigned states. His work was motivated by the quest for a statistical interpretation of quantum
mechanics. In modern language [35,36], the problem can be rephrased as follows. Given (2) and (12)
and a reference diffusion process, determine the diffusion process interpolating between (2) and (12)
while minimizing the value of its Kullback–Leibler divergence (relative entropy) [37] with respect to
the reference process. A standard application (Appendix A) of the Girsanov formula [6] shows that the
Kullback–Leibler divergence of (1) with respect to the Wiener process is:

K(P ‖ Pω) =
β

2
E
∫ tf

tι

dt ‖∂ξt
U(ξt, t)‖2 (14)

P and Pω denote respectively the measures of the process solution of (1) with drift −∂qU(q, t) and of
the Wiener process ω. The expectation value on the right-hand side is with respect to P as elsewhere in
the text. A now well-established result in optimal control theory (see, e.g., [35,36]) is that the optimal
value of the drift satisfies a backward Burgers equation with the terminal condition specified by the
solution of the Beurling–Jamison integral equations. We refer to [35,36] for further details. What
interests us here is to emphasize the analogy with the problem of minimizing the entropy production
E in a transition between assigned states.
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Several observations are in order at this stage.
The first observation is that also (10) can be directly interpreted as a Kullback–Leibler divergence

between two probability measures. Namely, we can write (Appendix A):

K(P ‖ PR) =
β

2
E
∫ tf

tι

dt ‖v(ξt, t)‖2 (15)

for PR the path-space measure of the process:

dξt = ∂ξt
U(ξt, t)dt +

√
2
β

dωt (16)

evolving backward in time from the final condition (12) [38,39].
The second observation has more far reaching consequences for optimal control. The entropy

production depends on the drift of (1) exclusively through the current velocity (8). Hence, we
can treat the current velocity itself as the natural control quantity for (15). This fact entails major
simplifications [7]. The current velocity can be thought of as deterministic rather than as a stochastic
velocity field (see [29] and Appendix B). Thus, we can couch the optimal control of (15) into the
problem of minimizing the kinetic energy of a classical particle traveling from an initial position q
at time tι and a final position `(q) at time tf specified by the Lagrangian map ` (13). In other words,
entropy production minimization in the Langevin–Smoluchowski framework is equivalent to solving
a classical optimal transport problem [8].

The third observation comes as a consequence of the second one. The optimal value of the entropy
production is equal to the Wasserstein distance [40] between the initial and final probability measures
of the system; see [41] for details. This fact yields a simple characterization of the Landauer bound and
permits a fully-explicit analysis of the thermodynamics of stylized isochoric micro-engines (see [42]
and the references therein).

Finally, the construction of Schrödinger diffusions via optimal control of (14) corresponds to
a viscous regularization of the optimal control equations occasioned by the Schrödinger diffusion
problem (15).

4. Pontryagin’s Principle for Bounded Accelerations

An important qualitative feature of the solution of the optimal control of the entropy production
is that the system starts from (2) and reaches (12) with non-vanishing current velocity. This means
that the entropy production attains a minimum value when the end-states of the transition are
out-of-equilibrium. We refer to this lower bound as the refinement of the second law.

Engineered equilibration transitions are, however, subject to at least two further types of
constraints not taken into account in the derivation of the refined second law. The first type of
constraint is on the set of admissible controls. For example, admissible controls cannot vary in
an arbitrary manner: the fastest time scale in the Langevin–Smoluchowski dynamics is set by the
Wiener process. The second type is that end-states are at equilibrium. In mathematical terms, this
means that the current velocity must vanish identically at tι and tf.

We formalize a deterministic control problem modeling these constraints. Our goal is to minimize
the functional:

E =
∫ t f

tι

dt β ‖νt‖2 (17)
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over the set of trajectories generated for any given choice of the measurable control αt by the
differential equation:

χ̇t = νt (18a)

ν̇t = αt (18b)

satisfying the boundary conditions:

χtι
= q & χtf

= `(q) (19)

We dub the dynamical variable χt the running Lagrangian map as it describes the evolution
of the Lagrangian map within the control horizon. We restrict the set of admissible controls A ={

αt, t ∈ [tι , tf]
}

to those enforcing equilibration at the boundaries of the control horizon:

νtι = 0 & νtf = 0 (20)

whilst satisfying the bound:

|α(i)t | ≤
K(i)(q)
(tf − tι)2 ∀ t ∈ [tι , tf] ∀ i = 1, . . . , d (21)

We suppose that the K(i)(q) > 0 i = 1, . . . , d are strictly positive functions of the initial data q of
the form:

K(i)(q) ∝ |`(i)(q)− q(i)| (22)

The constraint is non-holonomic inasmuch as it depends on the initial data of a trajectory. The
proportionality (22) relates the bound on acceleration to the Lagrangian displacement needed to satisfy
the control problem. Finally, we emphasize that the rate of change νt of the running Lagrangian map is
related to the current velocity (8) by a standard change of hydrodynamic coordinates from Lagrangian
to Eulerian, which we write explicitly in formula (33) below.

We resort to the Pontryagin principle [13] to find normal extremals of (17). We defer the statement
of the Pontryagin principle, as well as the discussion of abnormal extremals to Appendix C. We proceed
in two steps. We first avail ourselves of Lagrange multipliers to define the effective cost functional:

A =
∫ t f

tι

dt
(

β ‖ νt ‖2 +ηt · (χ̇t − νt) + θt · (ν̇t − αt)
)

subject to the boundary conditions (19) and (20). Then, we couch the cost functional into an explicit
Hamiltonian form:

A =
∫ t f

tι

dt
(

ηt · χ̇t + θt · ν̇t − H(χt, νt, ηt, θt, αt)
)

(23)

with:

H(χt, νt, ηt, θt, αt) = ηt · νt + θt · αt − β ‖ νt ‖2

Pontryagin’s principle yields a rigorous proof of the intuition that extremals of the optimal control
equations correspond to stationary curves of the action (23) with Hamiltonian:

H?(χt, νt, ηt, θt) = max
α∈A

H(χt, νt, ηt, θt, αt) = ηt · νt +
∑d

i=1 K(i)|θ(i)t |
(tf − tι)2 − β ‖ νt ‖2
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In view of the boundary conditions (19), (20), extremals satisfy the Hamilton system of equations
formed by (18a) and:

ν̇
(i)
t = ∂θt H? =

K(i)

(tf − tι)2 sgn θ
(i)
t (24a)

η̇t = −∂χt H? = 0 (24b)

θ̇t = −∂νt H? = −ηt + 2 β νt (24c)

In writing (24a), we adopt the convention:

sgn 0 = 0

5. Explicit Solution in the 1d Case

The extremal Equations (18a) and (24) are time-autonomous and do not couple distinct vector
components. It is therefore not too restrictive to focus on the d = 1 case in the time horizon [0, T].

The Hamilton equations are compatible with two behaviors: a “push-region” where the running
Lagrangian map variable evolves with constant acceleration:

χ̈t =
K
T2 sgn θt & θt 6= 0

and a “no-action” region specified by the conditions:

θt = 0 & − η? + 2 β ν? = 0 (25)

where χt follows a free streaming trajectory:

χ̇t = ν?

We call switching times the values of t corresponding to the boundary values of a no-action region.
Switching times correspond to discontinuities of the acceleration αt. Drawing from the intuition
offered by the solution of the unbounded acceleration case, we compose push and no-action regions to
construct a single solution trajectory satisfying the boundary conditions. If we surmise that during the
control horizon, only two switching times occur, we obtain:

νt =



K
T2 t sgn θ0 t ∈ [0, t1)

K t1

T2 sgn θ0 t ∈ [t1, t2]

K
T2 (t1 sgn θ0 + (t− t2) sgn θT) t ∈ (t2, T]

(26)

which implies:

θt =



θ0 −
β K t (2 t1 − t)

T2 sgn θ0 t ∈ [0, t1)

0 t ∈ [t1, t2]

K (t− t2)
2

T2 sgn θT t ∈ (t2, T]

(27)
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The self-consistence of the solution fixes the initial data in (27):

θ0 =
β K t2

1
T2 sgn θ0

whilst the requirement of vanishing velocity at t = T determines the relation between the
switching times:

t2 = T +
sgn θ0

sgn θT
t1

Self-consistence then dictates:

sgn θtf = − sgn θt0

We are now ready to glean the information we unraveled by solving (24), to write the solution
of (18a):

χt = q +



K t2

2 T2 sgn θ0 t ∈ [0, t1)

K t1 (2 t− t1)

2 T2 sgn θ0 t ∈ [t1, T − t1]

K
2 t1 (T − t1)− (T − t)2

2 T2 sgn θ0 t ∈ (T − t1, T]

(28)

The terminal condition on χt fixes the values of t1 and sgn θt0 :

`(q) = q +
K(q) t1 (T − t1)

T2 sgn θt0

The equation for t1 is well posed only if:

sgn θt0 = sgn
(
`(q)− q

)
(29)

The only admissible solution is then of the form:

t1 =
T
2

(
1−
√

1− 4 δ
)

(30)

The switching time is independent of q in view of (22). It is realizable as long as:

δ =
|`(q)− q|

K(q)
≤ 1

4
∀ q ∈ R (31)

The threshold value of δ corresponds to the acceleration needed to construct an optimal protocol
consisting of two push regions matched at the half control horizon.

Qualitative Properties of the Solution

Equation (28) complemented by (29) and the realizability bound (31) fully specify the solution
of the optimization problem we set out to solve. The solution is optimal because it is obtained by
composing locally-optimal solutions for a Markovian dynamics. Qualitatively, it states that transitions
between equilibrium states are possible at the price of the formation of symmetric boundary layers
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determined by the occurrence of the switching times. For δ � 1, the relative size of the boundary
layers is:

t1

T
=

T − t2

T
≈ δ

In the same limit, the behavior of the current velocity far from the boundaries tends to the optimal
value of the refined second law [7]. Namely, for t ∈ [t1 , t f ], we find:

K(q) t1

T2 sgn
(
`(q)− q

)
δ�1≈ K(q) δ

T
sgn

(
`(q)− q

)
=

`(q)− q
T

More generally, for any 0 ≤ t1 ≤ T/2, we can couch (28) into the form:

χt = q +
(
`(q)− q

)
×



t2

2 t1 (T − t1)
t ∈ [0, t1)

2 t− t1

2 (T − t1)
t ∈ [t1, T − t1](

1− (T − t)2

2 t1 (T − t1)

)
t ∈ (T − t1, T]

(32)

The use of the value of the switching time t1 to parametrize the bound simplifies the
derivation of the Eulerian representation of the current velocity. Namely, in order to find the field
v : R× [0, T] 7→ R satisfying:

νt = v(χt, t) (33)

we can invert (32) by taking advantage of the fact that all of the arguments of the curly brackets
are independent of the position variable q.

We also envisage that the representation (32) may be of use to analyze experimental data when
finite measurement resolution may affect the precision with which microscopic forces acting on the
system are known.

6. Comparison with Experimental Swift Engineering Protocols

The experiment reported in [4] showed that a micro-sphere immersed in water and trapped
in an optical harmonic potential can be driven in finite-time from one equilibrium state to another.
The probability distribution of the particle in and out of equilibrium remained Gaussian within the
experimental accuracy.

It is therefore expedient to describe more in detail the solution of the optimal control problem in
the case when the initial equilibrium distribution in one dimension is normal, i.e., Gaussian with zero
mean and variance β−1. We also assume that the final equilibrium state is Gaussian and satisfies (13)
with Lagrangian map:

`(q) = σ q + h

The parameters h and σ respectively describe a change of the mean and of the variance of the
distribution. We apply (13) and (32) for any t ∈ [0, T] to derive the minimum entropy production
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evolution of the probability density. As a consequence of (22), the running Lagrangian map leaves
Gaussian distributions invariant in form with mean value:

E ξt = h×



t2

2 t1 (T − t1)
t ∈ [0, t1)

(2 t− t1)

2 (T − t1)
t ∈ [t1, T − t1]

2 t1 (T − t1)− (T − t)2

2 t1 (T − t1)
t ∈ (T − t1, T]

(34)

and variance:

V ξt =



(
2 t1 (T − t1) + (σ− 1) t2)2

4 β t2
1 (T − t1)2

t ∈ [0, t1)(
2 (T − t1) + (σ− 1)(2 t− t1)

)2

4 β (T − t1)2 t ∈ [t1, T − t1](
2 t1 (T − t1) + (σ− 1)(2 t1 (T − t1)− (T − t)2)

)2

4 β t2
1 (T − t1)2

t ∈ (T − t1, T]

(35)

Finally, we find that the Eulerian representation (33) of the current velocity at χt = q is:

v(q, t) =



2 t (h + q (σ− 1))
2 t1 (T − t1) + (σ− 1) t2 t ∈ [0, t1)

2
(

h + q(σ− 1)
)

2 (T − t1) + (σ− 1) (2 t− t1)
t ∈ [t1, T − t1]

2(T − t)
(

h + q(σ− 1)
)

2 t1 (T − t1) + (σ− 1)(2 t1 (T − t1)− (T − t)2)
t ∈ (T − t1, T]

(36)

From (34)–(36), we can derive explicit expressions for all of the thermodynamic quantities
governing the energetics of the optimal transition. In particular, we obtain the drift in the
Langevin–Smoluchowski dynamics (1) by inverting (8) as in [7]:

(∂qU)(q, t) = − v(q, t) +
q− E ξt

V ξt

The minimum entropy production is:

E
∫ tf

0
dt v2(ξt, t) =

T (3 T − 4 t1)

3 (T − t1)2 E∞ (37)

with:

E∞ =
h2 β + (σ− 1)2

β T
(38)

the value of the minimum entropy production appearing in the refinement of the second law [7].
In Figure 1, we plot the evolution of the running average values of the work done on the system,

the heat released and the entropy production during the control horizon. In particular, Figure 1a
illustrates the first law of thermodynamics during the control horizon. A transition between Gaussian
equilibrium states occurs without any change in the internal energy of the system. The average
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heat and work must therefore coincide at the end of the control horizon. The theoretical results are
consistent with the experimental results of [4].

(a) (b)

Figure 1. First Figure 1a and second law Figure 1b of thermodynamics for the same transition between
Gaussian states as in [4]. The initial state is a normal distribution with variance β−1. The final
distribution is Gaussian with variance β−1/2. The condition K(q) ∝ |`(q) − q| ensures that the
probability density remains Gaussian at any time in the control horizon t ∈ [0, 1]. The proportionality
factor is chosen such that t1 = 0.3 in (32). The behavior of the variance (inset of Figure 1a) is qualitatively
identical to the one observed in [4] (Figure 2). The behavior of the average work and heat also
reproduces the one of Figure 3 of [4]. (a) Work (continuous curve, blue on-line) and heat release
(dashed curve, yellow on-line) during the control horizon. Inset: time evolution of the variance of
the process; (b) Entropy production (continuous curve, blue on-line) and heat release (dashed curve,
yellow on-line) during the control horizon.

7. Optimally-Controlled Nucleation and Landauer Bound

The form of the bound (22) and running Lagrangian map Formula (32) reduce the computational
cost of the solution of the optimal entropy production control to the determination of the Lagrangian
map (13). In general, the conditions presiding over the qualitative properties of the Lagrangian map
have been studied in depth in the context of optimal mass transport [8]. We refer to [11] and [41]
respectively for a self-contained overview from respectively the mathematics an physics slant.

For illustrative purposes, we revisit here the stylized model of nucleation analyzed in [7].
Specifically, we consider the transition between two equilibria in one dimension. The initial state is
described by the symmetric double well:

pι(q) = Z−1
ι exp−β

(q2 − q̄2)2

σ2

In the final state, the probability is concentrated around a single minimum of the potential:

pf (q) = Z−1
f exp−β

(q− q̄)2
(
(q− q̄) + q̄ (3 q− q̄)

)
σ2

In the foregoing expressions, σ is a constant ensuring the consistency of the canonical dimensions.
We used the ensuing elementary algorithm to numerically determine the Lagrangian map. We first

computed the median z(1) of the assigned probability distributions and then evaluated first the left
and then right branch of the Lagrangian map. For the left branch, we proceeded iteratively in z(k) as
follows:

Step 1 We renormalized the distribution restricted to [−∞, z(k)].
Step 2 We computed the 0.9 quantile z(k + 1) < z(k) of the remaining distribution.
Step 3 We solved the ODE:

d`
dq

=
pι(q)

pf (`(q))
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We skipped Step 3 whenever the difference |z(k)− z(k− 1)| turned out to be smaller than a given
threshold ‘resolution’. We plot the results of this computation in Figure 2.

(a) (b) (c)

Figure 2. Initial (solid curve, blue on-line) and final (dashed curve, blue on-line) probability distribution
of the state of the system for β = 112 σ = 1 and q̄ = 1/2. The evaluation of the Lagrangian map
occasions numerical stiffness in the region in between the two minima. (a) Boundary conditions for the
nucleation problem; (b) Lagrangian map; (c) Numerical derivative of the Lagrangian map.

Once we know the Lagrangian map, we can numerically evaluate the running Lagrangian map (32)
and its spatial derivatives. In Figure 3, we report the evolution of the probability density in the control
horizon for two reference values of the switching time.

(a) t = 0.05 (b) t = 0.25 (c) t = 0.45

(d) t = 0.65 (e) t = 0.85 (f) t = 0.98

Figure 3. Probability density snapshots at different times within the control horizon. The plots are
for T = 1 and switching time t1 = 10−6 (dashed interpolation curve, yellow on-line) and t1 = 0.3
(continuous interpolation curve, blue on-line) q̄ = 0.5, σ = 1 and β = 112. We plot the Lagrangian map
in the interval q ∈ [−2 , 2].

Figure 4 illustrates the the corresponding evolution of the current velocity.
The qualitative behavior is intuitive. The current velocity starts and ends with a vanishing value;

it catches up with the value for t1 ↓ 0, i.e., when the bound on acceleration tends to infinity, in the bulk
of the control horizon. There, the displacement described by the running Lagrangian map occurs at
a speed higher than in the t1 ↓ 0 case. The overall value of the entropy production is always higher
than in the t1 ↓ 0 limit. From (32), we can also write the running values of average heat released by the
system. The running average heat is:

Q(t) = − 1
β

∫
R

ddq pι(q) ln
dχt(q)

dq
+
∫ t

0
ds
∫
R

ddq pι(q) ν2
t (q)
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and the running average work:

W(t) =
∫
R

dq pι(q) F(χt(q), t) +
∫ t

0
ds
∫
R

ddq pι(q) ν2
t (q)

with:

F(χt(q), t) = −
∫ q

0
dy

dχt

dy
(y) νt(y)−

1
β

∫
R

ddq pι(q) ln
dχt(q)

dq
(39)

The second summand on the right-hand side of (39) fixes the arbitrary constant in the Helmholtz
potential in the same way as in the Gaussian case.

In Figure 5, we plot the running average work, heat and entropy production.

(a) t = 0.05 (b) t = 0.25 (c) t = 0.45

(d) t = 0.65 (e) t = 0.85 (f) t = 0.98

Figure 4. Current velocity snapshots at different times within the control horizon. The plots are for
T = 1 and switching time t1 = 10−6 (continuous interpolation, yellow on-line) and t1 = 0.3 (points,
blue on-line).

(a) (b)

Figure 5. First and second law of thermodynamics for the optimally-controlled nucleation transition.
All parameters are as in Figure 2. The qualitative picture is the same as in the Gaussian case, Figure 1,
with the running average work above the running average heat. The numerical values yield, however,
almost overlapping curves. The running average entropy production in Figure 5b is strictly monotonic
in the control horizon. The entropy production rate vanishes at the boundary highlighting the reaching
of an equilibrium state when the switching time is t1 = 0.3. (a) First law of thermodynamics for the
optimally-controlled nucleation. Continuous curve (blue on-line) running average work. Dashed curve
(yellow on-line) running average heat; (b) Running average entropy production. The continuous curve
(blue on-line) is obtained for switching time at t1 = 0.3, the dashed curve (yellow on-line) for t1 = 10−6.
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8. Comparison with the Valley Method Regularization

An alternative formalism to study transitions between equilibrium states in the
Langevin–Smoluchowski limit was previously proposed in [25]. As in the present case, Ref. [25] takes
advantage of the possibility to map the stochastic optimal control problem into a deterministic one via
the current velocity formalism. Physical constraints on admissible controls are, however, enforced by
adding to the entropy production rate a penalty term proportional to the squared current acceleration.
In terms of the entropy production functional (17), we can couch the regularized functional of [25] into
the form:

A = E + ε τ2 ‖δχE‖2

δχE stands for the variation of E with respect to the running Lagrangian map. The idea behind the
approach is the “valley method” advocated by [26] for instanton calculus. The upshot is to approximate
field configurations satisfying boundary conditions incompatible with stationary values of classical
variational principles by adding extra terms to the action functional. The extra term is proportional to
the squared first variation of the classical action. Hence, it vanishes whenever there exists a classical
field configurations matching the desired boundary conditions. It otherwise raises the order of the
time derivative in the problem, thus permitting one to satisfy extra boundary conditions.

Optimal control problems are well posed if terminal costs are pure functionals of the boundary
conditions. The rationale for considering valley method-regularized thermodynamic functionals is to
give a non-ambiguous meaning to the optimization of functionals whenever naive formulations of the
problem yield boundary conditions or terminal costs as the functional of the controls.

Contrasted with the approach proposed in the present work, [25] has one evident drawback
and one edge. The drawback is that the quantities actually minimized are no longer the original
thermodynamic functionals. The edge is that the resulting optimal protocol has better analyticity
properties. In particular, the running Lagrangian map takes the form:

χt = q +
`(q)− q

T − 2 τ
√

ε tanh T
2 τ
√

ε

t− τ
√

ε
sinh 2 t−T

2 τ
√

ε
+ sinh T

2 τ
√

ε

cosh T
2 τ
√

ε

 (40)

In Figure 6a, we compare the qualitative behavior of the universal part of the running Lagrangian
map predicted by the valley method and by the bound (21) on admissible current accelerations. The
corresponding values of the running average entropy production are in Figure 6b.

(a) (b)

Figure 6. Qualitative comparison of universal part of the running Lagrangian maps (32) (continuous
curve, blue on line) and (40) (dashed curve, orange on line), Figure 6a. In (40), we choose τ = 1, ε = 0.3.
Figure 6b evinces, as to be expected, the qualitatively equivalent behaviors of the entropy production
for finite value (t1 = 0.3) of the switching time. The dashed green line is computed from (40). The
continuous blue line is the lower bound for the transition as predicted by [7]. (a) χt−q

`(q)−q ; (b) Running
entropy production.
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The upshot of the comparison is the weak sensitivity of the optimal protocol to the detail of the
optimization once the intensity of the constraint on the admissible control (i.e., the current acceleration)
is fixed. We believe that this is an important observation for experimental applications (see, e.g., the
discussion in the conclusions of [24]), as the details of how control parameters can be turned on and off
in general depend on the detailed laboratory setup and on the restrictions by the available peripherals.

9. Conclusions and Outlooks

We presented a stylized model of engineered equilibration of a micro-system. Owing to explicit
integrability modulo numerical reconstruction of the Lagrangian map, we believe that our model may
provide a useful benchmark for the devising of efficient experimental setups. Furthermore, extensions
of the current model are possible, although at the price of some complications.

The first extension concerns the form of the constraint imposed on admissible protocols. Here,
we showed that choosing the current acceleration constraint in the form of (22) greatly simplifies the
determination of the switching times. It also guarantees that optimal control with only two switching
times exists for all boundary conditions if we allow accelerations to take sufficiently large values.
The non-holonomic form of the constraint (21) may turn out to be restrictive for the study of transitions
for which admissible controls are specified by given forces. If the current velocity formalism is still
applicable to these cases, then the design of optimal control still follows the steps we described
here. In particular, uniformly-accelerated Lagrangian displacement at the end of the control horizon
correspond to the first terms of the integration of the Newton law in Peano–Picard series. The local
form of the acceleration may then occasion some qualitative differences in the form of the running
Lagrangian map. Furthermore, the analysis of the realizability conditions of the optimal control may
also become more involved.

A further extension is optimal control when constraints on admissible controls are imposed
directly on the drift field appearing in the stochastic evolution equation. Constraints of this type are
natural when inertial effects become important and the dynamics is governed by the Langevin–Kramers
equation in the so-called under-damped approximation. In the Langevin–Kramers framework, finding
minimum entropy production thermodynamic transitions requires instead a full-fledged formalism
of stochastic optimal control [42]. Nevertheless, it is possible also in that case to proceed in a way
analogous to the one of the present paper by applying the stochastic version of the Pontryagin
principle [43–45].

We expect that considering these theoretical refinements will be of interest in view of the increasing
available experimental resolution for the efficient design of atomic force microscopes [3,46].
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Appendix A. Evaluation of Kullback–Leibler Divergences

Let us consider first the drift-less process:

dξt =

√
2
β

dωt (A1)

http://wiki.helsinki.fi/display/AtMath/Atmospheric+Mathematics
http://wiki.helsinki.fi/display/AtMath/Atmospheric+Mathematics
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with initial data (2). If we denote by Pω the path-space Wiener measure generated by (A1) in [tι , tf],
the Girsanov formula yields:

dP
dPω

= exp− β

2

∫ tf

tι

(
dξt · ∂ξt

U + dt
‖∂ξt

U‖2

2

)

The Kullback–Leibler divergence is defined as:

K(P||Pω) = E
∫ tf

tι

ln
dP

dPω

The expectation value is with respect the measure P generated by (1):

K(P ‖ Pω) = −
β

2
E
∫ tf

tι

(
dξt · ∂ξt

U + dt
‖∂ξt

U‖2

2

)

= − β

2
E
∫ tf

tι

(
(dξt + dt∂ξt

U) · ∂ξt
U − dt

‖∂ξt
U‖2

2

)

The last expression readily recovers (14) as dξt + dt ∂ξt
U is a Wiener process with respect to P.

To show that the entropy production is proportional to the Kullback–Leibler divergence between
the path-space measures of (1) and (16), we observe that:

dPR
dPω

= exp
β

2

∫ tf

tι

(
dξt

1· ∂ξt
U − dt

‖∂ξt
U‖2

2

)
(A2)

The stochastic integral is evaluated in the post-point prescription, as the Radon–Nikodym
derivative between backward processes must be a martingale with respect to the filtration of future
event (see, e.g., [47] for an elementary discussion). We then avail ourselves of the time reversal
invariance of the Wiener process to write:

dP
dPR

=
pι(ξtι

)

pf (ξtf
)

exp−β
∫ tf

tι

(
dξt

1/2· ∂ξt
U
)

= exp−β
∫ tf

tι

(
dξt

1/2· ∂ξt

(
U +

1
β

ln p
)
+ dt ∂t ln p

)
Finally, the definition:

K(P ‖ PR) = E
∫ tf

tι

ln
dP

dPR

recovers (15) since the probability conservation entails:

E ∂t ln p = 0

whilst the properties of the Stratonovich integral [31] yield:

E
∫ tf

tι

dξt
1/2· ∂ξt

(
U +

1
β

ln p
)
= −E

∫ tf

tι

dt ‖v‖2

We refer to, e.g., [28,38,39,48] for thorough discussions of the significance and applications of the
entropy production in stochastic models of non-equilibrium statistical mechanics and to [49,50] for
applications to non-equilibrium fluctuating hydrodynamics and granular materials.
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Appendix B. Current Velocity and Acceleration in Terms of the Generator of the
Stochastic Process

The current velocity is the conditional expectation along the realizations of (1) of the time
symmetric conditional increment:

v(q, t) = lim
τ↓0

E
(

ξt+τ − ξt−τ

∣∣∣ξt = q
)

2 τ

A relevant feature of the time symmetry is that the differential can be regarded as the result of the
action of a generator including only first order derivatives in space:

v(ξt, t) = D̄ξt
ξt

where:

D̄ξt
:=
Dξt

+D∗ξt

2
(A3)

On the right-hand side of (A3), there appear the scalar generator of (1):

Dq = ∂t − (∂qU)(q, t) · ∂q +
1
β

∂2
q

and the generator of the dual process conjugated by the time-reversal of the probability density in
[tι , tf] [29,31]:

D∗q = ∂t − (∂qU +
2
β

∂q ln p)(q, t) · ∂q −
1
β

∂2
q

The arithmetic averages of these generators readily define a first order differential operator as in
the deterministic case. Analogously, we define the current acceleration as:

a(q, t) = lim
τ↓0

E
(

v(ξt+τ , t + τ)− v(ξt−τ , t− τ)
∣∣∣ξt = q

)
2 τ

or equivalently:

αt = a(ξt, t) = D̄2
ξt

ξt

Based on the above definitions, the Fokker–Planck Equation of (1) can be couched into the form:(
∂t + ∂q · v(q, t)

)
p(q, t) = 0

Appendix C. Pontryagin Principle

We recall the statement of Pontryagin’s principle for fixed time and fixed boundary
conditions [13,51].

Maximum principle: Let the functional:

A =
∫ tf

tι

dt L(ξt, αt, t) (A4)
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be subject to the dynamical constraint:

ξ̇t = b(ξt, αt, t) (A5)

and the endpoint constraints:

ξtι
= qι & ξtf

= qf

with the parameter αt belonging for fixed t to a set U ⊆ Rn, the variable ξt taking values in Rd or
in a open subset X of Rd and the time interval [tι , tf] fixed. A necessary condition for a function
ᾱt : [tι , tf] 7→ U and a corresponding solution ξ̄t of (A5) to solve the minimization of (A4) is that there
exist a function tπ̄t : [tι , tf] 7→ Rd and a constant po ≤ 0, such that:

• (π̄t, p̄0) 6= (0, 0) ∀ t ∈ [tι , tf] (non-triviality condition)
• for each fixed t:

H?(q, p, p0t) = max
a∈U

(
p · b(q, a, t) + p0 L(q, a, t)

)
(maximum condition)
• (ξ̄t, π̄t) obey the equations:

¯̄̇
ξt = ∂π̄t H?(ξ̄t, π̄t.p̄0, t) & ¯̄̇πt = −∂ξ̄t

H?(ξ̄t, π̄t, p̄0, t)

(Hamilton system condition).

The proof of the maximum principles requires subtle topological considerations culminating
with the application of Brouwer’s fixed point theorem. The maximum principle has, nevertheless,
an intuitive content. Namely, we can reformulate the problem in an extended configuration space by
adding the ancillary equation:

ζ̇t = L(ξt, πt, t) (A6a)

ζtι = 0 (A6b)

and looking for the stationary point of the action functional:

Ã = ζtf +
∫ tf

tι

dt

(
πt · ξ̇t + φt ζ̇t −

(
πt · b(ξt, αt, t) + φtL(ξt, αt, t)

))

Let us make the simplifying assumption that any pair of trajectory and control variables satisfying
the boundary has a non-empty open neighborhood where linear variations are well defined. Looking
for a stationary point of (A4) entails considering variations of ζt under the constraints ζ ′tι

= ζ ′tf
= 0.

Then, it follows immediately that the stationary value of the Lagrange multiplier φt must satisfy:

˙̄φt = 0

This observation clarifies why the maximum principle is stated for some constant po ≤ 0, such
that φt = po. In particular, if po < 0, we can always rescale it to po = −1 and recover the familiar
form of the Hamilton equations. Moreover, the maximum principle coincides with the Hamilton form
of the stationary action principle if b = αt and L is quadratic in αt. If instead, there exist stationary
solutions for p0 = 0, they describe abnormal controls.

Abnormal controls do not occur in the optimization problem considered in the main text. In the
push regions where the acceleration is non-vanishing abnormal control drive the Lagrange multiplier
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θt away from zero, thus, they are not compatible with the occurrence of switching times between push
and no-action regions. Looking for abnormal control in the no-action region yields the requirement
that all Lagrange multipliers vanish against the hypothesis of the maximum principle.
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of the early Universe as a convex optimization problem. Mon. Not. Roy. Astron. Soc. 2003, 346, 501–524.

11. De Philippis, G.; Figalli, A. The Monge–Ampère equation and its link to optimal transportation. Bull. Amer.
Math. Soc. 2014, 51, 527–580.

12. Alemany, A.; Ribezzi, M.; Ritort, F. Recent progress in fluctuation theorems and free energy recovery. AIP
Conf. Proc. 2011, 1332, 96–110.

13. Liberzon, D. Calculus of Variations and Optimal Control Theory: A Concise Introduction; Princeton University
Press: Princeton, NJ, USA, 2012.

14. Sekimoto, K. Langevin equation and thermodynamics. Progr. Theor. Phys. Suppl. 1998, 130, 17–27.
15. Schrödinger, E. Über die umkehrung der naturgesetze. Sitzungsberichte der Preussischen Akademie der

Wissenschaften, Physikalische Mathematische Klasse 1931, 8, 144–153. (In German)
16. Aebi, R. Schrödinger Diffusion Processes; Probability and Its Applications; Birkhäuser: Basel, Switzerland,

1996; p. 186.
17. Muratore-Ginanneschi, P. On the use of stochastic differential geometry for non-equilibrium

thermodynamics modeling and control. J. Phys. A 2013, 46, 275002.
18. Arnaudon, M.; Cruzeiro, A.B.; Léonard, C.; Zambrini, J.C. An entropic interpolation problem for

incompressible viscid fluids. arXiv 2017, arXiv:1704.02126.
19. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191.
20. Bennett, C.H. The thermodynamics of computation — A review. Int. J. Theor. Phys. 1982, 21, 905–940.
21. Dillenschneider, R.; Lutz, E. Memory erasure in small systems. Phys. Rev. Lett. 2009, 102, 210601.
22. Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification

of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189.
23. Koski, J.V.; Maisi, V.F.; Pekola, J.P.; Averin, D.V. Experimental realization of a Szilard engine with a single

electron. Proc. Natl. Acad. Sci. USA 2014, 111, 13786–13789.
24. Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap.

Phys. Rev. Lett. 2014, 113, 190601.
25. Aurell, E.; Mejía-Monasterio, C.; Muratore-Ginanneschi, P. Boundary layers in stochastic thermodynamics.

Phys. Rev. E 2012, 85, 020103(R).



Entropy 2017, 19, 379 21 of 21

26. Aoyama, H.; Kikuchi, H.; Okouchi, I.; Sato, M.; Wada, S. Valley views: Instantons, large order behaviors,
and supersymmetry. Nucl. Phys. B 1999, 553, 644–710.

27. Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: New York, NY, USA, 2001; p. 240.
28. Lebowitz, J.L.; Spohn, H. A Gallavotti-Cohen Type Symmetry in the large deviation functional for stochastic

dynamics. J. Stat. Phys. 1999, 95, 333–365.
29. Nelson, E. Dynamical Theories of Brownian Motion, 2nd ed.; Princeton University Press: Princeton, NJ, USA,

2001; p. 148.
30. Fényes, I. Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik.

Z. Phys. 1952, 132, 81–106. (In German)
31. Nelson, E. Quantum Fluctuations; Princeton Series in Physics; Princeton University Press: Princeton, NJ,

USA, 1985; p. 146.
32. Qian, H. Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic

entropy-energy compensation. Phys. Rev. E 2001, 65, 016102.
33. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379, 623–656.
34. Bertini, L.; Sole, A.D.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C. Macroscopic fluctuation theory.

Rev. Mod. Phys. 2015, 87, 593–636.
35. Dai Pra, P. A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 1991,

23, 313–329.
36. Roelly, S.; Thieullen, M. A characterization of reciprocal processes via an integration by parts formula on

the path space. Probab. Theory Relat. Fields 2002, 123, 97–120.
37. Kullback, S.; Leibler, R. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86.
38. Jiang, D.Q.; Qian, M.; Qian, M.P. Mathematical Theory of Nonequilibrium Steady States; Lecture Notes in

Mathematics; Springer: Berlin, Germany, 2004; p. 276.
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