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Abstract: Sharing of radio spectrum between different types of wireless systems (e.g., different
service providers) is the foundation for making more efficient usage of spectrum. Cognitive radio
technologies have spurred the design of spectrum servers that coordinate the sharing of spectrum
between different wireless systems. These servers receive information regarding the needs of each
system, and then provide instructions back to each system regarding the spectrum bands they may
use. This sharing of information is complicated by the fact that these systems are often in competition
with each other: each system desires to use as much of the spectrum as possible to support its users,
and each system could learn and harm the bands of the other system. Three problems arise in such a
spectrum-sharing problem: (1) how to maintain reliable performance for each system-shared resource
(licensed spectrum); (2) whether to believe the resource requests announced by each agent; and (3)
if they do not believe, how much effort should be devoted to inspecting spectrum so as to prevent
possible malicious activity. Since this problem can arise for a variety of wireless systems, we present
an abstract formulation in which the agents or spectrum server introduces obfuscation in the resource
assignment to maintain reliability. We derive a closed form expression for the expected damage that
can arise from possible malicious activity, and using this formula we find a tradeoff between the
amount of extra decoys that must be used in order to support higher communication fidelity against
potential interference, and the cost of maintaining this reliability. Then, we examine a scenario where
a smart adversary may also use obfuscation itself, and formulate the scenario as a signaling game,
which can be solved by applying a classical iterative forward-induction algorithm. For an important
particular case, the game is solved in a closed form, which gives conditions for deciding whether
an agent can be trusted, or whether its request should be inspected and how intensely it should be
inspected.

Keywords: spectrum sharing; signaling games; bayesian games

1. Introduction

Cognitive radio (CR) networks are being explored as a powerful tool to improve spectrum
efficiency by allowing unlicensed (secondary) users (SUs) to use spectrum belonging to a licensed
(primary) user (PU) as long as they do not cause interference. Towards this end, the concept of a
spectrum server has been introduced to improve the sharing of spectrum [1–3]. Spectrum servers
coordinate the sharing of spectrum between different wireless services by taking in resource requests
(i.e., an amount of bands needed), and then allocating resource assignments to these services.
Unfortunately, the open and dynamic nature of CR platforms and their software, which allow for
opportunistic access to the licensed spectrum by potentially unknown users, makes the operation
of CR networks and their associated dynamic spectrum access protocols vulnerable to exploitation
and interference. In particular, transmission reservation protocols, by which services (or users)
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request spectrum from a spectrum server and thereby support the opportunistic usage of spectrum by
secondary users, assume that the entities involved in the protocols are honest. These protocols can
fail if malicious services/users aim to undermine the rules and etiquette surrounding these protocols.
Such malicious manipulation is unfortunately easy and, for this reason, CR security has attracted
considerable research attention recently. A reader can find comprehensive surveys of such threats
in [4–7].

A curious reader might also ask: if opportunistic access to licensed spectrum by unknown users
can be dangerous to the network, why not to restrict such access? The issue is that such access,
as pointed out in the the National Broadband Plan [8] and in the President’s Council of Advisors
on Science and Technology (PCAST) report [9], represents an important economic growth engine
in the United States. In particular, this report recommended the sharing of underutilized federal
spectrum and identified 1000 MHz of spectrum as part of an ambitious endeavor to create ”the first
shared-use spectrum superhighways”. Consequently, it is very important to develop a foundational
understanding of the interference implications associated with spectrum access, and how spectrum
bands can be assigned so as to mitigate intentional interference caused by malicious participants
exploiting the information shared in a spectrum assignment.

In many scenarios involving spectrum sharing, the underlying spectrum resources (which might
be spectral bands, or spectro-temporal slots) might originally be assigned to one entity (as in the case
of TV white space spectrum), and it is the role of a spectrum server to support the sharing of spectrum
with a second untrusted entity. The spectrum server, which might be administered by the government
or a neutral third party, receives resource requests from both a primary/incumbent entity as well as
the second entity, and aims to re-assign the spectrum so as to support an improved, combined benefit
for both entities. Since the entities do not trust each other, the sharing of spectrum inherently becomes
a competitive scenario that encounters numerous security risks as each system desires to use as much
spectrum as possible to support its users, and each system could learn and cause harm (interference)
to the bands assigned to the other system. Consequently, there are three main problems that arise in
such a spectrum sharing problem: (1) how to maintain reliable performance for each system-shared
resource (licensed spectrum); (2) whether to believe the resource requests announced by each agent;
and (3) if they do not believe, how much effort should be devoted to inspecting spectrum so as to
prevent possible malicious activity. In this paper, we present analysis that is focused on improving
the security and assurability of the spectrum sharing problem by applying the notion of decoy tasks,
i.e., obfuscating spectrum resource requests. Through our analysis, we show that it is possible to
determine the expected damage that might result from a potential malicious activity, and arrive at an
estimate for the probability of detecting the malicious activity by employing ”spectrum inspection”.
Based on these probabilities, we then formulate a signaling game that allows one to determine whether
to believe the second agent or not, and then how to engage in spectrum inspection. Since this type
of problem can arise in many different scenarios involving spectrum sharing, such as the sharing
of spectrum in cognitive radio networks or the sharing of unlicensed bands between two wireless
carriers/technologies or the sharing between radar and communication systems [10–12], we formulate
the problem abstractly as one involving two agents and a set of spectrum bands.

When considering dynamic spectrum sharing in a potentially adversarial setting, there is an
underlying competitive problem to consider: multiple users compete for the spectrum resources
and, regardless of whether they are malicious or not, there may not be any incentive for them to
communally cooperate and remain within the bands that have been assigned to them. Game theory is
an appropriate tool to analyze such competitive problems. In [13], the readers can find a comprehensive
overview of game theoretical techniques for dynamic spectrum sharing problems, which maps out
the problem of primary users sharing spectrum with well-intentioned secondary users, with a focus
on the auctioning of spectrum. An excellent reference book involving game theory for wireless and
communication networks is [14]. Our work differs from the problems outlined in both of these surveys
as our problem involves a secondary user that has two objectives (a beneficial and an adversarial
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intent), and thus our formulation will involve adversarial rewards involving the harm inflicted upon
the primary user. Since our work explores the sharing of information between different organizations
while facing attacks, one of the most relevant examples game-theoretical methods to model security
problems is [15], where a Cournot-type model based on a contest success function was suggested to
model investments into information security technologies where the firms share information resources.
While information sharing can, on one hand, can increase economic benefits, on the other hand, it also
creates new possibilities for adversaries aimed to perform security threats such as cyber attacks. While
this work considers many motivating scenarios for two firms exchanging information, it is specifically
focused on cyber security threats originating from an external, third agent and the impact that third
agent can have upon the sharing of information between two firms. Our problem, on the other hand,
considers one of the two participants having both a beneficial and harmful objective, and consequently
its models do not extend directly to our communication problem where the secondary user can inflict
wireless interference. In [16], a signaling game was proposed to model defense against attacks in
honeypot-enabled networks. In this game, the attacker may try to deceive the defender by employing
different types of attacks, ranging from suspicious to seemingly normal activity, while the defender
in turn can make use of honeypots as a deception tool to trap the attacker. In our paper, a spectrum
server announces decoys as a means to protect the primary user from interference attacks from a
secondary user that may or may not choose to attack, but these decoys are not used as a means to dupe
the adversary into attacking. In [17], a repeated spectrum-sharing game with cheat-proof strategies
was investigated. By using a punishment-based repeated game, users are incentivized to share the
spectrum in a cooperative way; and through mechanism-design-based and statistics-based approaches,
user honesty is further enforced. Our work differs from this paper in that the objective of the secondary
user is two-fold: both to acquire an appropriate amount of channels to support its users, and to increase
its ability to launch an interference attack against the primary user. In this regard, our work includes
interference as a reward metric for the secondary user system. In [18], the authors explore the problem
of a coalition of users communicating in the presence of an adversary that may apply different types of
jamming strategies, and whether it is possible to learn the adversary type. A game-theoretical approach
is used to show that it is possible to learn the adversary’s strategy in a finite number of steps. This work
involves a general fading channel and power allocation formulation and does not involve a spectrum
server allocating channels, and the objective of the communicating nodes is to identify the adversary’s
strategy. In [19], using a fictitious game for analyzing the defense of cognitive radio networks against
an unknown jamming attacker was proposed, and the defense strategy employed is to switch channels
in order to evade the jammer. Our work differs in that their adversary is separate from the secondary
users (as opposed to being a secondary user), and the primary user is considered apart from the conflict.
In particular, they do not consider aspects related to sharing between the primary and secondary user,
nor that secondary users may have malicious intentions against the primary user. In [20] a game,
where a SU shares time between law-obedient message transmission and noise-transmission to jam the
PU, was suggested. This work is similar to our work in that it considers a secondary user that has both
a benevolent and an interference objective. However, this work differs in two key aspects: first, the
overall objectives are to maximize data rates; and, second, the secondary user employs jamming (noise
forwarding) not to harm the primary user, but to nudge the primary user to adjust its power allocation
to allow the secondary user to achieve a minimum data rate. Our work, however, explicitly considers
that the secondary user has an adversarial intent underlying the use of interference. In [21], the
resilience of LTE networks against smart jamming attacks was modeled, and represents an important
example of where spectrum sharing is being proposed. A one-time spectrum coexistence problem in
dynamic spectrum access when the secondary user may be malicious was investigated in our prior
work in [22]. While that work is similar to the work presented here, an important difference in the
current work is that the current work includes the introduction of additional functions that legitimate
agents can use to defend themselves against the false announcements and interference introduced by
the adversary. In particular, the current work goes beyond the interference tradeoffs explored in [22],
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to include in the game the potential for each agent to believe/dis-believe the information being shared,
and to give the primary user the ability to inspect the spectrum activities of a secondary user. Notably,
in the current work, the costs associated with inspecting and the fine/penalty for the secondary user
to be caught making a fraudulent resource request are integrated into the interference formulation,
leading to the determination of the equilibria with respect to the amount of channels being shared and
underlying costs for both sides associated with protecting and attacking spectrum sharing.

It must be recognized that the objective behind an adversaries strategy depends significantly
on the objective of the adversary, and such knowledge can lead to better defenses. For example, the
detection of the intruder with uncertainty about the application being used was investigated in [23].
Packet-dropping attacks were studied in [24]. As further examples of game theory being applied to
security and communication problems, we briefly mention [25] as a reference involving modeling
malicious users in collaborative networks , [26] as a reference in which entities share information
while engaged in information warfare, [27] for modeling attack-type uncertainty in a network, [28] for
security threats involving multiple users in ad hoc networks, and [29] for resource attacks in networks
using the ALOHA protocol. How secret communication can be affected by the fact that an adversary’s
capability to eavesdrop on a collection of communications from a base station to a set of users may
be restricted and unknown to the transmitter was investigated in [30]. Problems related to spectrum
scanning have been presented in [31,32], where the objective is to develop spectrum-scanning strategies
that support the detection of a user illicitly using spectrum, and [33] for detecting attacks aimed at
reducing the size of spectrum opportunities in a dynamic spectrum-sharing problem. [34] studied the
interactions between a user and a smart jammer regarding their respective choices of transmit power
in a general wireless setting, while [35,36] considered problems related to game theory and network
security, While these references are not directly relevant to the spectrum allocation problem explored
in this paper, these references help motivate the work that we present in this paper.

The organization of this paper is as follows: in Section 2 and in two its subsections, we introduce
the tradeoff that exists between supporting the PU’s communication’s reliability and the cost of such
reliability. We formulate this tradeoff as two-step game and obtain an explicit solution to the game.
In Section 2, we formulate and solve a signaling game that examines a different trade-off problem,
namely, whether it is too costly/risky to believe the spectrum request originating from the potentially
malicious SU and, if not, then to engage in verification of the SU request. In Section 4, conclusions
are presented.

2. Trade off between Communication Reliability and Its Cost

We begin by presenting a general, universal dynamic access problem through which many
practical coordinated spectrum sharing cases may be examined. Our universal dynamic spectrum
access problem is depicted in Figure 1. In this scenario, there are n spectrum resources, which we shall
refer to as bands (e.g., these may be actual frequency bands, or time-frequency slots in the context of
radio resource scheduling) that are available for usage by two different players, the primary user (PU)
and the secondary user (SU). These n bands are administered by a spectrum owner SO, whose objective
is two-fold: first, it aims to support the improved usage of the n bands collectively by both the PU and
SU; and, second, it is responsible for supporting the reliable communication of the PU in the presence
of a SU, who might be malicious. The PU wants to reliably communicate with a set of nP users using
nP bands, where the PU uses a single band for each user. The SU, similarly, must support reliable
communication with a set of nT users using nT bands, where nT + nP < n and n is the total number
of bands available for sharing. The SU, similarly, needs to only use a single band for each of its users.
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Figure 1. A universal spectrum access scenario that will be used to generically model the information
obfuscation problem associated with spectrum sharing. Here, the coordination between a primary user
(PU) and a secondary user (SU) is administered through a spectrum owner (SO) that acts as a spectrum
server.

In the context of our problem, the SO may be thought of as a spectrum server that takes
information related to each side’s resource requests, and appropriately shares such information
with other participants. The conduit of information being shared between the PU and the SO,
and the SU and SO is an example of a spectrum underlay, and many practical approaches have
been proposed for implementing such a spectrum coordination system. For example, in the context
of coordinating between two different LTE providers aiming to share spectrum, the X2 interface is a
peer-to-peer channel that supports inter-cell interference coordination (ICIC) in LTE, and one could
propose extensions to X2 and ICIC standard that would support coordination between different LTE
systems and a spectrum server. Alternatively, one could employ the operations, administration and
management (OAM) interface that has been used as the basis for building a connection between
self-organizing network controllers and eNB scheduling agent software to gain access to schedule
and MAC layer functions. Similar approaches to cellular coordination have already been prototyped
and validated using software-defined networking interfaces, such as that presented in [37]. The SU
might be law-obedient (with probability q0) and then he will use only the bands reserved for him, or
he might be malicious (with probability q1 = 1− q0) and, in this case he could try to harm the PU’s
communication (e.g., by jamming). The SO has limited knowledge of the SU’s interference capabilities.
To reflect this, the SO only knows that the SU can interfere with nA signals. The SO has to reserve bands
for use by the PU and the SU. The SU knows which bands are reserved for him and which are reserved
for the PU. Without loss of generality we can assume that the SO reserves bands [n− nT + 1, n] for
the SU’s communication. Thus, the SO has to reserve a set of bands for the PU within [1, n − nT ]

bands. The number of bands reserved for the PU’s usage should be larger than nP in order to reduce
the probability that the SU can interfere with the PU’s legitimate signals—in essence, the PU’s real
allocation has been privacy-enhanced with the announcement of additional, decoy channels.

To reflect the fact that there might be a cost associated with introducing uncertainty in order
to maintain communication reliability, we present a cost model that we will use in this paper for
introducing uncertainty. We assume that when the SO reserves extra bands as decoys for the PU
(beyond what it needs to support its users), such reservation costs CU per band. The SO is thus faced
with a dilemma: on one hand, more bands reserved for the PU increase communication reliability (it
becomes harder for the SU to guess successfully interfere with actual communication signals). On the
other hand, the costs associated with maintaining this higher level of communication reliability are
increased. Thus, the SO has to make a tradeoff between the PU communication reliability and its
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cost. We will formulate and solve this problem as a two-step game between the SO and the SU in the
following two subsections.

2.1. First Step of the Game: To Make the Trade off between Communication’s Reliability and Its Cost

In the first step of the game, to establish the tradeoff between communication reliability and the
cost of obfuscation associated with increasing communication reliability, we assume the number of
bands (decoys) c, reserved for increasing the domain of uncertainty, is fixed. Without loss of generality
we can assume that bands [1, nP + c] are reserved for the PU, and the SU knows these bands. The PU
has to support reliable communication with nP users. The actual band assigned to each such user is
fixed and known only to the PU. Without loss of generality we can assume that the bands for these nP
users are allocated within the bands [1, n− nT ], and there is no way for the SU to ascertain whether an
announced channel will be used or whether it will be a decoy channel. Further, we suppose that the
SU is malicious and could try to interfere with the PU’s communication by using a jamming capacity
of nA signals, where each interference signal can reside in only a single band.

A (pure) strategy Y of the SU is a subset of nA bands out of the set of [1, nP + c] bands reserved
for the PU’s communication purposes, i.e., |Y| = nA. Then, a (pure) strategy X of the SO is a subset
of nP bands from the bands [1, nP + c], i.e., |X| = nP, which were assigned to the PU for transmitting
communication signals. The payoff to the SO is the number of successfully transmitted (un-jammed)PU
signals, i.e.,

vSO(X, Y) = |X\Y|, (1)

namely bands that the PU employed that were not also selected by the SU. We look for a saddle point
(an equilibrium strategy) [38], i.e., for a pair of strategies (X∗, Y∗) such that,

vSO(X, Y∗) ≤ vSO(X∗, Y∗) ≤ vSO(X∗, Y), (2)

where v = vSO(X∗, Y∗) is the value of the game.
Since nT + nA < n, for each SU strategy Y∗ there is an SO strategy X such that X ∩Y∗ is the empty

set. Thus, by (1) and (2), the value of the game is greater or equal to nP. On the other hand, for each
SO strategy X∗ there is an SU strategy Y such that X∗ ∩Y is not empty. Thus, by (1) and (2), the value
of the game is smaller than nP. This implies that the game does not have an equilibrium involving
pure equilibrium strategies, i.e., where specific sets are chosen. To solve for an equilibrium, we have to
employ mixed strategies, which involves randomizing the selection of pure strategies. The following
proposition gives the value of the game and equilibrium strategies.

Proposition 1. The value of the first step of the considered game is,

TnP+c
nP ,nA = nP

(
1− nA

nP + c

)
, (3)

and a saddle point is (XnP ,[1,nT+c], YnA ,[1,nP+c]), where,

(1) XnP ,[1,nP+c] is a (mixed) strategy of the SO in which the SO chooses to assign to the PU nP bands at
random with equal probability from the total set of [1, nP + c] bands reserved for the PU’s communication.
There are (nP+c

nP
) subsets of nP + c bands consisting of nP bands. Thus, the strategy XnP ,[1,nP+c] chooses

each such subset with probability 1/(nP+c
nP

). ((n
p) =

n!
(n−p)!p! is the number of combinations of p objects

selected out of n objects.)
(2) YnA ,[1,nP+c] is a (mixed) strategy of the SU that involves choosing at random nA bands with equal

probability from the full set of [1, nP + c] bands. There are (nP+c
nA

) subsets of nP + c bands consisting of nA

bands. Thus, the strategy YnA ,[1,nP+c] chooses each such subset with probability 1/(nP+c
nA

).
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Also, we note that XnP ,[1,nP+c] and YnA ,[1,nP+c] are equalizing strategies, i.e., for any SU’s pure strategy Y
and SO’s pure strategy X the following equalities hold:

vSO(XnP ,[1,nP+c], Y) = vSO(X, YnA ,[1,nP+c]) = TnP+c
nP ,nA . (4)

The expected number of successfully interfered bands is,

HnP+c
nP ,nA =

nAnP
nP + c

.

Proof. Let the SO apply a mixed strategy XnP ,[1,m], where m = nP + c and the SU applies a (pure)
strategy Y that involves assigning nA fixed bands for the purpose of interfering with the PU. Then,
the expected number of successfully transmitted signals is,

vSO(XnP ,[1,m], Y) =

nPA

∑
i=0

(nP − i)
(

nA
i

)(
m− nA
nP − i

)
(

m
nP

) , (5)

where nPA := min{nP, nA}.
Now, look at the SU. Let the SO apply a (pure) strategy X, i.e., a set of nP bands for the PU’s

transmission is fixed, and the SU apply a mixed strategy YnS ,[1,m]. Then, the expected number of
successfully transmitted signals is,

vSO(X, YnA ,[1,m]) =

nPA

∑
i=0

(nP − i)
(

nP
i

)(
m− nP
nA − i

)
(

m
nA

) . (6)

Since, (
nA
i

)(
m− nA
nP − i

)
(

m
nP

) =

(
nP
i

)(
m− nP
nA − i

)
(

m
nA

) , (7)

then,
vSO(XnP ,[1,m], Y) = vSO(X, YnA ,[1,m]) = Tm

nP ,nA
.

Now we prove (3) by induction by m. Let nA ≤ nP. For m = nA the result is obvious. Let it
hold for a m ≥ nA. We prove that then it also holds for m + 1. Since (m+1

k ) = (m
k ) + ( m

k−1) for any k we
have that,

0

nA

∑
i=0

(nP − i)
(

nP
i

)(
m + 1− nP

nA − i

)
=

nA

∑
i=0

(nP − i)
(

nP
i

)(
m− nP
nA − i

)
+

nA−1

∑
i=0

(nP − i)
(

nP
i

)(
m− nP

nA − 1− i

)
= ( by induction’s assumption)

= nP

(
1− nA

m

)( m
nA

)
+ nP

(
1− nA − 1

m

)(
m

nA − 1

)
= nP

(
1− nA

m + 1

)(
m + 1

nA

)
,

and (3) follows. The case nA > nP can be considered similarly.
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2.2. Second Step of the Game: To Make the Tradeoff between Communication’s Reliability and Its Cost

In the second step of the game, to make the tradeoff between communication reliability and
the cost of such reliability, the SO, knowing the equilibrium strategy for the first step, wants to
appropriately choose an appropriate amount of obfuscation, c, so as to specify the domain of
uncertainty with the objective of maximizing the difference between reliable PU communication
(i.e., unjammed communication signals) and the cost to maintain this reliability. Thus, by Proposition 1,
the expected payoff to the SO is given as follows:

vU(c) = q0(nP − CUc) + q1

(
TnP+c

nP ,nS − CUc
)

= q0(nP − CUc) + q1

(
nP

(
1− nA

nP + c

)
− CUc

)
.

The goal of the SO is to maximize his payoff vU(c), i.e., to find such c that,

c = arg max
c∈{0,...,n−nP−nT}

vU(c).

Proposition 2. In the second step of the game, to achieve the optimal trade-off between communication reliability
and the cost of this reliability, the SO has to announce nP + c bands that are reserved for the PU’s usage, where,

c =



0, nA
nP

< CU
q1

,

A−, nAnP
(n−nT)2 < CU

q1
< nA

nP
, vU(A−) > vU(A+)

A+, nAnP
(n−nT)2 < CU

q1
< nA

nP
, vU(A−) < vU(A+)

n− nT − nP, CU
q1

< nAnP
(n−nT)2

with (bξc and dξe being the floor and ceiling functions mapping a real number to the largest previous to ξ or the
smallest integer following ξ, respectively.)

A− =

⌊√
q1nPnA

CU
− nP

⌋
and A+ =

⌈√
q1nPnA

CU
− nP

⌉
.

Proof. Note that,
dvU(c)

dc
=

q1nPnA
(nP + c)2 − CU

and,
d2vU(c)

dc2 = − 2q1nPnA
(nP + c)3 < 0.

Thus, vU is strictly a concave function, and it has a unique maximum in [0, n− nP − nT ] which is
given as follows:

c =


0, q1nA

nP
≤ CU ,√

q1nPnA
CU

− nP, q1nAnP
(n− nT)

2 < CU <
q1nA

nP
,

n− nP − nT , q1nAnP
(n− nT)

2 ≥ CU .

Since we have to maximize vU only within integer points of the interval [0, n− nP − nT ], the result
follows.

Figure 2a illustrates how the number of bands reserved by the SO depends on the cost of
uncertainty CU and the number of user communications the PU has to maintain nP, where the scenario
and adversarial profile was set to nA = 30, nT = 60, q1 = 0.5 and n = 200. Figure 2b,c illustrates
how the number of extra reserved bands and the payoff to the SO depends on the cost for introducing
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uncertainty, CU , and the probability q1 that the SU is malicious when nP = 50. This figure shows
that in some cases there is a tradeoff between the cost of uncertainty and the probability of the threat,
in which case it is possible to increase communication reliability.

(a) (b)

(c)

Figure 2. (a) Number of extra bands reserved for the PU as a function of the cost of uncertainty CU

and number of users the PU has to maintain (i.e., nP); (b) number of extra reserved bands for the PU;
and (c) the payoff to the SO as a function of the cost of uncertainty and the probability q1 that the SU
is malicious.

Finally, we note that, in this section, in Proposition 1, the basic formula for the expected
number of jammed signals was derived in closed form. This allows one to find the tradeoff between
communication reliability and the cost of such reliability if the SU might be malicious, which is
maintained by means of introducing obfuscation. In the next section, we apply this formula to evaluate:
(1) whether to believe in the announced purpose or size of the SU’s requests for spectrum resources;
and (2) if one does not believe the SU, the intensity with which one should employ inspection of his
spectrum activity so as to prevent possible malicious activity.

3. Signaling Game: Whether It is Worth Believing the Potentially-Malicious SU or Not to Believe
and Then Inspect His Request

The malicious SU requests bands that he will supposedly use for legitimate purposes, but in
doing so faces a dilemma. On the one hand, by requesting more bands under the pretext of legitimate
use, the SU will actually support his malicious activity by reducing the amount of bands available to
the SO to use to obfuscate the PU’s actual channel need (and thus increase the likelihood that the SU
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will be able to interfere with the PU). On the other hand, requesting too many extra bands can make
the SO suspicious of the request, which might then lead to the SO inspecting the request by actively
engaging additional resources (at a cost) to verify the truth of the request.

We now examine the scenario from the SO perspective. Since the SO is not sure about whether
the SU is malicious, upon observing the SU request, the SO also faces a dilemma: either to believe or
not believe the request. Not believing the request will then lead to the SO inspecting the veracity of
the request to check whether the SU is trying to deceive. This can reduce the likelihood of possible SU
malicious activity if the inspection detects the deception, but it also introduces an extra expense for the
SO. In this section we formulate this problem as a signaling game [38], and then, to obtain insight into
the problem, we give an explicit solution for a basic subcase in the next subsection.

Signaling games deal with the situation where one player knows some information that the other
player does not. The first player (the sender), who possesses some private information, might try to
manipulate the situation by sharing some altered version of that information to his rival. The first
player may be motivated to deceive his rival, for example, in order to gain a higher payoff from the
game. The second player (the receiver), who does not possess this private information, has to make a
decision based on the information shared by the sender and, in particular, must decide how to take any
actions given the potential that the information exchanged was false. We note that signaling games
are widely employed for modeling different aspects of malicious activity in networks, for example,
in multi-step attack-defense scenarios [39], for intrusion detection in wireless sensor networks [40],
for cyber security [41], for intrusion detection in mobile ad hoc networks [42], for investigation of
deception in network security [43], for honeypot selection in computer networks [44], for studying the
impact of uncertain cooperation among well-behaved and socially selfish nodes on the performance of
data forwarding [45], and for achieving an always best connected service in vehicular networks [46].

In the model we now consider, we assume that there is no cost associated with introducing
uncertainty, i.e., CU = 0, and in this case the SO will allocate the maximal domain of uncertainty based
on the SU’s request, i.e., the PU bands will be [1, n− nT ]. We assume that nT ∈ {1, . . . , NT}, where NT
corresponds to an upper bound on the possible bands the SU could request for legitimate purposes.
We assume that the SO has knowledge of NT , and that he has statistical knowledge characterizing the
SU’s needs and behavior. Specifically, he knows that, with probability q0i, the SU is law-obedient and
nT = i, and with probability q1i the SU is malicious and nT = i, where i = 1, . . . , NT .

The SU knows its own true nT , and, having knowledge of nT , can submit a reservation for either
nT or nT + 1, . . . , up to NT bands if he is malicious. If the SU is law-obedient, he requests the correct
number of bands. As noted earlier, requesting more bands is better for a malicious SU’s jamming
objective, but the SO can choose to inspect the bands to see whether that band is actually in use (or
historically has been in use). If the SO finds that some bands are not in use, then the SU is fined CS
per falsely-claimed, unused band. Meanwhile, however, we assume that there is an inspection cost
CP per band that is inspected by the SO. The payoff to the SU is the expected number of interfered
users, weighted by R times the number of successful transmission minus the expected fine. The payoff
for the SO is the expected number of successful transmissions by the PU minus inspection expenses.
This situation is well-modeled by a signaling game, where the SU is the sender. The SU can be one
of 2NT types: type-(1, i) which occurs with probability q1i and occurs when the SU is malicious and
must support nT = i users; or type-(0, i) which occurs with probability q0i and occurs when the SU
is law-obedient and must support nT = i users, where i = 1, . . . , NT . Let b be the requested number
of bands by the SU. The malicious SU, knowing its nT , submits a reservation for at least nT bands,
and at most NT bands. Of course, for nT = NT , (so, the SU has type-(1, NT)), the only strategy he
can apply is to request for NT bands, but for nT < NT , he has NT − nT + 1 strategies, and thus he
may request for either b = nT or b = nT + 1, . . . or NT bands to be reserved. The law-obedient SU,
submits a reservation without deception, so type-(0, i) SU has the only strategy to request b = i bands,
i = 1, . . . , NT .
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Denote by ASU(t, τ), the set of (pure) SU’s strategies of type-(t, τ). Thus,

ASU(t, τ) =

{
{τ}, t = 0,

{τ, . . . , NT}, t = 1.

The SO observes the request for b bands and must decide either to believe the SU, and thus
supplies him with b reserved bands (denote it as a strategy B, for “believe”), or not to believe and
thereby inspect the bands (denote it as a strategy I, for “inspect”). Thus, the set of (pure) strategies for
the SO is ASO(b) = {B, I} for b > 2 and ASO(b) = {B} for b = 1.

We note that we implicitly assume that the inspection does not turn the malicious SU into a
non-malicious SU. Rather, we assume that it might reduce the likelihood of his malicious activity being
successful, and also reduces his payoff due to there being a fine for unused bands.

Of course, the result of the inspection depends on how the inspection protocol is being performed
and the technical characteristics of the tools being employed (e.g., detection sensitivities, etc.). As a
basic example of an inspection protocol we consider the following simple protocol where the SO starts
by inspecting only one randomly chosen band out of the nT requested bands. Let αk,nT be the detection
probability of an unused band when there are k unused bands among nT requested bands. It is clear
that αk,nT = k/nT in the case of perfect detection for inspection of an unused band. If an unused band
is detected (and hence a false request is being made) then the total inspection of the remaining full set
of requested band nT − 1 is performed. Let CP be the cost per an inspected band. Thus,

(1) If the SU is of type-(0, 1), he has only the strategy of requesting one band and the SO also has
only the strategy of believing the request. Then, by Proposition 1, the payoff to the SO is Tn−1

nP ,0
and the payoff to the SU is R.

(2) If the SU is of type-(0, i), i ∈ {2, . . . , NT}, he has one strategy for requesting i bands, while the
SO has two strategies for each request of i bands (to believe or to inspect):

• if the SO believes, then the payoff to the SO is Tn−i
nP ,0 and the payoff to the SU is Ri,

• if the SO inspects, then the payoff to the SO is Tn−i
nP ,0 − CP and the payoff to SU is Ri.

(3) If the SU is of type-(1, i), i ∈ {1, . . . , NT}, he has NT − i + 1 strategies to request:

• if i = 1 and the SU requests one band, the SO also has only the strategy to believe the request.
Then the payoff to the SO is Tn−1

nP ,nA
and the payoff to the SU is R + Hn−1

nP ,nA
;

• if either i = 1 and the SU requests b > 1 bands, or i > 1, then the SO has two strategies (to
believe or to inspect):

– if the SU believes then the payoff to the SO is Tn−b
nP ,nA

and the payoff to the SU is
Ri + Hn−b

nP ,nA
,

– if the SU inspects then the payoff to the SO is equal to,

αb−i,bTn−i
nP ,nA

+ ᾱb−i,bTn−b
nP ,nA

− CP − CP(b− 1)αb−i,b

and the payoff to the SU is equal to,

Ri + αb−i,bHn−i
nP ,nA

+ ᾱb−i,i Hn−b
nP ,nA

− αb−i,bCS(b− i).

Denote the payoff to the SU and the SO by vSU(t, τ; b, a) and vSO(t, τ; b, a) if circumstances are
such that the SU is of type-(t, τ), the SU has chosen b ∈ ASU(t, τ) bands (messages) to request for its
own reservation, while the PU has selected strategy a ∈ ASO(b).

We look for a perfect Bayesian equilibrium (PBE) in this signaling game [38]. A PBE is a pair
(b∗(t, τ), a∗(b)) of strategies such that:
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(1) For each type-(1, τ), the malicious SU’s request (message) b∗(1, τ) has to maximize the SU’s
payoff, i.e.,

b∗(1, τ) = arg max
b∈ASU(1,τ)

uSU(1, τ; b, a∗(b)).

(2) For each message b, the SO’s strategy a∗(b) has to maximize the expected SO’s payoff, given his
posterior beliefs µ(·|b) about which type could have sent the request (message) b, i.e.,

a∗(b) = arg max
a∈ASO(b)

∑
t=0,1,τ=1,...,NT

µ(t, τ|b)uSO(t, τ; b, a).

with the posterior SO beliefs µ(·|b) given by Bayes’s rule,

µ(t, τ|b) = qtτProb(b(t, τ) = b)
∑t′ ,τ′ qt′τ′Prob(b(t′, τ′) = b)

for,

∑
t′ ,τ′

qt′τ′Prob(b(t′, τ′) = b) > 0.

This is a signaling game with a finite sets of (pure) strategies, and generally to solve it randomized
strategies have to be employed. To deal numerically with such problem an iterative forward induction
algorithm for solving signaling games based on a rationalizability approach suggested in [47] can be
used. An alternative approach is to use the Gambit software package [48] for solving signaling
games. To obtain insight into the problem and to see how the solution explicitly depends the
parameters associated with the scenario, in the next section, we directly find the solution for a
particular baseline case.

Explicit Solution for a Basic Case, NT = 2

In this section to get insight of the problem we present explicit solution for a particular case
NT = 2. Let α = α1,2 be the detection probability of an unused band when there is one unused band
among two requested bands. Note that, since NT = 2, if an unused band is detected (and hence a
false request is being made) then there is no need to engage the full set of bands in an inspection. In
Figure 3, the diagram for making decisions in this signaling game is presented.

To describe the main result, let us introduce the following notations:

• Let b = b(τ, b) be the probability that the malicious SU of type-(1, τ) requests b bands.
• Let a(i, ξ) be the conditional probability that the SO employs strategy ξ when observing a request

for i bands.

Thus, b and a can be interpreted as randomized behaviour strategies for the malicious SU and for
the SO.
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Figure 3. Diagram for how decisions are made.

Proposition 3. (a) If the cost associated with inspecting a band is high,

CP ≥
q11α(Tn−1

nP ,nA
− Tn−2

nP ,nA
)

q02 + q12 + q11
,

then the equilibrium strategy for the SO is to always believe (i.e., strategy B), while the equilibrium strategy for
the SU is always to request two bands.

(b) If the inspection cost is small,

CP <
q11α(Tn−1

nP ,nA
− Tn−2

nP ,nA
)

q02 + q12 + q11
,

then two subcases arise:
(b1) if the fine is small,

CS < (Hn−2
nP ,nA

− Hn−1
nP ,nA

)(1− α)/α,

then, the equilibrium strategy for the SU is always to request two bands, and the SO always should inspect;
(b2) if the fine is large,

CS > (Hn−2
nP ,nA

− Hn−1
nP ,nA

)(1− α)/α,
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then in equilibrium both rivals apply mixed strategies, namely:

b(1, 1) =
αq11(Tn−1

nP ,nA
− Tn−2

nP ,nA
)− CP(q02 + q12 + q11)

q11

(
α(Tn−1

nP ,nA − Tn−2
nP ,nA)− CP

) ,

b(1, 2) =
CP(q02 + q12)

q11

(
α(Tn−1

nP ,nA − Tn−2
nP ,nA)− CP

) ,

b(2, 1) = 0,

b(2, 2) = 1,

a(1, B) = 1,

a(1, I) = 0,

a(2, B) =
αCS − (1− α)(Hn−2

nP ,nA
− Hn−1

nP ,nA
)

α(CS + Hn−2
nP ,nA − Hn−1

nP ,nA)
,

a(2, I) =
Hn−2

nP ,nA
− Hn−1

nP ,nA

α(CS + Hn−2
nP ,nA − Hn−1

nP ,nA)
.

Proof. Since b = b(τ, b) is the probability that the malicious SU of type-(1, τ) requests b bands, it is
clear that b(2, 2) = 1 and b(1, 1) + b(1, 2) = 1. Thus, the SU’s strategy b can be uniquely defined by
using only one of its components b(1, 2).

Then, by the definition of b, the marginal probability γi of observing a request for i bands is given
as follows:

γ1 = b(1, 1)q11 + q01 = q01 + q11(1− b(1, 2)),

γ2 = b(1, 2)q11 + b(2, 2)q12 + q02 = q02 + q12 + q11b(1, 2).

The SO can build his belief about the SU based on the SU’s request by considering the conditional
probability µ(t, τ|j) that the SU of type-(t, τ) requests j bands, as follows:

µ(0, 1|1) = q01

q01 + q11(1− b(1, 2))
,

µ(0, 2|1) = 0,

µ(1, 1|1) = q11(1− b(1, 2))
q01 + q11(1− b(1, 2))

,

µ(1, 2|1) = 0,

µ(0, 1|2) = 0,

µ(0, 2|2) = q02

q02 + q12 + q11b(1, 2)
,

µ(1, 1|2) = q12

q02 + q12 + q11b(1, 2)
,

µ(1, 2|2) = q11b(1, 2)
q02 + q12 + q11b(1, 2)

.

(8)
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Let EbuSO(ξ, b) be the expected payoff for the SO when the SU applies strategy b and the SO
employs strategy ξ and observes a request for b bands. Then,

E1uSO(B, b) = Tn−1
nP ,0 µ(0, 1|1) + Tn−1

nP ,nA
µ(1, 1|1),

E2uSO(B, b) = Tn−2
nP ,0 µ(0, 2|2) + Tn−2

nP ,nA
µ(1, 1|2) + Tn−2

nP ,nA
µ(1, 2|2),

E2uSO(I, b) = (Tn−2
nP ,0 − CP)µ(0, 2|2) + (αTn−1

nP ,nA
+ ᾱTn−2

nP ,nA
− CP)µ(1, 1|2)

+ (Tn−2
nP ,nA

− CP)µ(1, 2|2).

(9)

For a fixed SU strategy, the best response SO strategy is BRb
SO(b) = argξ max EbuSO(ξ, b). By (8)

and (9), we have that,
BR1

SO(b) = B, (10)

BR2
SO(b)


= B, CP > Ξ,

∈ {B, I}, CP = Ξ,

= I, CP < Ξ,

(11)

with,

Ξ = α(Tn−1
nP ,nA

− Tn−2
nP ,nA

)µ(1, 1|2) = (by (8)) =
q11b(1, 2)α(Tn−1

nP ,nA
− Tn−2

nP ,nA
)

q02 + q12 + q11b(1, 2)
.

Note that, for

CP ≥
q11α(Tn−1

nP ,nA
− Tn−2

nP ,nA
)

q02 + q12 + q11
, (12)

the following inequality holds for any b(1, 2) ∈ [0, 1]:

CP > Ξ. (13)

Thus, if (12) holds, then BR2
SO(b) = B. Since (10) also holds, (12) implies that the SO equilibrium

strategy is to believe independent on the SU’s request. Then, the SU equilibrium strategy is always to
request two bands.

Let us now suppose that (12) does not hold. Thus,

CP <
q11α(Tn−1

nP ,nA
− Tn−2

nP ,nA
)

q02 + q12 + q11
. (14)

Note that,

b(1, 2) =
CP(q02 + q12)

q11

(
α(Tn−1

nP ,nA − Tn−2
nP ,nA)− CP

) (15)

is the unique root by b(1, 2) of the equation,

CP = Ξ.

Then, (14) implies that b(1, 2) given by (15) is within (0, 1). Thus, by (11), if (14) holds, then (15)
defines a SU strategy that is indifferent to the beliefs of the SO and his best response, and thus it is
another possible candidate for the SU equilibrium strategy.

Since a(i, ξ) is the conditional probability that the SO employs strategy ξ when observing a
request for i bands, it is clear that a(1, B) = 1, a(1, I) = 0 and a(2, B) + a(2, I) = 1. Then a is uniquely
defined by its one component a(2, B).
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If a is such that the payoff to the SU of type-(1,1) is insensitive to all of his requests, then a is the
equilibrium. This condition is met when the expected values at the end of branches in the decision tree
(Figure 3) are equal, i.e.,(

R + Hn−2
nP ,nA

)
a(2, B) +

(
R + αHn−1

nP ,nA
+ ᾱHn−2

nP ,nA
− αCS

)
a(2, I)

= (R + Hn−1
nP ,nA

)a(1, B) = R + Hn−1
nP ,nA

.
(16)

Solving the last equation by a(2, B) yields:

a(2, B) =
αCS + ᾱ(Hn−1

nP ,nA
− Hn−2

nP ,nA
)

(CS − Hn−1
nP ,nA + Hn−2

nP ,nA)α
.

Thus, if CS ≥ (Hn−2
nP ,nA

− Hn−1
nP ,nA

)(1− α)/α then a(2, B) ∈ [0, 1]. Then, this a jointly with b given
by (15) give an equilibrium.

If CS > (Hn−2
nP ,nA

− Hn−1
nP ,nA

)(1− α)/α then, instead of equality (16), the following inequality holds
for any a: (

R + Hn−2
nP ,nA

)
a(2, B) +

(
R + αHn−1

nP ,nA
+ ᾱHn−2

nP ,nA
− αCS

)
a(2, I) > R + Hn−1

nP ,nA
.

The left side of this inequality obtains its minimum for a(2, B) = 0 and a(2, I) = 1. Also, by (14)
and (11), the best response to b(1, 2) = 1 is to inspect. Thus, in this situation, requesting two bands
and inspecting the request combine to give the equilibrium, and this implies the result.

Thus, we have shown in Proposition 3 that the game has either a pooling or a mixed equilibrium.
The pooling equilibrium assumes that all the malicious SU types request the same number of bands.
In our particular case this corresponds to two bands. In the pooling equilibrium the SO learns nothing
from the SU’s request.

Figure 4 illustrates threshold lines for switching between the equilibrium strategies as a function
of the number of bands with α = 0.5.

Figure 4. Threshold lines for switching between the equilibrium strategies as a function of the number
of bands.

Figure 5a,b illustrates the probability of believing in the request for two bands a(2, B) and the
probability for requesting two bands, if only one legitimate communication has to be supported, i.e.,
b(1, 2), as functions of the number of bands n and the probability that the malicious SU is of type-(1, 1)
with scenario parameters: CP = 0.005, CS = 0.7, nA = 10, nP = 30, α = 0.5, q01 = 0.1, q02 = 0.3 and
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q11 + q12 = 0.6. Figure 5c illustrates how taking into account information about the nature of the SU
can improve the SO’s payoff. Also, it is very interesting to note that the optimal strategy for the SO, as
well as its payoff, are discontinuous in the information describing the SU.

(a) (b)

(c)

Figure 5. (a) Probability of believing in the request of two bands, a(2, B); (b) probability of requesting
two bands, if only one connection has to be supported, b(1, 2); and (c) the payoff to the SO as functions
of the number of bands n and the probability that the malicious SU is of type-(1, 1).

4. Conclusions

In this paper, we have presented a new game-theoretic framework that can be useful in
designing a dynamic spectrum access channel management protocol when there is the potential
of an untrustworthy secondary participant. The new framework incorporates statistical information
describing whether the SU is malicious and intends to interfere with primary communications. Using
two Bayesian game-theoretical models, we have shown that such a paradigm can lead to protocols
that can improve communication reliability. We have noted the interesting observation that the
optimal strategy for the SO, as well as its payoff in this model, can be discontinuous in the statistical
information describing the behavior characteristics of the SU. This implication of this discontinuity
means that having precise knowledge of the statistical characterization of the SU is important since in
some regimes there is a threshold behavior in the communication reliability, while in other situations
the characterization produces only a minimal impact on the decisions being made. In particular,
the practical interpretation of our analysis reveals that if one is operating in a channel-limited scenario,
then using obfuscation (i.e., decoy channels) detracts too much from the objective of improving the
combined performance (notably, obfuscation will impact the SU’s legitimate performance). On the
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other hand, if the SU cannot afford to engage in verifying whether the announced schedule is accurate
(e.g., such verification would involve deploying infrastructure that is too costly), then the PU should
maximize its use of a decoy strategy while meeting its own needs.
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Abbreviations

The following abbreviations and notations are used in this manuscript:
CR Cognitive Radio
PU Primary User
SO Spectrum Owner
SU Secondary User
n Number of bands
nP Number of users the PU wants to reliably communicate with
nT Number of users the SU wants to reliably communicate with
nA Number of signals the SU can interfere with
q0 The probability that SU might be law-obedient
q1 The probability that SU might be malicious
CU The reservation cost for a decoy
c The number of decoys
X The pure strategy of the SO
Y The pure strategy of the SU
vSO(X, Y) The payoff to the SO on the first step
XnP ,[1,nP+c] A (mixed) strategy for the SO
YnS ,[1,nP+c] A (mixed) strategy for the SU
HnP+c

nP ,nA The expected number of successfully interfered bands
TnP+c

nP ,nA The expected number of non-interfered bands
vU The expected payoff to the SO on the second step
NT The upper bound on the possible bands the SU could request for legitimate purposes
ASU(t, τ) The set of (pure) SU’s strategies of type-(t, τ)

CP Inspection cost per band
CS Fine/penalty per falsely-claimed, unused band
αs,t The detection probability of an unused band when there are s unused bands among t requested bands
R The SU reward per successful requested communication
b(τ, b) The probability that the malicious SU of type-(1, τ) requests b bands
a(i, ξ) The conditional probability that the SO employs strategy ξ when observing a request for i bands
µ(t, τ|j) The conditional probability that the SU of type-(t, τ) requests j bands
qt,τ The probability that the SU has type-(t, τ)

EbuSO(ξ, b) The expected payoff for the SO when the SU applies strategy b and the SO employs strategy ξ

and observes a request for b bands
γi The marginal probability of observing a request for i bands
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