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Abstract: This paper aims to find a suitable decision rule for a binary composite hypothesis-testing
problem with a partial or coarse prior distribution. To alleviate the negative impact of the information
uncertainty, a constraint is considered that the maximum conditional risk cannot be greater than a
predefined value. Therefore, the objective of this paper becomes to find the optimal decision rule
to minimize the Bayes risk under the constraint. By applying the Lagrange duality, the constrained
optimization problem is transformed to an unconstrained optimization problem. In doing so, the
restricted Bayesian decision rule is obtained as a classical Bayesian decision rule corresponding to a
modified prior distribution. Based on this transformation, the optimal restricted Bayesian decision
rule is analyzed and the corresponding algorithm is developed. Furthermore, the relation between
the Bayes risk and the predefined value of the constraint is also discussed. The Bayes risk obtained
via the restricted Bayesian decision rule is a strictly decreasing and convex function of the constraint
on the maximum conditional risk. Finally, the numerical results including a detection example are
presented and agree with the theoretical results.
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1. Introduction

Bayesian, Minimax, and Neyman-Pearson (NP) decisions are three common approaches in the
applications of signal detection and processing [1–8]. For instance, a Bayesian approach is proposed
in [2] for the signal detection in compressed sensing (CS). In [4], a Minimax framework is introduced
for multiclass classification, which can be applied to general data including imagery and other
types of high-dimensional data. In order to detect ultra-wideband signals in the presence of dense
multipath channels and ambient noise, the NP theorem is used to derive the ultra-wideband (UWB)
signal detector [5]. The NP and Bayesian framework are also utilized to access the performance
of channel-aware binary-decision fusion over a shared Rayleigh flat-fading channel with multiple
antennas at the Decision Fusion Center (DFC) [8], and the DFC is widely used in the spectrum sensing
for cognitive radio scenarios [9].

In the classical hypothesis testing problem, a relevant part of uncertainty is usually represented
by the prior probability distributions [10]. The aim of the Bayesian criterion is to minimize the Bayes
risk [11] and the Bayesian decision rule is determined based on posterior probabilities, where the
prior information is assumed to be completely known. On the other hand, no prior information is
considered for the Minimax decision rule [12], which minimizes the maximum of the conditional risks
given over the parameter space. In addition, the Neyman-Pearson decision rule can be also conceived
in the presence of prior distributions [13–15]. Therefore, the Bayesian, Neyman-Pearson, and Minimax
approaches can be viewed as three different ways of exploiting prior information. In the former two
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cases, prior information is considered to be completely available, whereas no prior information is
required in the latter. In practice, however, the extreme cases rarely happen, and the partial prior
information or the prior information with uncertainty is often available, such as the adaptive vector
subspace signal detection in partially homogeneous Gaussian disturbance and structured (unknown)
deterministic interference within the framework of invariance theory [16].

In most practical cases, the prior distributions are available with certain degree of uncertainty
because they are usually obtained based on the previous decisions and experiences [8]. As a result,
the Bayesian and Neyman-Pearson approaches are ineffective due to the absence of complete prior
information, and the Minimax approach achieves a poor performance since the available partial prior
information is ignored. In order to utilize the partial information and to achieve a better performance,
several studies have been conducted [8,17–25], for example, maximum entropy (ME), Γ-minimax,
restricted Bayes, and restricted Neyman-Pearson approaches, to name but a few. For instance, the ME
method is utilized in [23] to translate the information contained in the known form of the likelihood
into a prior distribution for Bayesian inference. The restricted NP approach is applicable for a binary
composite hypothesis-testing problem in the presence of prior information uncertainty [10]. In [25],
the group minimax is obtained through the emergent theory of quantizing with Bregman divergences
and a closed form Stolarsky mean expression is obtained by optimizing the minimax Bayes risk error
divergence for the binary simple hypothesis testing with a partially known prior probability.

To the best of our knowledge, no previous work has focused on the optimal decision rule under
the restricted Bayesian criterion for a binary composite hypothesis-testing problem in the presence of
prior distribution uncertainty, where the uncertainties may exist not only in the prior probability of the
null hypothesis, but also in the distribution probability of each parameter value under the null and the
alternative hypotheses. In this paper, we utilize the constraints that the conditional risks should be less
than a predefined value to reduce the negative effects of the uncertain prior information, thereby the
focus of this paper is to find the optimal decision rule to minimize the Bayes risk on the basis of the
constraints and then to explore the relations between the Bayes risk and the predefined value.

In order to solve the optimization problem, the Lagrange duality is applied to convert the
minimization of the Bayes risk under the constraints on conditional risks to an unconstrained one. In
doing so, the minimization of the Bayes risk under the constraints on conditional risks is equivalent to
the minimization of the Bayes risk with a modified prior distribution based on this conversion. Finally,
the corresponding theorems and algorithms are developed to search the restricted Bayes decision
rule. If there is no uncertainty in the prior distribution, the constraint on the conditional risks is not
necessary. In such a case, the classical Bayesian decision rule is applicable, which minimizes the Bayes
risk without any constraints. If the value of the constraint is larger than the maximum conditional
risk obtained in the classical Bayesian approach, the constraint on the conditional risks is ineffective
and the restricted Bayesian decision rule is identical to the classical Bayesian decision rule. On the
other hand, if the prior information is full of uncertainty, the Minimax decision rule can be utilized
to minimize the worst-case (maximum) conditional Bayes risk. It should be noted that the lowest
constraint achieved in the restricted Bayesian approach is equal to the Bayes risk obtained via the
Minimax decision rule. Therefore, the classical Bayesian and Minimax approaches are two extreme
cases of the restricted Bayesian approaches. In addition, the Bayes risk is a strictly decreasing and
convex function of the constraint on conditional risks in the restricted Bayesian approach. The main
contributions of this paper are summarized as follows:

• Formulation of the restricted Bayesian framework, which aims to minimize the Bayes risk under
the constraint on the conditional risks.

• Derivations of the restricted Bayes decision rule.
• Algorithm for searching the restricted Bayes decision rule.
• Characteristics of the Bayes risk versus the constraint on the conditional risks.
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The remainder of this paper is organized as follows: in Section 2, a restricted Bayesian framework
is formulated for a binary composite hypothesis-testing problem, which aims to minimize the Bayes
risk under the constraint on the conditional risks. The optimal restricted Bayesian decision rule is
explored in Section 3 and the corresponding algorithm is provided. Furthermore, the relation between
the Bayes risk and the constraint is discussed in Section 4. Finally, numerical examples are presented
in Section 5 to illustrate the theoretical results and conclusions are made in Section 6.

2. Problem Formulation

In the theory of signal detection, the detection problems such as radar and communication signal
detection are usually formulated as a hypothesis testing problem, and the corresponding framework is
developed to provide a theoretical and analytical basis for the detection of useful signal. In this paper,
we consider a binary composite hypothesis-testing problem with partially known prior distribution,
given by:

Hi : X|θ ∼ Pθ , θ ∈ Λi, i = 0, 1, (1)

where H0 and H1 are the null and the alternative hypotheses, respectively, X is a random variable
with the sample space Γ and a K-dimensional observation vector x ∈ RK, pθ(x) denotes the pdf of
x for a given parameter value Θ = θ, Λ0 and Λ1 are the respective sets of all possible parameter
values of Θ under H0 and H1. Intuitively, the union of Λ0 and Λ1 forms the parameter set Λ, i.e.,
Λ = Λ0 ∪Λ1, and Λ0 ∩Λ1 = ∅. In addition, the prior distribution of Θ is denoted by ω(θ), which is
usually estimated based on previous observations and known up to a given degree of uncertainty due
to the estimation errors.

If the Bayes risk is calculated based on the estimated prior distribution and the minimization of
the Bayes risk is performed under the classical Bayesian criterion, then it means that the estimation
errors are ignored directly. In doing so, a poor performance is obtained if the estimated distribution
differs significantly from the correct one. On the other hand, if the Minimax criterion is utilized
and the maximum conditional risk is minimized, then it fails to take the advantage of the useful
prior information contained in the estimated prior distribution. In order to utilize the estimated
prior distribution and alleviate the negative impact caused by the mismatch between the estimated
prior distribution and the correct one, the restricted Bayesian criterion is applied in this paper. More
specifically, this paper aims to minimize the Bayes risk, calculated based on the estimated prior
distribution, under the constraint that the maximum conditional Bayes risk stays below a significance
level that can be adjusted based on the degree of uncertainty in the estimated prior distribution.

Accordingly, the restricted Bayes optimization problem can be formulated by:

min
φ

∫
Λ

Rθ(φ)ω(θ)dθ (2)

subject to:
max
θ∈Λ

Rθ(φ) ≤ α, (3)

where r(φ) =
∫

Λ Rθ(φ)ω(θ)dθ = E{Rθ(φ)} denotes the Bayes risk, φ represents the decision rule
which maps the observation vector to 0 or 1, α is the upper limit on the maximum conditional risk, and
Rθ(φ) represents the conditional risk of φ(·) for Θ = θ and θ ∈ Λ. Prior to calculating the conditional
risk Rθ(φ), a cost function C[i, θ] is used to assign costs to the decision results, where C[i, θ] denotes the
cost of choosing Hi when Θ = θ and θ ∈ Λ. The Rθ(φ) can be calculated as the average cost of decision
rule φ(x) for Θ = θ, given by:

Rθ(φ) = Eθ{C[φ(x), θ]} =
∫

Γ
C[φ(x), θ]pθ(x)dx. (4)
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In order to solve the constrained optimization problem in (2) and (3), we introduce a regularization
parameter λ to construct an unconstrained optimization problem as below:

min
φ

{
λ
∫

Λ
ω(θ)

∫
Γ

C[φ(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ

C[φ(x), θ]pθ(x)dx
}

, (5)

which is also a transformation of the Lagrangian of the inequality-constrained optimization problem in
(2) and (3), where λ is designed according to α and 0 ≤ λ ≤ 1. In particular, λ decreases as α decreases,
and this fact can be utilized to adjust the value of λ. Accordingly, the unconstrained optimization
problem in (5) with a suitable λ is an alternative representation of the constrained optimization
problem in (2) and (3) according to the Lagrange duality, the equivalence of them will be proved in the
next section.

3. Restricted Bayes Decision Rule

In this section, based on the problem formulation in Section 2, the characteristics of the optimal
decision rule under the restricted Bayes criterion are investigated first, and then an algorithm for
finding the restricted Bayes decision rule is developed.

3.1. Characteristics of the Restricted Bayes Decision Rule

According to the formulation in (5), the following theorems are developed to characterize the
restricted Bayes decision rule under certain conditions.

Theorem 1. Let g(θ) = λω(θ) + (1− λ)v(θ), where v(θ) is any valid pdf. If φ∗ is the classical Bayes decision
rule for the modified prior density g(θ) and satisfies following equality:∫

Λ
v(θ)

∫
Γ

C[φ∗(x), θ]pθ(x)dxdθ = max
θ∈Λ

∫
Γ

C[φ∗(x), θ]pθ(x)dx, (6)

then φ∗ is a solution of the optimization problem in Equation (5).

The proof is presented in the Appendix A. Theorem 1 indicates that the solution of the
unconstrained optimization problem in (5) is calculated as a classical Bayes decision rule for a
modified prior density under certain conditions. In other words, the optimization problem in (5)
can be equivalent to a classical Bayesian optimization problem for the modified prior distribution
g(θ) = λω(θ) + (1− λ)v(θ) if g(θ) satisfies the equality in (8).

Next, in order to illustrate the equivalence between the optimization problem in (5) and that in (2)
and (3), a proposition is developed as follows.

Proposition 1. Under the conditions in Theorem 1, φ∗ is also the solution of the optimization problem in
Equations (2) and (3) if max

θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx = α.

The proof is given in the Appendix A. Proposition 1 implies that if the decision rule φ∗ defined in
Theorem 1 meets the constraint in (3) with equality, then it also provides a solution for the restricted
Bayes optimization problem in (2) and (3). In other words, the minimum Bayes risk is achieved when
the maximum conditional risk for θ ∈ Λ is equal to the upper limit α. Theorem 1 and Proposition 1
also build a relationship between λ and α. For any λ, the achievable upper limit α can be calculated by
the equality in Proposition 1.

In addition, the modified prior distribution g(θ) specified in Theorem 1 is the least favorable
distribution among a family of pdfs, which have the same form with g(θ). Explicitly, the achievable
minimum Bayes risk corresponding to g(θ) specified in Theorem 1 is greater than or equal to that
corresponding to any other distribution with the pdf form of ĝ(θ) = λ̂ω(θ) + (1− λ̂)v̂(θ), where
λ̂ ≥ λ and v̂(θ) is any valid pdf. Theorem 2 further states this case.
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Theorem 2. Under the conditions in Theorem 1, the g(θ) specified in Theorem 1 maximizes the Bayes risk
among all probability distributions in the form of ĝ(θ) = λ̂ω(θ) + (1− λ̂)v̂(θ), where λ̂ ≥ λ and v̂(θ) is any
valid pdf. Equivalently:∫

Λ
g(θ)

∫
Γ

C[φ∗(x), θ]pθ(x)dxdθ ≥
∫

Λ
ĝ(θ)

∫
Γ

C[φ̂∗(x), θ]pθ(x)dxdθ, (7)

where φ∗ and φ̂∗ are the classical Bayes decision rules corresponding to g(θ) and ĝ(θ), respectively.

The proof is presented in the Appendix A. As pointed out in Theorem 2, since g(θ) is the least
favorable distribution, this property of g(θ) can be utilized to search its explicit expression. From
the definitions of g(θ) and ĝ(θ), λ is a special case of λ̂ and only the case of λ̂ = λ is concerned in
practical applications.

For the rest of this section, we first present the solution to the classical Bayes decision rule, and
then develop the algorithm for finding the g(θ) specified in Theorem 1 and the optimal decision rule
for the restricted Bayesian optimization problem.

3.2. Classical Bayes Decision Rule

As discussed above, the classical Bayes decision rule φ∗ corresponding to g(θ) can be expressed by:

φ∗ = min
φ

∫
Λ

g(θ)
∫

Γ
C[φ(x), θ]pθ(x)dxdθ = min

φ

∫
Λ

g(θ)Rθ(φ)dθ, (8)

where g(θ) = λω(θ) + (1− λ)v(θ). Since Rθ(φ) = Eθ{C[φ(x), θ]} = Eθ{C[φ(x), Θ̂]|Θ̂ = θ}, where
Θ̂ ∼ g(θ), the modified Bayes risk r̂(φ) is calculated by:

r̂(φ) =
∫

Λ
g(θ)Rθ(φ)dθ = E{Eθ{C[φ(x), Θ̂]|Θ̂ = θ}} = E{C[φ(x), Θ̂]}, (9)

where the last equality holds due to the use of the iterated expectation of E{B} = E{E{B|A}}.
Therefore, r̂(φ) can be simply viewed as the cost of using φ averaged over Θ̂ and x. By using the
iterated expectation again, r̂(φ) is rewritten as:

r̂(φ) = E{E{C[φ(x), Θ̂]|x}}. (10)

According to the Bayes lemma [11], the optimal decision rule to minimize r̂(φ) is expressed by:

φ∗(x) =


1 if E{C[1, Θ̂]|x = x} < E{C[0, Θ̂]|x = x}
0 or 1 if E{C[1, Θ̂]|x = x} = E{C[0, Θ̂]|x = x}
0 if E{C[1, Θ̂]|x = x} > E{C[0, Θ̂]|x = x}

. (11)

In many cases, the costs over sets Λ0 and Λ1 are uniform, i.e.:

C[i, Θ̂] = Cij, Θ̂ ∈ Λj. (12)

Usually, the cost of a right decision is less than that of a wrong one, i.e., C11 < C01 and C00 < C10.
Then (11) is simplified as:

φ∗(x) =


1 if L(x) > l0
0 or 1 if L(x) = l0
0 if L(x) < l0

, (13)
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where L(x) = P(Θ̂ ∈ Λ1|x = x)/P(Θ̂ ∈ Λ0|x = x), l0 = (C10 −C00)/(C01 −C11), and P(Θ̂ ∈
Λj|x = x) represents the conditional probability for Θ̂ ∈ Λj given that x = x. Based on the
total probability formula, P(Θ̂ ∈ Λj|x = x) is calculated by:

P(Θ̂ ∈ Λj|x = x) =
p(x|Θ̂ ∈ Λj)P(Θ̂ ∈ Λj)

p(x)
, (14)

where p(x) = ∑1
j=0 p(x|Θ̂ ∈ Λj)P(Θ̂ ∈ Λj), and P(Θ̂ ∈ Λj) =

∫
Λj

g(θ)dθ = p(Hj) denotes the

probability of Θ̂ ∈ Λj, j = 0, 1. Based on the notation introduced in [11], p(x|Θ̂ ∈ Λj) is given as:

p(x|Θ̂ ∈ Λj) =
∫

Λ
pθ(x)gj(θ)dθ, (15)

where gj(θ) denotes the pdf of Θ̂ given that Θ̂ ∈ Λj, and it is:

gj(θ) =

{
0 if θ /∈ Λj
g(θ)/p(Θ̂ ∈ Λj) if θ ∈ Λj

. (16)

Accordingly, Equation (13) is rewritten as:

φ∗(x) =


1 if

∫
Λ pθ(x)g1(θ)dθ > γ

∫
Λ pθ(x)g0(θ)dθ

0 or 1 if
∫

Λ pθ(x)g1(θ)dθ = γ
∫

Λ pθ(x)g0(θ)dθ

0 if
∫

Λ pθ(x)g1(θ)dθ < γ
∫

Λ pθ(x)g0(θ)dθ

, (17)

where γ = (p(H0)(C10 −C00))/(p(H1)(C01 −C11)). As a result, the classical Bayes decision rule
is specified by the observation densities of (15), which depends on the probability density of the
observation x and the conditional densities gj(θ), and the decision threshold is determined by the prior
probabilities p(Hj) and the costs over sets Λ0 and Λ1.

3.3. Algorithm for Finding the Restricted Bayes Decision Rule

Based on the analysis in Section 3.1, the function of g(θ) and the corresponding classical Bayes
decision rule φ∗ specified in Theorem 1 are required in order to solve the constrained optimization
problem in (2) and (3). It also implies that the explicit expression of v(θ) and the value of λ should be
determined in advance. To achieve this, the condition in Theorem 1 can be expressed as:∫

Λ
Rθ(φ

∗)v(θ)dθ = max
θ∈Λ

Rθ(φ
∗), (18)

with Rθ(φ
∗) =

∫
Γ C[φ∗(x), θ]pθ(x)dx. It is obvious that v(θ) assigns non-zero probabilities only for the

values of θ that correspond to the global maximum of Rθ(φ
∗) from Equation (18). In fact, there could

be unique, multiple or infinite number of maximizers that achieve global maximum. Therefore, in this
work, the solution of the optimization problem in Equations (2) and (3) is discussed under three cases
according to the number of the maximizers in the following subsection.

First, assume that Rθ(φ
∗) has a unique maximizer that achieves the global maximum, then v(θ)

can be expressed by:
v(θ) = δ(θ − θ1), (19)

where θ1 denotes the unique value of θ corresponding to the maximum Rθ(φ
∗) and δ denotes the Dirac

delta function, i.e., δ(x) =

{
∞ , x = 0
0 , x 6= 0

and
∫

δ(x)dx = 1. If φ∗ satisfies the conditions in Theorem

1 and Proposition 1, φ∗ is the solution of the restricted Bayesian optimization problem in (2) and (3).
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Based on this assumption, Algorithm 1 is developed to find the restricted Bayes decision rule φ∗ and θ1.

Algorithm 1. Restricted Bayes decision rule.

1: Initialize λinf = 0, λsup = 1 and λ = (λinf + λsup)/2.
2: Obtain Rθ(φ

∗
θ1
) =

∫
Γ C[φ∗θ1

(x), θ]pθ(x)dx for all θ1 ∈ Λ, where φ∗θ1
denotes the classical Bayes decision rule

corresponding to g(θ) = λω(θ) + (1− λ)δ(θ − θ1) as determined in Section 3.2.
3: Calculate:

θ∗1 = argmax
θ1∈Λ

}(θ1) (20)

where }(θ1) = λ
∫

Λ Rθ(φ
∗
θ1
)ω(θ)dθ + (1− λ)Rθ1 (φ

∗
θ1
) and Rθ1 (φ

∗
θ1
) =

∫
Γ C[φ∗θ1

(x), θ1]pθ1 (x)dx.
4: If Rθ∗1

(φ∗θ∗1
) 6= max

θ∈Λ
Rθ(φ

∗
θ∗1
), terminate this algorithm, reset v(θ) and restart the algorithm. When

Rθ∗1
(φ∗θ∗1

) = max
θ∈Λ

Rθ(φ
∗
θ∗1
), if the difference between max

θ∈Λ
Rθ(φ

∗
θ∗1
) and α is less than the predefined precision

value, φ∗θ∗1
is a solution of the restricted Bayes optimization problem in (2) and (3), and terminate the algorithm.

Otherwise, continue to the next step.
5: If max

θ∈Λ
Rθ(φ

∗
θ∗1
) > α, λ and λsup are replaced with (λ + λinf)/2 and λ, respectively. If max

θ∈Λ
Rθ(φ

∗
θ∗1
) < α, λ

and λinf are replaced with (λ + λsup)/2 and λ, respectively.
6: If the difference between λsup and λinf is less than the predefined precision value, terminate the algorithm
and reset v(θ) to restart the algorithm; else go to Step 2.

In Algorithm 1, Step 3 follows from Theorem 2 and Step 4 is developed according to Theorem 1
and Proposition 1. In Step 3, }(θ1) can be treated as the minimum Bayes risk without any constraints on
conditional risks corresponding to g(θ) = λω(θ) + (1− λ)δ(θ − θ1). It should be noted that the value
of λ is related to α through Proposition 1, and α increases with the increase of λ. Hence, the constraint α

can be achieved by adjusting the value of λ. For any θ∗1 that satisfies (20), if the corresponding classical
Bayes decision rule φ∗θ∗1

satisfies Rθ∗1
(φ∗θ∗1

) = max
θ∈Λ

Rθ(φ
∗
θ∗1
) and the difference between Rθ∗1

(φ∗θ∗1
) and α is

less than the predefined precision value, the θ∗1 is the maximizer that achieves the global maximum
of Rθ(φ

∗) and φ∗θ∗1
can be viewed as the solution of the restricted Bayes optimization problem in (2)

and (3). In addition, since the classical Bayes decision rule can be obtained based on Section 3.2 for
any valid g(θ), the solution of the restricted optimization problem in (2) and (3) exists as long as α is
properly defined. The effective interval of α will be discussed in Section 4.

Second, suppose that there are multiple values of θ corresponding to the global maximum of
Rθ(φ

∗), v(θ) should be expressed as:

v(θ) =
L

∑
l=1

ηlδ(θ − θl), (21)

where ηl ≥ 1,
L
∑

l=1
ηl = 1, L and θl denote the number and the value of θ that achieve the maximum

Rθ(φ
∗), respectively. For the convenience of analysis, let ` denote the vector of all unknown

components of v(θ), i.e.:
` = [(η1, θ1), . . . , (ηL, θL)]. (22)

In order to solve the restricted Bayes optimization problem in (2) and (3), the Step 3 should be
replaced by:

`∗ = argmax
`

}(`) = argmax
`

{
λ
∫

Λ
Rθ(φ

∗
` )ω(θ)dθ + (1− λ)

L

∑
l=1

ηl Rθl (φ
∗
` )

}
, (23)

where φ∗` represents the classical Bayes decision rule for the modified prior distribution g(θ) =λω(θ) +

(1− λ)∑L
l=1 ηlδ(θ − θl). Correspondingly, the condition in Step (4) should be updated by replacing
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Rθ∗1
(φ∗θ∗1

) and max
θ∈Λ

Rθ(φ
∗
θ∗1
) with R`∗(φ

∗
`∗) and max

`
R`(φ

∗
`∗), respectively. Obviously, compared with

the case where Rθ(φ
∗) has only one maximizer, the computational complexity of multiple maximizers

increases significantly. In such case, the global optimization algorithms such as the particle swarm
optimization algorithm (PSO) and the ant colony algorithm (ACO) can be utilized to find `∗ [26–28].

Finally, if there are infinitely many values of θ that correspond to the global maximum of Rθ(φ
∗),

it is difficult to obtain an accurate solution of the optimization problem in (2) and (3). In this case,
an approximate solution can be obtained by employing the Parzen window density estimation to
approximate the form of v(θ), where v(θ) is expressed approximately by a convex combination of
many window functions, given by:

v(θ) =
W

∑
l=1

τl ϕ(θ − θl), (24)

where τl ≥ 1,
W
∑

l=1
τl = 1, and ϕ denotes a window function which could be a Rectangular, Gauss, or

Cosine window function. In order to solve the optimization problem in (2) and (3), Algorithm 1 should
be updated by replacing ` and φ∗` with ` = [(τ1, θ1), . . . , (τW , θW)] and the classical Bayes decision rule

corresponding to g(θ) = λω(θ) + (1− λ)
W
∑

l=1
τl ϕ(θ − θl), respectively.

In real applications, it may be difficult to know all the exact values of θ that achieve the global
maximum of Rθ(φ

∗) in advance. The practical way is that we start with the assumption that there
is a unique θ that achieves the global maximum. Based on the assumption and Algorithm 1, θ∗1 and
the corresponding φ∗θ∗1

is obtained. If θ∗1 and φ∗θ∗1
satisfy the condition in Step 3, the restricted Bayes

optimization problem in (2) and (3) is solved. Otherwise, the number of θ which are assumed to
achieve the global maximum of Rθ(φ

∗) is increased incrementally until the φ∗` calculated through the
updated Algorithm 1 is verified as the solution of the restricted Bayes optimization problem.

4. Relationship between Bayes Risk and the Constraint

In this section, the relationship between Bayes risk and the constraint on the conditional risks
is explored. As the analysis in introduction, the constraint on the conditional risks is introduced
from the uncertainty of ω(θ). Generally speaking, the classical Bayesian criterion is considered to
minimize the average Bayes risk when ω(θ) is completely known, and the Minimax decision rule can
be utilized to minimize the worst-case (maximum) conditional Bayes risk if the prior information is
full of uncertainty. Therefore, the classical Bayesian and Minimax approaches can be viewed as two
extreme cases of the restricted Bayesian approaches.

For the notational simplicity, here we respectively denote the classical Bayes and the Minimax
decision rules by φo

b and φo
m, i.e.:

φo
b = argmin

φ

∫
Λ

Rθ(φ)ω(θ)dθ, (25)

φo
m = argmin

φ
max
θ∈Λ

Rθ(φ). (26)

Then define B = max
θ∈Λ

Rθ(φ
o
b) and M = max

θ∈Λ
Rθ(φ

o
m) as the maximum conditional risks achieved

by the classical Bayesian and Minimax decision rules, respectively. In addition, the restricted Bayes
decision rule where max

θ∈Λ
Rθ(φ) ≤ α is denoted by φα

r . From the definitions of φo
b , φo

m and φα
r , it should

be noted that r(φo
b) ≤ r(φα

r ) ≤ r(φo
m) and M ≤ max

θ∈Λ
Rθ(φ

α
r ) ≤ B.

According to the definition of the Minimax criterion, M is the achievable minimum of the
maximum conditional risk, which means that there is no solution for the optimization problem in
(2) and (3) if the value of α is less than M. On the other hand, it is obvious that the constraint on the
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conditional risks enforced by α is ineffective if α is greater than B. In other words, the restricted Bayes
optimization problem in (2) and (3) is equivalent to the Bayes optimization problem in (25) for any
α ≥ B. Namely φα

r = φo
b and r(φo

b) = r(φα
r ) if α ≥ B. As a result, α should be defined in the interval of

[M, B]; otherwise the constraint is ineffective or meaningless.
For the restricted Bayes optimization problem formulated in (2) and (3), the maximum conditional

risk max
θ∈Λ

Rθ(φ
α
r ) and the Bayes risk r(φα

r ) are closely related to the value of the constraint α. When

α ∈ [M, B], the following conclusion holds that:

max
θ∈Λ

Rθ(φ
α
r ) = α. (27)

A simple contradiction method can be used here to show this conclusion. Suppose that
max
θ∈Λ

Rθ(φ
α
r ) < α, and let φ = ξφα

r + (1− ξ)φo
b , where 0 ≤ ξ ≤ 1 and φo

b denotes a classical Bayes

decision rule obtained in (25), max
θ∈Λ

Rθ(φ
o
b) = B > α and r(φo

b) < r(φα
r ). There must exist a ξ such

that max
θ∈Λ

Rθ(φ) = α and r(φ) = ξr(φα
r ) + (1− ξ)r(φo

b) < r(φα
r ). Obviously, it contradicts with the

definition of φα
r . Therefore, the conclusion in (27) is true.

Based on the discussions above, the relationship between the restricted Bayesian decision rule
r(φα

r ) and the value of the constraint on the conditional risks is presented by the Theorem 3.

Theorem 3. The Bayes risk r(φα
r ) obtained by the restricted Bayes decision rule is a strictly decreasing and

convex function of α for α ∈ [M, B].

The proof is provided in the Appendix A. Theorem 3 implies the relationship between Bayes risk
and the constraint on conditional risks. Moreover, the value of α is closely related to the uncertainty
of ω(θ). In general, a smaller value of α should be specified for a greater degree of the uncertainty.
Therefore, based on these characteristics, one can predefine a suitable value of α to obtain the expected
Bayes risk in practice. In addition, the restricted optimization problem in (2) and (3) is analyzed and
solved in Section 3 from a special perspective that its solution is identical to a classical Bayes decision
rule with a modified prior distribution as presented in Theorem 1 and Proposition 1. For any fixed
prior distribution, the corresponding classical Bayes decision rule can be obtained from Section 3.2,
thereby the solution of the restricted optimization problem in (2) and (3) exists as long as α is properly
defined in [M, B] and can be obtained further by the algorithm in Section 3.3.

5. Numerical Results

In this section, a binary hypothesis-testing problem is studied to illustrate theoretical results. The
hypotheses are defined as: {

H0 : x = Θ + n, Θ ∈ Λ0

H1 : x = Θ + n, Θ ∈ Λ1
, (28)

where x ∈ R, Λ0 and Λ1 denote the sets of all possible values of parameter Θ under H0 and H1,
respectively, which are specified as Λ0 = {0} and Λ1 = {A,−A}, where A is a known constant. In
addition, n denotes a zero mean noise that is a mixture of Rayleigh distributed components; that is,

pn(n) =
N
∑

i=1
mi ϕi(n− µi), where mi ≥ 0 for i = 1, . . . , N,

N
∑

i=1
mi = 1, and:

ϕ(n) =

{
n
σ2

i
exp(− n2

2σ2
i
), n ≥ 0

0, n < 0
. (29)

In the numerical results, the same variance is assumed, i.e., σi = σ for i = 1, . . . , N. Furthermore,
the parameters are specified as N = 4, µ1 = 0.2, µ2 = 1, µ3 = −2σ

√
π
2 − 0.2, µ4 = −2σ

√
π
2 − 1, and

mi = 0.25 for i = 1, . . . , 4. Then the conditional pdf of x for a given value of Θ = θ can be expressed by:
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pθ(x) =
N

∑
i=1

mi ϕi(x− µi − θ). (30)

With the assumption, the detection problem in (28) is equivalent to the detection of a signal that
employs binary phase shift keying (BPSK). Accordingly, the probability distribution of Θ under H0 is
directly expressed as ω0(θ) = δ(θ). On the other hand, the probability distribution of Θ under H1 can
be modeled as:

ω1(θ) = ρδ(θ − A) + (1− ρ)δ(θ + A), (31)

where ρ is estimated based on the previous experiences, and it is known with some uncertainty due to
the presence of estimation errors. As a result, the probability distribution of Θ can be determined by:

ω(θ) =
1

∑
i=0

p(Hi)ωi(θ), (32)

where p(Hi) ≥ 0, ∑1
i=0 p(Hi) = 1 and p(Hi) denotes the prior probability of Hi for i = 0, 1.

In order to obtain the optimal restricted Bayesian decision rule, the prior distribution ω(θ) should
be modified via a pdf v(θ) according to Theorem 1. Since Λ = Λ0 ∪Λ1 = {0, A,−A}, the complete
form of v(θ) is expressed as:

v(θ) =
3

∑
i=1

tiδ(θ − θi), (33)

where t1, t2 and t3 are the respective weights assigned for θ1 = 0, θ2 = A and θ2 = A, ti ≥ 0 for
i = 1, . . . , 3 and ∑3

i=1 ti = 1.
First, it is assumed that any two of the three assigned weights are zero, i.e., v(θ) = δ(θ − θi).

By employing the algorithm based on (20), the optimal decision rule is obtained if the condition in
the third step is satisfied. Otherwise, we assume that only one of the three assigned weights is zero,
i.e., v(θ) = tδ(θ − θi) + (1− t)δ(θ − θj), where t = ti, θi, θj ∈ Λ, and θi 6= θj. In such a case, as t is
the only one unknown parameter in v(θ), the algorithm based on (21) and (22) is used to find the
value of t and the corresponding g(θ) = λω(θ) + (1− λ)v(θ) that maximizes the Bayes risk. If the
corresponding decision rule satisfies the condition in (23), it is the optimal restricted Bayesian rule
that we seek. Finally, if the condition is still not met in the second case, the v(θ) should be determined
as v(θ) = t1δ(θ) + t2δ(θ − A) + t3δ(θ + A) and ti 6= 0 for i = 1, . . . , 3. If we find the values of t1

and t2 that maximize the Bayes risk corresponding to g(θ), the optimal restricted Bayesian rule is
also obtained.

In Figure 1, the achievable minimum Bayes risks obtained by the restricted Bayesian decision rule
for different values of ρ are plotted against α, where p(H0) = 0.45, A = 2 and σ = 0.5. As analyzed
in Section 4, when α is equal to the Bayes risk of the Minimax decision rule, the restricted Bayesian
decision rule is identical to the Minimax decision rule. When α is smaller than the Bayes risk of the
Minimax decision rule, there is no restricted Bayesian decision rule that satisfies the limit established
by α. On the other hand, the detection performance of the restricted Bayesian decision rule is the same
with that of the classical Bayesian decision rule when α is greater than and equal to the maximum
conditional risk of the classical Bayesian decision rule. As expected, the lowest Bayes risks are obtained
by the classical Bayesian decision rule, but it also leads to the highest maximum conditional risk that
are 0.3456, 0.3657, 0.3816, 0.4131 and 0.4325 for ρ = 0.6, 0.65, 0.686, 0.75 and 0.8, respectively. On the
contrary, the Minimax decision rule achieves the lowest maximum conditional risk, but it produces the
worst Bayes risk. It should be noted that the conditional risks of the Minimax decision rule are equal
to each other, which are 0.2381.
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For the restricted Bayesian decision rule, the maximum conditional risk is equal to α except for
the linear part that corresponds to the classical Bayesian decision rule. In fact, the restricted Bayes
decision rule makes a tradeoff between the maximum conditional risk and Bayes risk, and generalizes
the Minimax and the classical Bayesian decision rules. It is also shown from the figure that with the
increase of ρ, the performance difference of the classical Bayesian and the Minimax decision rules
increases for ρ ≥ 0.5518. Specifically, the maximum conditional risk of the classical Bayesian decision
rule increases and the corresponding Bayes risk decreases as ρ increases. Furthermore, when α is
greater than the maximum conditional risk of the Minimax decision rule and smaller than that of the
classical Bayesian decision rule, the Bayes risk is a strictly decreasing and convex function of α. This
agrees with the conclusion made in Theorem 3. In addition, Figure 1 acts a guideline for the design of
α in practice by observing the corresponding Bayes risk for each α. Hence, instead of assigning a value
for α arbitrarily, Figure 1 can be utilized to choose a more appropriate α in practical problems.

Figure 2 compares the achievable lowest maximum conditional risk obtained by the restricted
Bayes decision rule and the corresponding Bayes risk versus λ in (5) for ρ = 0.6, 0.686 and 0.8, where
p(H0) = 0.45, A = 2 and σ = 0.5. The maximum conditional risk is equal to the Bayes risk for
0 ≤ λ ≤ 0.7036 when ρ =0.8, for 0 ≤ λ ≤ 0.8207 when ρ = 0.6 and ρ = 0.686. This shows that the
restricted Bayesian decision rules becomes identical to the Minimax decision rule when λ reduces
to less than or equal to a certain value. For convenience, this value is denoted by λm, and it is seen
that λm = 0.7036, 0.8207 and 0.8207 for ρ = 0.6, 0.686 and 0.8, respectively. In fact, the value of λm

increases from 0.7035 to 0.8207 when ρ decreases from 0.8 to 0.686 and maintains at 0.8207 when
ρ ∈ [0.6, 0.686]. In addition, when λ ≥ λm, the achievable lowest maximum conditional risk increases
and the corresponding Bayes risk decreases with the increase of λ. In order to further illustrate the
results in Figure 2, Tables 1–3 are provided to show the parameters of t1, t2 and t3 in v(θ), the maximum
conditional and Bayes risks of the restricted Bayesian decision rule for different values of λ for ρ = 0.6,
0.686 and 0.8.
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Table 1. The parameters of v(θ) and different risks for various λ when ρ = 0.6.

λ t1/t2/t3 R0/RA/R−A max
θ∈Λ

Rθ r(Œ∗)

1.0000 –/–/– 0.1188/0.2951/0.3456 0.3456 0.2269
0.9250 0/0/1 0.1474/0.2938/0.2974 0.2974 0.2287
0.8207 0/0.2162/0.7838 0.2381/0.2381/0.2381 0.2381 0.2381
0.7036 0.1777/0.2612/0.5611 0.2381/0.2381/0.2381 0.2381 0.2381
0.6500 0.2194/0.2717/0.5089 0.2381/0.2381/0.2381 0.2381 0.2381

Table 2. The parameters of v(θ) and different risks for various λ when ρ = 0.686.

λ t1/t2/t3 R0/RA/R−A max
θ∈Λ

Rθ r(Œ∗)

1.0000 –/–/– 0.1340/0.2632/0.3657 0.3456 0.2224
0.9250 0/0/1 0.1739/0.2402/0.3227 0.2974 0.2246
0.8207 0/0/1 0.2381/0.2381/0.2381 0.2381 0.2381
0.7036 0.1777/0.1489/0.6734 0.2381/0.2381/0.2381 0.2381 0.2381
0.6500 0.2194/0.1839/0.5967 0.2381/0.2381/0.2381 0.2381 0.2381

Table 3. The parameters of v(θ) and different risks for various λ when ρ = 0.8.

λ t1/t2/t3 R0/RA/R−A max
θ∈Λ

Rθ r(Œ∗)

1.0000 –/–/– 0.1839/0.1808/0.4325 0.4325 0.2099
0.9250 0/0/1 0.1964/0.1763/0.4049 0.4049 0.2105
0.8207 0/0/1 0.2212/0.1692/0.3583 0.3583 0.2134
0.7036 0.1777/0/0.8223 0.2381/0.2381/0.2381 0.2381 0.2381
0.6500 0.2194/0.0674/0.7131 0.2381/0.2381/0.2381 0.2381 0.2381

From the Tables 1–3, it is observed that the maximum conditional risk is always equal to the
conditional risk for Θ = −A. Actually, the maximum conditional risk can also be viewed as the
achievable minimum α. Since Θ = 0 is independent on ρ, the weight t1 of Θ = 0 in v(θ) is same
for each λ when ρ = 0.6, 0.686 and 0.8. Conversely, parameters of t2 and t3 change with ρ. In the
simulation results, the distribution of Θ based on the Minimax criterion can be calculated as ωm(θ) =

0.3693δ(θ) + 0.3096δ(θ − A) + 0.3211δ(θ + A). In order to achieve the same performance with the
Minimax decision rule, the ω(θ) in (31) should be modified by making g(θ) equal to ωm(θ), i.e.,
g(θ) = λω(θ) + (1 − λ)v(θ) = ωm(θ). For instance, as listed in Tables 1–3, v(θ) = 0.2162δ(θ −
A) + 0.7838δ(θ + A) and λ = 0.8207 for ρ = 0.6, v(θ) = δ(θ + A) and λ = 0.8207 for ρ = 0.686,
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v(θ) = 0.1777δ(θ) + 0.8223δ(θ + A) and λ = 0.7036 for ρ = 0.8. Therefore, Figure 2 and Tables 1–3
also provide a guideline to select a suitable value of λ.

Figure 3a plots the achievable minimum α obtained via the restricted Bayesian decision rule
versus σ for λ = 1, 0.8 and 0.6 when p(H0) = 0.45 and A = 2, and the corresponding minimum
Bayes risks are presented in Figure 3b. In general, with the increase of σ, the achievable minimum
α and the Bayes risk increase first, and then decrease to troughs, and increase gradually again, all
regardless of the values of λ. In fact, when λ = 1, the restricted Bayesian decision rule is identical
to the classical Bayesian decision rule. In addition, the maximum conditional risk is equal to α for
any λ, which agrees with the conclusion in (27). As expected, the classical Bayesian decision rule
achieves the highest maximum conditional risk and the minimum Bayes risk. It is also seen that the
maximum conditional risk decreases and the Bayes risk increases with the decrease of λ. In this case,
when λ = 0.6, it is the same with that of the Minimax decision rule when σ ∈ (0.26, 0.61), which
implies λm ≥ 0.6 for σ ∈ (0.26, 0.61). Similarly, the cases for λ ∈ (0.6, λm) are the same to that when
σ ∈ (0.26, 0.61). From Figure 3a,b, compared with the performance of the classical Bayesian decision
rules, the maximum conditional risks obtained via the restricted Bayesian decision rules decrease
significantly with much lower increase of the corresponding Bayes risks, especially for σ > 0.92 and
λ = 0.8. To clearly investigate the results in Figure 3, the restricted Bayes decision rules for different
cases are presented. It should be noted beforehand that the form of the optimal decision rule can be
determined as follows:

φ∗ =

{
1, x ∈ Γ1

0, otherwise
, (34)

where Γ1 represents a part of the sample space. The restricted Bayes decision rules, the constraint α

and the Bayes risks for different values of σ are provided in Tables 4–6 when λ = 1, 0.8 and 0.6.Entropy 2017, 19, 370  14 of 18 
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Figure 3. The achievable minimum α and the corresponding minimum Bayes risk as function of σ for
λ = 1, 0.8 and 0.6 in (a,b), respectively, when p(H0) = 0.45 and A = 2.

Table 4. The restricted Bayes decision rules, the achievable minimum α and the corresponding Bayes
risk for different σ when λ = 1.

σ Γ1 α r(Œ)

0.10 (−∞,−1.2508)∪(−0.9744,−0.4508)∪(0.7492,1.0086)∪(1.5492, ∞) 0.0087 0.0076
0.32 (−∞,−1.8020)∪(0.1986,0.2724)∪(0.9990,1.0486)∪(2.2000, ∞) 0.5001 0.2749
0.90 (−∞,−3.1154)∪(−0.9326,0.9838)∪(2.6262, ∞) 0.2147 0.1700
2.00 (−∞,−5.4212)∪(−2.5198,1.1780)∪(3.6814, ∞) 0.4523 0.2864
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Table 5. The restricted Bayes decision rules, the achievable minimum α and the corresponding Bayes
risk for different σ when λ = 0.8.

σ Γ1 α r(Œ)

0.10 (−∞,−1.2508)∪(−0.9776,−0.4508)∪(0.7492,1.0122)∪(1.5492, ∞) 0.0079 0.0077
0.32 (−∞,−1.8014)∪(0.1980,0.2832)∪(0.9990,1.0486)∪(2.2000, ∞) 0.5001 0.2750
0.90 (−∞,−3.0248)∪(−0.9674,0.9198)∪(2.6970, ∞) 0.1975 0.1715
2.00 (−∞,−4.9886)∪(−2.4148,1.4090)∪(3.7878, ∞) 0.3661 0.2916

Table 6. The restricted Bayes decision rules, the achievable minimum α and the corresponding Bayes
risk for different σ when λ = 0.6.

σ Γ1 ff r(Œ)

0.10 (−∞,−1.2508)∪(−0.9776,−0.4508)∪(0.7492,1.0122)∪(1.5492, ∞) 0.0079 0.0077
0.32 (−∞,−1.8012)∪(−1.3404,−1.0020)∪(−0.5420,0.4810)∪(0.9984,1.2714)∪(2.2000, ∞) 0.3323 0.3323
0.90 (−∞,−2.9516)∪(−0.9956,0.8524)∪(2.8002, ∞) 0.1867 0.1762
2.00 (−∞,−4.7802)∪(−2.1130,1.5476)∪(4.0936, ∞) 0.3337 0.3059

In Figure 4a, the achievable minimum values of α are plotted versus A for λ = 1, 0.8 and 0.6
when p(H0) = 0.45 and σ = 0.5, where the corresponding minimum Bayes risks are illustrated in
Figure 4b. Similarly, the decision rule for λ = 1 is identical to the classical Bayesian decision rule,
and the maximum conditional risk is equal to α. When A is small such as A ∈ (0, 0.2), the maximum
conditional risk decreases significantly with a small increase of the Bayes risk via the restricted decision
rule for both λ = 0.8 and 0.6. In general, a lower maximum conditional risk and a higher Bayes
risk can be obtained for a smaller value of λ, but it is not true if λ ∈ (λ, λm) according to the results
shown in Figure 2. Especially, the Bayes risk obtained via the restricted Bayes decision rule when
λ = 0.8 is almost equal to that obtained via the classical Bayes decision rule for some values of A,
while it decreases significantly when λ = 0.6. The difference between λ = 0.8 and 0.6 is especially
noticeable when A = 2.45. In addition, when A > 2.45, α and the Bayes risk decrease gradually to
zero as A increases.
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.

6. Conclusions

In this paper, the restricted Bayes decision rule is developed for a binary composite
hypothesis-testing problem with a partially known prior distribution. Generally, the prior distribution
is estimated based on previous information and is not completely accurate due to the estimate errors.
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In order to utilize the useful prior information, the Bayes risk is calculated based on the estimated
prior distribution. On the other hand, a constraint on the maximum conditional risk is applied to
alleviate the negative impact caused by the mismatch between the estimated prior distribution and
the correct one. By applying the Lagrange duality, the restricted Bayesian optimization problem is
transformed to an unconstrained optimization problem. Based on the transformation, Theorems are
derived to provide theoretical supports for the algorithms to find the optimal restricted Bayes decision
rule. Specially, an additional conclusion is made that the Bayes risk obtained via the restricted Bayes
decision rule is a strictly decreasing and convex function of the constraint on the maximum conditional
risk. In addition, the constraint should be defined in an appropriate interval, otherwise the constraint
is not effective. Finally, the numerical examples are provided to demonstrate the performance of the
proposed decision rule, which are consistent with theoretical results.

The classical Bayes and Minimax decision rules are usually used in two different scenarios from
the restricted Bayesian optimization problem, but they can be realized as two special cases of the
restricted Bayes decision rule by defining two proper values of the constraint. In fact, the classical
Bayesian decision rule achieves the lowest Bayes risk but with the highest maximum conditional risk,
whereas the Maximum decision rule obtains the lowest maximum conditional risk but with a worst
Bayes risk. By adjusting the constraint, the restricted Bayesian decision rule provides the ability to
keep the balance between the maximum conditional risk and the Bayes risk.
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Appendix

Proof of Theorem 1. It is obvious that:

λ
∫

Λ ω(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ C[φ(x), θ]pθ(x)dx

≥ λ
∫

Λ ω(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ + (1− λ)
∫

Λ v(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ

=
∫

Λ (λω(θ) + (1− λ)v(θ))
∫

Γ C[φ(x), θ]pθ(x)dxdθ

=
∫

Λ g(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ

, (A1)

where the first inequality holds as max
θ∈Λ

∫
Γ C[φ(x), θ]pθ(x)dx ≥

∫
Λ v(θ)

∫
Γ C[φ(x), θ]pθ(x)dxdθ. Since φ∗

is the classical Bayes decision rule, which minimizes the Bayes risk without any constraints for the
modified prior distribution of θ denoted by g(θ), one obtains:∫

Λ
g(θ)

∫
Γ

C[φ(x), θ]pθ(x)dxdθ ≥
∫

Λ
g(θ)

∫
Γ

C[φ∗(x), θ]pθ(x)dxdθ. (A2)

If
∫

Λ v(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ = max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx, the following equality holds

λ
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ)
∫

Λ v(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

= λ
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ C[φ ∗ (x), θ]pθ(x)dx . (A3)
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Therefore, φ∗ is a solution of the optimization problem in (5). Especially, the value of the expression
in (5) is always greater than or equal to (A3). �

Proof of Proposition 1. Based on the assumption in Theorem 1, φ∗ is the optimal decision rule to
minimize the value of the objective function in (5), which means:

λ
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx

≤ λ
∫

Λ ω(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ C[φ(x), θ]pθ(x)dx

. (A4)

Since max
θ∈Λ

∫
Γ C[φ(x), θ]pθ(x)dx ≤ α holds due to the constraint on the conditional risks

in (6) and max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx = α holds based on the assumption in the corollary,∫

Λ ω(θ)
∫

Γ C[φ(x), θ]pθ(x)dxdθ should be greater than or equal to
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ in
order to satisfy the inequality in (A4). Therefore, φ∗ is the optimal decision rule that minimizes the
Bayes risk under the constraint on the conditional risks if max

θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx = α. In other

words, φ∗ is a solution of the optimization problem in (2) and (3). �

Proof of Theorem 2. Under the conditions in Theorem 1, the minimum Bayes risk corresponding to
g(θ) is expressed as:∫

Λ g(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

= λ
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ)
∫

Λ v(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

= λ
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ)max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx

, (A5)

where the second equality holds according to the condition (6) in Theorem 1. Since∫
Λ ω(θ)

∫
Γ C[φ∗(x), θ]pθ(x)dxdθ ≤ max

θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx, one finds:

∫
Λ g(θ)

∫
Γ C[φ∗(x), θ]pθ(x)dxdθ

≥ λ̂
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ̂)max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx

≥ λ̂
∫

Λ ω(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ + (1− λ̂)
∫

Λ v̂(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

=
∫

Λ (λ̂ω(θ) + (1− λ̂)v̂(θ))
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

=
∫

Λ ĝ(θ)
∫

Γ C[φ∗(x), θ]pθ(x)dxdθ

≥
∫

Λ ĝ(θ)
∫

Γ C[φ̂∗(x), θ]pθ(x)dxdθ

(A6)

for any λ̂ ≥ λ, where the second inequality follows from max
θ∈Λ

∫
Γ C[φ∗(x), θ]pθ(x)dx ≥

∫
Λ v̂(θ)∫

Γ C[φ∗(x), θ]pθ(x)dxdθ, and the last inequality holds based on the definition of φ̂∗. Therefore, g(θ)
specified in Theorem 1 is the least favorable distribution that maximizes the Bayes risk among all the
probability distributions in the form of ĝ(θ) = λ̂ω(θ) + (1− λ̂)v̂(θ) for λ̂ ≥ λ. �

Proof of Theorem 3. According to the definition of the restricted Bayes optimization problem
formulated in (A), r(φα

r ) is a non-increasing function in terms of α. First, we shall use the contradiction
method to prove the strictly decreasing property of r(φα

r ). Suppose that M ≤ α1 ≤ α2 ≤ B and
r(φα1

r ) = r(φα2
r ). Actually, φα2

r is a restricted Bayes rule corresponding to α1, which means max
θ∈Λ

Rθ(φ
α2
r )

= α1 < α2. Obviously, it contradicts with the conclusion in (27). Hence, r(φα1
r ) ≥ r(φα2

r ) must
be satisfied.

Next, we shall prove the convexity of r(φα
r ) over α ∈ [M, B] by defining a decision rule φ as follows:

φ = ξφα1
r + (1− ξ)φα2

r , (A7)
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where 0 ≤ ξ ≤ 1, M ≤ α1 ≤ α2 ≤ B, φα1
r and φα2

r denote the restricted Bayes decision rules
corresponding to the constraint α = α1 and α = α1, respectively. The conditional risks for θ ∈ Λ and
the Bayes risk corresponding to φ are respectively calculated by:

Rθ(φ) = ξRθ(φ
α1
r ) + (1− ξ)Rθ(φ

α2
r ), (A8)

r(φ) = ξr(φα1
r ) + (1− ξ)r(φα2

r ), (A9)

From (A8), the maximum conditional risk is upper bounded by:

max
θ∈Λ

Rθ(φ) = max
θ∈Λ
{ξRθ(φ

α1
r ) + (1− ξ)Rθ(φ

α2
r )}

≤ ξmax
θ∈Λ

Rθ(φ
α1
r ) + (1− ξ)max

θ∈Λ
Rθ(φ

α2
r )

= ξα1 + (1− ξ)α2

, (A10)

where the last equality holds according to (27). Let αo = max
θ∈Λ

Rθ(φ) and α̂ = ξα1 + (1 − ξ)α2,

one obtains:
r(φ) ≥ r(φαo

r ) ≥ r(φα̂
r ), (A11)

where the first inequality is satisfied since φαo
r is the optimal decision rule that minimizes the Bayes

risk under the constraint α = αo on the conditional risks, and the last inequality holds since r(φα
r ) is

non-increasing with respect to (w.r.t.) α. Therefore, r(φα
r ) is a strictly decreasing and convex function

of α for α ∈ [M, B]. �

References

1. Madadi, Z.; Anand, G.V.; Premkumar, A.B. Signal detection in generalized gaussian noise by nonlinear
wavelet denoising. IEEE Trans. Circuits Syst. I 2013, 60, 2973–2986. [CrossRef]

2. Cao, J.; Lin, Z. Bayesian signal detection with compressed measurements. Inf. Sci. 2014, 289, 241–253.
[CrossRef]

3. Higger, M.; Akcakaya, M.; Nezamfar, H.; LaMountain, G.; Orhan, U.; Erdogmus, D. A Bayesian framework
for intent detection and stimulation selection in SSVEP BCIs. IEEE Signal Process. Lett. 2015, 22, 743–747.
[CrossRef]

4. Cheng, Q.; Zhou, H.; Cheng, J.; Li, H. A Minimax framework for classification with applications to images
and high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2117–2130. [CrossRef] [PubMed]

5. Alhakim, R.; Raoof, K.; Simeu, E. Detection of UWB signal using dirty template approach. Signal Image
Video Process. 2014, 8, 549–563. [CrossRef]

6. Shevlyakov, G.; Shin, V.; Lee, S.; Kim, K. Asymptotically stable detection of a weak signal. Int. J. Adapt.
Control Signal Process. 2014, 28, 848–858. [CrossRef]

7. Morey, R.D.; Wagenmakers, E.J. Simple relation between Bayesian order-restricted and point-null hypothesis
tests. Stat. Probab. Lett. 2014, 92, 121–124. [CrossRef]

8. Ciuonzo, D.; Romano, G.; Rossi, P.S. Channel-aware decision fusion in distributed MIMO wireless sensor
networks: Decode-and-fuse vs. decode-then-fuse. IEEE Trans. Wirel. Commun. 2012, 11, 2976–2985.
[CrossRef]

9. Rossi, P.S.; Ciuonzo, D.; Romano, G. Orthogonality and Cooperation in Collaborative Spectrum Sensing
through MIMO Decision Fusion. IEEE Trans. Wirel. Commun. 2013, 12, 5826–5836. [CrossRef]

10. Bayram, S.; Gezici, S. On the restricted Neyman–Pearson approach for composite hypothesis-testing in
presence of prior distribution uncertainty. IEEE Trans. Signal Process. 2011, 59, 5056–5065. [CrossRef]

11. Poor, H.V. An Introduction to Signal Detection and Estimation; Springer: New York, NY, USA, 1994.
12. Strawderman, W.E. Minimaxity. J. Am. Stat. Assoc. 2000, 95, 1364–1368. [CrossRef]
13. Lehmann, E.L. Some history of optimality. Lect. Notes Mono-Graph Ser. 2009, 57, 11–17.

http://dx.doi.org/10.1109/TCSI.2013.2252476
http://dx.doi.org/10.1016/j.ins.2014.08.010
http://dx.doi.org/10.1109/LSP.2014.2368952
http://dx.doi.org/10.1109/TPAMI.2014.2327978
http://www.ncbi.nlm.nih.gov/pubmed/26353055
http://dx.doi.org/10.1007/s11760-013-0554-y
http://dx.doi.org/10.1002/acs.2405
http://dx.doi.org/10.1016/j.spl.2014.05.010
http://dx.doi.org/10.1109/TWC.2012.061912.112049
http://dx.doi.org/10.1109/TWC.2013.092013.130279
http://dx.doi.org/10.1109/TSP.2011.2153846
http://dx.doi.org/10.1080/01621459.2000.10474349


Entropy 2017, 19, 370 18 of 18

14. Begum, N.; King, M.L. A new class of test for testing a composite null against a composite alternative
hypothesis. In Proceedings of the Australasian Meeting of the Econometric Society, Brisbane, Australia,
3–6 July 2007.

15. Van Trees, H.L. Detection, Estimation, and Modulation Theory: Part I, 2nd ed.; Wiley: New York, NY, USA, 2001.
16. Ciuonzo, D.; Maio, A.D.; Orlando, D. On the Statistical Invariance for Adaptive Radar Detection in Partially

Homogeneous Disturbance Plus Structured Interference. IEEE Trans. Signal Process. 2016, 65, 1222–1234.
[CrossRef]

17. Blum, J.R.; Rosenblatt, J. On partial a priori information in statistical inference. Ann. Math. Stat. 1967, 38,
1671–1678. [CrossRef]

18. Hodges, J.L., Jr.; Lehmann, E.L. The use of previous experience in reaching statistical decisions.
Ann. Math. Stat. 1952, 23, 396–407. [CrossRef]

19. Robbins, H. An empirical Bayes approach to statistics. In Proceedings of the 3rd Berkeley Symposium
on Mathematical Statistics and Probability 1, Berkeley, CA, USA, December 1954–July & August 1955;
pp. 157–164.

20. Robbins, H. The empirical Bayes approach to statistical decision problems. Ann. Math. Stat. 1964, 35, 1–20.
[CrossRef]

21. Savage, L.J. The Foundations of Statistics, 2nd ed.; Dover: New York, NY, USA, 1972.
22. Watson, S.R. On Bayesian inference with incompletely specified prior distributions. Biometrika 1974, 61,

193–196. [CrossRef]
23. Caticha, A.; Preuss, R. Maximum entropy and Bayesian data analysis: Entropic prior distributions.

Phys. Rev. E 2014, 70. [CrossRef] [PubMed]
24. Palmieri, F.A.N.; Ciuonzo, D. Objective priors from maximum entropy in data classification. Inf. Fusion 2013,

14, 186–198. [CrossRef]
25. Varshney, K.R.; Varshney, L.R. Optimal Grouping for Group Minimax Hypothesis Testing. IEEE Trans.

Inf. Theory 2014, 60, 6511–6521. [CrossRef]
26. Parsopoulos, K.E.; Vrahatis, M.N. Particle Swarm Optimization Method for Constrained Optimization Problems;

IOS Press: Amsterdam, The Netherlands, 2002; pp. 214–220.
27. Hu, X.; Eberhart, R. Solving constrained nonlinear optimization problems with particle swarm optimization.

In Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, USA,
14–18 July 2002.

28. Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization;
Springer: New York, NY, USA, 2005.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSP.2016.2620115
http://dx.doi.org/10.1214/aoms/1177698602
http://dx.doi.org/10.1214/aoms/1177729384
http://dx.doi.org/10.1214/aoms/1177703729
http://dx.doi.org/10.1093/biomet/61.1.193
http://dx.doi.org/10.1103/PhysRevE.70.046127
http://www.ncbi.nlm.nih.gov/pubmed/15600480
http://dx.doi.org/10.1016/j.inffus.2012.01.012
http://dx.doi.org/10.1109/TIT.2014.2346194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Restricted Bayes Decision Rule 
	Characteristics of the Restricted Bayes Decision Rule 
	Classical Bayes Decision Rule 
	Algorithm for Finding the Restricted Bayes Decision Rule 

	Relationship between Bayes Risk and the Constraint 
	Numerical Results 
	Conclusions 
	

