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Abstract: The Gottesman–Knill theorem established that stabilizer states and Clifford operations can
be efficiently simulated classically. For qudits with odd dimension three and greater, stabilizer states
and Clifford operations have been found to correspond to positive discrete Wigner functions and
dynamics. We present a discrete Wigner function-based simulation algorithm for odd-d qudits that
has the same time and space complexity as the Aaronson–Gottesman algorithm for qubits. We show
that the efficiency of both algorithms is due to harmonic evolution in the symplectic structure of
discrete phase space. The differences between the Wigner function algorithm for odd-d and the
Aaronson–Gottesman algorithm for qubits are likely due only to the fact that the Weyl–Heisenberg
group is not in SU(d) for d = 2 and that qubits exhibit state-independent contextuality. This may
provide a guide for extending the discrete Wigner function approach to qubits.
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1. Introduction

The cost of brute-force classical simulation of the time evolution of n-qubit states grows
exponentially with n. An important exception to this involves the set of Clifford operators acting
on stabilizer states. This set of states plays an important role in quantum error correction [1] and is
closed under action by Clifford gates. Efficient simulation of such systems was demonstrated with the
tableau algorithm of Aaronson and Gottesman [1,2] for qubits (d = 2). Finding the underlying reason
for why such an efficient algorithm is possible for Clifford circuit simulation has since been the subject
of much study [3–5].

Recent progress has been the result of work by Wootters [6], Gross [7], Veitch et al. [8,9],
Mari et al. [4], and Howard et al. [5], who have formulated a new perspective based on the
discrete phase spaces of states and operators in finite Hilbert spaces using discrete Wigner functions.
In odd-dimensional systems, they have shown that stabilizer states have positive-definite discrete
Wigner functions and that Clifford operators are positive-definite maps. This implies that Clifford
circuits are non-contextual and are efficiently simulatable on classical computers. In odd-dimensional
systems, stabilizer states have been shown to be the discrete analogue to Gaussian states in continuous
systems [7] and Clifford group gates have been shown to have underlying harmonic Hamiltonians
that preserve the discrete Weyl phase space points [10]. This means Clifford circuits are expressible by
path integrals truncated at order h̄0 and are thus manifestly classical [10,11].

This poses the question: what is the relationship between past efficient algorithms for Clifford
circuits and the propagation of discrete Wigner functions of stabilizer states under Clifford operators?
In the present paper, we show that the original Aaronson–Gottesman tableau algorithm for qubit
stabilizer states is actually equivalent to such a discrete Wigner function propagation and that the
tableau matrix coincides with the discrete Wigner function of a stabilizer state. We accomplish this by
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first developing a Wigner function-based algorithm that classically simulates stabilizer state evolution
under Clifford gates and measurements in the Ẑ Pauli basis for odd d. We then show its equivalence
to the well-known Aaronson–Gottesman tableau algorithm [2] for qubits (d = 2). Both algorithms
require O(n2) dits to represent n stabilizer states, O(n) operations per Clifford operator, and both
deterministic and random measurements require O(n2) operations.

The Aaronson–Gottesman tableau algorithm makes use of the Heisenberg representation.
This means that time evolution is accomplished by updating an associated tableau or matrix
representation of the Clifford operators instead of the stabilizer states themselves. The algorithm we
present is framed in the Schrödinger picture and involves evolving the Wigner function of stabilizer
states. By demonstrating that the two algorithms are equivalent, we show that the formulation of
Clifford simulation in the Heisenberg picture is a choice and not a necessity for its efficient simulation.
Furthermore, by instead working in the Schrödinger picture we are able to more easily reveal the purely
classical basis of both algorithms and the physically intuitive phase space structures and symplectic
properties on which they rely.

2. Discrete Wigner Function for Odd d Qudits

Before we discuss the discrete Wigner function, we introduce a basic framework that defines how
a phase space behaves for odd d-dimensional Hilbert spaces. To begin, we associate the computational
basis with the position basis, such that the Pauli Ẑj operator on the jth qudit for n qudits acts as a
“boost” operator:

Ẑj
∣∣k1, . . . , k j, . . . , kn

〉
= e

2πi
d kj
∣∣k1, . . . , k j, . . . , kn

〉
, (1)

where k j ∈ Z/dZ for 1 ≤ j ≤ n.
The discrete Fourier transform operator is defined by:

F̂j =
1√
d

∑
kj ,lj∈
Z/dZ

e−
2πi

d kj lj
∣∣k1, . . . , k j, . . . , kn

〉 〈
l1, . . . , lj, . . . , ln

∣∣ .

This is the d-dimensional equivalent of the Hadamard gate and allows us to define the Pauli X̂j operator
as follows:

X̂j ≡ F̂jẐj F̂†
j . (2)

While Ẑj is a boost, X̂j is a shift operator because

X̂δq
j

∣∣k1, . . . , k j, . . . , kn
〉
≡
∣∣k1, . . . , k j ⊕ δq, . . . , kn

〉
, (3)

where ⊕ denotes integer addition mod d.
We can reexpress the boost Ẑj and shift X̂j operators in terms of their generators, which are the

conjugate q̂j and p̂j operators, respectively:

Ẑj = e
2πi

d q̂j (4)

and
X̂j = e−

2πi
d p̂j . (5)

Thus, we can refer to the X̂j basis as the momentum (pj) basis, which is equivalent to the Fourier
transform of the qj basis:

p̂j = F̂j q̂j F̂†
j . (6)

These bases form the discrete Weyl phase space (p, q).
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The Wigner function WΨ(p, q) of a pure state |Ψ〉 is defined on this discrete Weyl phase space:

WΨ(p, q) = d−n ∑
ξq∈

(Z/dZ)n

e−
2πi

d ξq ·pΨ

(
q +

(d + 1)ξq

2

)
Ψ∗
(

q−
(d + 1)ξq

2

)
. (7)

This is equivalent to the discrete Wigner function introduced by Gross [7]. We will shortly be interested
in the discrete Wigner function of stabilizer states. However, first, we introduce the effect that the
Clifford gates have in this discrete Weyl phase space.

2.1. Clifford Gates

A Clifford group gate V̂ is related to a symplectic transformation on the discrete Weyl phase space,
governed by a symplectic matrix MV̂ and vector αV̂ [7]:(

p′

q′

)
= MV̂

[(
p
q

)
+

1
2

αV̂

]
+

1
2

αV̂ . (8)

Wigner functions WΨ(x) of states evolve under Clifford operators V̂ by

WΨ
(
MV̂

(
x + αV̂/2

)
+ αV̂/2

)
, (9)

where x ≡ (p, q). When considering Clifford gate propagation, we can restrict to a set of gates which
are generators of the Clifford group. One such set of generators is made up of the phase-shift gate P̂i,
the Hadamard gate F̂i, and the controlled-not (CNOT) Ĉij (which act on the ith and jth qudits).

The phase shift P̂i is a one-qudit gate with the underlying Hamiltonian HP̂i
= − d+1

2 q2
i +

d+1
2 qi [10].

Without loss of generality, we will instead consider

P̂′i = P̂i P̂iẐi, (10)

which we will refer to as the phase-shift gate in this paper. We note that the usual phase-shift can be
obtained from the new one within the Clifford group:

P̂i = P̂′i P̂′i Ẑi, (11)

where [P̂i, Ẑi] = [P̂′i , Ẑi] = 0. Hence, P̂′i is an adequate replacement generator for P̂i, and we will use
it instead of P̂i from now on. Since its Hamiltonian has no linear term (HP̂′i

= −q2
i ), this leads to an

easier presentation ahead since αP̂′i
= 0. The corresponding equations of motion for P̂′i are ṗi = 2qi

and q̇i = 0. Hence, for ∆t = 1, (
MP̂′i

)
j,k

= δj,k + 2δi,jδn+i,k. (12)

The Hadamard gate F̂i is a one-qudit gate and has the underlying Hamiltonian
HF̂i

= −π
4 (p2

i + q2
i ) [10]. The corresponding equations of motion are ṗi = π

2 qi and q̇i = −π
2 pi.

Hence, for ∆t = 1, (
MF̂i

)
j,k

= δj,k − δi,jδi,k − δn+i,jδn+i,k (13)

+δi,jδn+i,k − δn+i,jδi,k,

and αF̂i
= 0.
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Finally, the two-qudit CNOT Ĉij on control qudit i and second qudit j has the corresponding
Hamiltonian HĈij

= piqj [10]. The corresponding equations of motion are ( ṗi, ṗj) = −(0, pi) and

(q̇i, q̇j) = (qj, 0). Hence, for ∆t = 1,(
MĈij

)
k,l

= δk,l − δi,kδj,l + δn+j,kδn+i,l , (14)

and αĈij
= 0.

2.2. Wigner Functions of Stabilizer States

A discrete Wigner function for stabilizer states associated with the boost and shift operators
defined in Equations (4) and (5) is given by the following theorem [10]:

Theorem 1. The discrete Wigner function WΨ(x) of a stabilizer state Ψ for any odd d and n qudits is δΦ×x,r

for 2n× 2n matrix Φ and 2n vector r with entries in Z/dZ.

An equivalent form was proven by Gross [7] who also showed that these discrete Wigner functions of
stabilizer states are non-negative. In particular, if we begin with a stabilizer state defined as |Ψ0〉 = |q0〉,

then WΨ0(x) = δΦ0×x,r0 , where Φ0 =

(
0 0
0 In

)
for In the n× n identity matrix, and r0 = (0, q0).

3. Wigner Stabilizer Algorithm for Odd d Qudits

With the discrete Wigner function of a stabilizer state defined in Theorem 1 and the effect of the
Clifford group generators on discrete Wigner functions defined in Equation (9), we can now examine
the effect Clifford operators have on stabilizer states. We note that since the discrete Wigner functions
of stabilizer states are non-negative and Clifford operations take stabilizer states to stabilizer states,
it follows that Clifford operations (if associated positive-operator valued measures (POVMs) also have
non-negative Wigner functions) can always be efficiently classically simulated by sampling from these
Wigner functions as probability distributions [4]. However, here we pursue a description that is not
dependent on classical sampling.

3.1. Stabilizer Representation

From Theorem 1, propagation of the stabilizer state Ψ can be represented by considering the
state’s Wigner function: WΨ(x) = δΦt ·x,rt . In this way, Φt and rt specify a linear system of equations
in terms of pt and qt. The first n rows of Φt are the coefficients of (pt, qt)

T in p0(pt, qt) and the last n
rows of Φt are the coefficients of (pt, qt)

T in q0(pt, qt):(
p0
q0

)
= Φt

(
pt
qt

)
. (15)

The Kronecker delta function sets this linear system of equations equal to rt. In this way, an affine
map—a linear transformation displaced from the origin by rt—is defined. This system of equations
must be updated after every unitary propagation and measurement.

Since the Wigner functions WΨ(x) of stabilizer states propagate under M as WΨ(Mx),
it follows that

Φt → ΦtM−1
t . (16)

(The importance of vector rt and when it must be updated will become evident when we consider
random measurements.) Hence, after n operations M1, M2, . . ., Mn,

M−1
t = M−1

1 M−1
2 . . .M−1

n . (17)
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The matrices are ordered chronologically left-to-right instead of right-to-left.
Since M is symplectic, M−1

t = −JMT
t J where

J =

(
0 −In

In 0

)
. (18)

Thus, the the stability matrices M for F̂i, P̂′i and Ĉij given in Equations (12)–(14) differ from their
inverses only by sign changes in their off-diagonal elements:(

M−1
P̂′i

)
j,k

= δj,k − 2δi,jδn+i,k, (19)

(
M−1

F̂i

)
j,k

= δj,k − δi,jδi,k − δn+i,jδn+i,k (20)

−δi,jδn+i,k + δn+i,jδi,k,

and (
M−1

Ĉij

)
k,l

= δk,l + δi,kδj,l − δn+j,kδn+i,l . (21)

We assume the quantum state is initialized in the computational basis state Ψ0 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n

and so initially we should set Φ0 =

(
0 0
0 In

)
and r0 = 0. The initial stabilizer state is WΨ0 = δqt ,0.

However, it will become clear when we discuss measurements that it is practically useful to instead set

Φ0 =

(
In 0
0 In

)
, (22)

thereby setting WΨ0 = δ(pt ,qt),(0,0)—not a true Wigner function. This new matrix Φ0 is equivalent to
the last matrix if the first n rows in Φtx and rt are ignored—the same as ignoring p0(pt, qt). In fact,
we have two Wigner functions here: one defined by the first n rows and another by the last n rows.
We proceed in this manner, ignoring the first n rows, until their usefulness becomes apparent to us.

For n qudits unitary propagation requires O(n2) dits of storage to track Φt and rt. More precisely,
since Φt is a 2n× 2n matrix and rt is an 2n-vector, 2n(2n + 1) dits of storage are necessary.

3.2. Unitary Propagation

Φt contains the coefficients of the linear equations relating x0 to xt. Each row is one equation
relating q0i or p0i to xt. When manipulating rows of Φt we shall refer to the linear equations that these
rows define.

Examining Equations (19)–(21), we see that the inverse stability matrices of the generator gates
F̂i, P̂i and Ĉij are the sum of an identity matrix and a matrix with a finite number of non-zero
off-diagonal elements. The number of these off-diagonal elements is independent of the number
of qudits, n. Hence, multiplying Φt with a new stability matrix in Equation (16) and evaluating the
matrix multiplication is equivalent to performing a finite number of n-vector dot products and so
requires O(n) operations. Therefore, keeping track of propagation of stabilizer states by Clifford gates
can be simulated with O(n) operations.

Let us examine these unitary operations more closely. Defining ⊕ and 	 to be mod d addition
and subtraction respectively, we find:

Phase gate on qudit i (P̂′i ). For all j ∈ {1, . . . , 2n}, set Φj,n+i 7→ Φj,n+i 	 2Φj,n.
Hadamard gate on qudit i (F̂i). For all j ∈ {1, . . . , 2n}, negate Φj,i mod d, and then swap 	Φj,i and

Φj,n+i.
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CNOT from control i to target j (Ĉij). For all j ∈ {1, . . . , 2n}, set Φk,j 7→ Φk,j ⊕Φk,i and Φk,n+i 7→
Φk,n+i 	Φk,n+j.
This confirms that unitary propagation in this scheme requires O(n) operations.

3.3. Measurement

The outcome of a measurement Ẑi on a stabilizer state can be either random or deterministic.
As described above, the bottom half of Φt defines q0 j for j ∈ {1, . . . , n}, each of which is a linear
combination of qti and pti. The entries in the (n + j)th row of Φt give the coefficient of pti and qti in
q0 j for j ∈ {1, . . . , n}. If the coefficient of pti in any q0 j is non-zero then the measurement Ẑi will be
random. If all coefficients of pti are zero for q0 j ∀j, then the measurement of Ẑi will be deterministic.
This can be seen from the fact that if our stabilizer state |Ψ〉 is an eigenstate of Ẑi, then Ẑi |Ψ〉 = eiφ |Ψ〉
for some φ ∈ R and (discrete) Wigner functions do not change under a global phase. Thus, measuring
Ẑi leaves the Wigner function of |Ψ〉 invariant if the measurement is deterministic. Since Ẑi is a boost
operator that increments the momentum of a state by one, its effect on the linear system of equations
specified by the Wigner function is:

Φt



pt1
...

pti
...

ptn
qt


=

(
rt p
rtq

)
7→̂
Zi

Φt



pt1
...

pti + 1
...

ptn
qt


=

(
rt p
rtq

)
. (23)

Thus, if the lower half of the ith column of Φt is zero, then Ẑi leaves the Wigner function invariant
(and so the measurement is deterministic). Verifying that these coefficients are all zero takes O(n)
operations for each Ẑi.

In other words, to see if a given measurement of Ẑi is random or deterministic, a search must be
performed for non-zero Φtn+j,i elements. If such a non-zero element exists, then the measurement
is random since it means that the final momentum of qudit i affects the state of the stabilizer and so
its position must be undetermined (by Heisenberg’s uncertainty principle). If no such finite Φtn+j,i
element exists, then the measurement Ẑi is deterministic. We now describe the algorithm in detail for
these two cases:

Case 1: Random Measurement

Let the (n + j)th row in the bottom half of Φt have a non-zero entry in the ith column, Φtn+j,i 6= 0.
Since the random measurement Ẑi will project qudit i onto a position state, we will replace the
(n + j)th row with q0i = q′i (the uniformly random outcome of this measurement). After this projection
onto a position state, none of the other qudits’ positions should depend on qudit i’s momentum, pti.
To accomplish this, before we replace row (n + j), we solve its equation for pti and substitute every
instance of pti in the linear system of equations with this solution. As a result, every equation will no
longer depend on pti and we can go ahead and replace the (n + j)th row with q0i = q′i.

There is one more thing to do, which will be important for deterministic measurements: replace
the jth row with the old (n + j)th row. This sets p0i = q0 j(pt, qt), which becomes the only remaining
equation explicitly dependent on pti. In other words, p0i ∝ pti, similar to the beginning when we set
p0i = pti by setting Φ = I2n. However, now we also preserve any dependence p0i has on the other
qudits incurred during unitary propagation. In other words, we preserve pti’s dependence upon the
other qudits, but only in the Wigner function specified by the top n rows, which we ignore otherwise.

After replacing the equation specified by row (n + j) of Φt and rt with a randomly chosen
measurement outcome q′i (i.e., q0i = q′i), the identification of rows (n + i) and (n + j) are exchanged,
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so that the former now specifies q0 j(pt, qt) while the latter specifies q0i(pt, qt). p0i has also been
updated by replacing the jth row in the first half of Φt, with the (n + j)th row we just changed. Again,
this row now describes p0i(pt, qt) while the ith row now specifies p0 j(pt, qt). Overall, this takes O(n2)

operations since we are replacing O(n) rows with O(n) entries.

Case 2: Deterministic Measurement

Since the measurement is deterministic, Φt and rt do not change. The n equations specified by
the bottom half of Φtxt = rt can be used to solve for qti—the deterministic measurement outcome.
In general, this can also be done by inverting Ψt and evaluating xt = Φ−1

t · rt for qi. Aaronson and
Gottesman themselves noted that such a matrix inversion is possible, but practically takes O(n3)

operations. (However, we are not certain if Aaronson and Gottesman were referring to the Φt matrix
corresponding to the 2n× 2n part of their tableau when they discuss matrix inversion in [2].)

Fortunately, there is another method that scales as O(n2) and requires use of the n equations
represented by the top n rows of Φt, which were included in our description by setting Φ0 = I2n.
The linear system of n equations represented by Φtxt = rt can be written as

Φtxt = rt, (24)(
p0(pt, qt)

q0(pt, qt)

)
=

(
rt p
rtq

)
, (25)

where we are interested in linear combinations of the bottom half, q0(pt, qt), to solve for the
measurement outcome qti:

n

∑
j=1

cijq0 j = qti, (26)

where cij ∈ Z/dZ.

Lemma 1. The coefficient in front of pti in the row of Φt that specifies p0 j(pt, qt), Φt ji, is equal to the coefficient
cij in front of q0 j that makes up qti in Equation (26). Equivalently,

cij = q0 j · qti(p0, q0) = p0 j(pt, qt) · pti = Φt ji. (27)

Proof. Under evolution under the Clifford group operators,(
pt
qt

)
= Mt

(
p0
q0

)
. (28)

M−1
t = −JMT

t J since Mt is symplectic. This means that we can express the matrix inversion
as follows: (

p0
q0

)
= M−1

t

(
pt
qt

)
(29)

= −JMT
t J

(
pt
qt

)
(30)

= −J
(

(Mt)11 (Mt)12
(Mt)21 (Mt)22

)T

J
(

pt
qt

)
(31)

=

(
(Mt)22 (−Mt)12
(−Mt)21 (Mt)11

)(
pt
qt

)
. (32)
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Therefore,
(
M−1

t

)
11i,j

= (Mt)22i,j, and so

cij = q0 j · qti(p0, q0) = p0 j(pt, qt) · pti = Φt ji. (33)

This property can also be seen in the drawing of phase space shown in Figure 1. There, initial
perpendicular p0 j and q0 j manifolds are drawn along with harmonically evolved pti and qti manifolds,
which remain perpendicular to each other and make an angle α to the first p0 j and q0 j manifolds,
respectively. The projection of qti(p0, q0) onto q0 j can be represented as the length b of a right triangle’s
adjacent side to the angle α, with an opposite side set to some length a. The projection of p0 j(pt, qt)

onto pti is similarly represented by the length b′ of a right triangle’s adjacent side to the angle α, with an
opposite side also set to length a. It follows that the third angle β in both triangles must be the same,
and so by the law of sines

a
sin α

=
b

sin β
=

b′

sin β
. (34)

Therefore, b = b′ and so these two projections are equal to one another. In the discrete Weyl phase
space such manifolds must lie along grid phase points and obey the periodicity in xp and xq, but the
premise is the same.

Overall, the procedure outlined in Lemma 1 for deterministic measurements takes O(n2)

operations since Equation (27) is a sum of O(n) vectors made up of O(n) components. Therefore, the
overall measurement protocol takes O(n2) operations. Note that this formulation of the algorithm
shows that it is the symplectic structure on phase space and the linear transformation under harmonic
evolution that allows the inversion (Equation (32)) to be performed efficiently.

Figure 1. The initial perpendicular manifolds p0 j and q0 j and the harmonically evolved perpendicular
manifolds pti and qti. Description of the various lengths and angles are given in the text in the proof
of Lemma 1.

4. Aaronson–Gottesman Tableau Algorithm for Qubits (d = 2)

The Aaronson–Gottesman tableau algorithm was originally defined for qubits (d = 2) [2].
Like the algorithm we presented in the previous section, it only requires overall O(n2) operations
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for propagation and measurement for n qubits. The algorithm has been proven to be extendable
to d > 2 [12] and similar algorithms have been formulated in d > 2 [13]. Alternatives have also
been developed to the tableau formalism, though they prove to be equally efficient in worst-case
scenarios [14]. However, we are not aware of any direct extension of the Aaronson–Gottesman tableau
algorithm to dimensions greater than two. In this and the next section, we will show that the Wigner
algorithm presented in Section 3 is equivalent to the Aaronson–Gottesman tableau algorithm extended
to odd d.

4.1. Stabilizer Representation

The Aaronson–Gottesman algorithm is defined in the stabilizer formalism. It keeps track of the
evolution of a stabilizer state by updating the generators of the stabilizer group, elements of which are
defined as follows:

Definition 1. A set of operators that satisfies S = {ĝ ∈ P such that ĝ |ψ〉 = |ψ〉} are called the stabilizers
of state |ψ〉, where P is the set of Pauli operators, each of which has the form e

πi
2 α P̂1 ⊗ · · · ⊗ P̂n where

α ∈ {0, 1, 2, 3} for n qubits with P̂i ∈ { Îi, Ẑi, X̂i, Ŷi}.

For the sake of completeness, we present here a summary of the qubit Aaronson–Gottesman
algorithm, in order to compare it to our odd d qudit algorithm. For more details, see [1,2].

Each n-qubit stabilizer state is uniquely determined by 2n Pauli operators. There are only n
generators of this Abelian group of 2n operators. Therefore, an n-qubit stabilizer state is defined by
the n generators of its stabilizer state. Every element in this set of generators, {ĝ1, ĝ2, . . . , ĝn}, is in the
Pauli group, and each generator has the form:

ĝi = ±P̂i1 . . . P̂in. (35)

Any unitary propagation by Clifford operators or measurement of the stabilizer state changes at least
some of the P̂ij elements of the n generators of the state’s stabilizer. This includes the ±1 phase in
Equation (35), which must also be kept track of in Aaronson–Gottesman’s algorithm.

4.2. Unitary Propagation

For each Clifford operation, Aaronson and Gottesman showed that only O(n) operations are
necessary to update all generators [2]. Specifically, according to the update rules in Table 1, each
generator can be updated with a constant number of operators for every single Clifford gate, therefore
O(n) in total. However, it is a little more complicated to update the generators after each measurement.
To do this efficiently, Aaronson introduced “destabilizers”:

Definition 2. Destabilizers {ĝ′1, . . . , ĝ′n} are the operators that generate the full Pauli group with the stabilizers
{ĝ1, . . . , ĝn}. They have the following properties:

(i) ĝ′1, ĝ′2, . . ., ĝ′n commute.
(ii) Each destabilizer ĝ′h anti-commutes with the corresponding stabilizer ĝh, and commutes with all

other stabilizers.
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Table 1. Transformation of stabilizer generators under Clifford operations.

Gates Input Output

Hadamard X̂ Ẑ
Ẑ X̂

phase X̂ Ŷ
Ẑ Ẑ

CNOT

X̂⊗ Î X̂⊗ X̂
Î ⊗ X̂ Î ⊗ X̂
Ẑ⊗ Î Ẑ⊗ Î
Î ⊗ Ẑ Ẑ⊗ Ẑ

To incorporate the destabilizers, a tableau becomes useful to see how they play a role in updating
the stabilizer generators during measurement [2].

Aaronson–Gottesman defined such a 2n× (2n + 1) binary tableau matrix as:

x11 . . . x1n z11 . . . z1n r1
...

. . .
...

...
. . .

...
...

xn1 . . . xnn zn1 . . . znn rn

x(n+1)1 . . . x(n+1)n z(n+1)1 . . . z(n+1)n rn+1
...

. . .
...

...
. . .

...
...

x(2n)1 . . . x(2n)n z(2n)1 . . . z(2n)n r2n


.

This matrix contains 2n rows. The first n rows denote the destabilizers ĝ′1 to ĝ′n while rows (n + 1) to
2n represent the stabilizers ĝ1 to ĝn. The (n + 1)th bit in each row denotes the phase (−1)ri for each
generator. We encode the jth Pauli operator in the ith row as shown in Table 2.

Table 2. Binary representation of the Pauli operators and the Pauli group phase used in their tableau representation.

xij zij P̂j

0 0 Îj
0 1 Ẑj
1 0 X̂j
1 1 Ŷj

ri Phase

0 +1
1 −1

We can update the stabilizers and destabilizers as follows:
Hadamard gate on qubit i For all j ∈ {1, 2, ..., 2n}, rj 7→ rj ⊕ xjizji, then swap xji with zji.
Phase gate on qubit i For all j ∈ {1, 2, ..., 2n}, rj 7→ rj ⊕ xjizji, zji 7→ zji ⊕ xji.
CNOT gate on control qubit i and target qubit j For all k ∈ {1, 2, ..., 2n}, rk 7→ rk ⊕ xkizkj(xkj ⊕ zki ⊕ 1),

xkj 7→ xkj ⊕ xki, zki 7→ zki ⊕ zkj.
These actions correspond to those given in Table 1.
Notice the striking similarity of these tableau transformation rules under unitary propagation to

the Φ transformation rules in Section 4. The most notable difference is that the Aaronson–Gottesman
algorithm involves updates of the vector r. We will discuss this and its connection to the dimension
d = 2 of the system in Section 5. It is clear that these transformations also take O(n) operations each.
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4.3. Measurement

To describe the measurement part of the algorithm, we need to first define a rowsum operation in
the tableau that corresponds to multiplying two Pauli operators together. As defined in [2]:

Rowsum: To sum row i and j, first update the bits that represent operators by xik ⊕ xjk and zik ⊕ zjk
for k = 1, . . . , n. To calculate the resultant phase, Aaronson and Gottesman first defined the
following function:

f (xik, xjk, zik, zjk) =


0 if xik = zik = 0,

zjk − xjk if xik = zik = 1,

zjk(2xjk − 1) if xik = 1, zik = 0,

xjk(1− 2zjk) if xik = 0, zik = 1.

(36)

Since each stabilizer generator is the tensor product of n single qubit Pauli operators (see Equation (35)),
they must be multiplied together to obtain the phase:{

0 if ri + rj + ∑n
k=1 f (xik, xjk, zik, zjk) ≡ 0 (mod 4),

1 if ri + rj + ∑n
k=1 f (xik, xjk, zik, zjk) ≡ 2 (mod 4).

(37)

Having defined the rowsum function, let us now consider a measurement of Ẑi on qubit i.
For d = 2, Pauli group operators can only commute or anti-commute with each other. If Ẑi
anti-commutes with one or more of the generators, then the measurement is random. If Ẑi commutes
with all of the generators, then the measurement is deterministic. We consider these two cases:

Case 1: Random Measurement

Ẑi anti-commutes with one or more of the generators. If there is more than one, we can always pick
a single anti-commuting generator, ĝj, and update the rest by replacing them with their product with ĝj
(i.e., taking the rowsum of their corresponding rows) such that they commute with Ẑi. These updates
take O(n2) operations. Finally, we only need to replace ĝj by Ẑi.

In other words, with respect to the tableau, there should exist at least one j ∈ {n + 1, n + 2, ..., 2n}
such that xji = 1. Replacing all rows where xki = 1 for k 6= j with the sum of the jth and kth row
(using the rowsum function) sets all xki = 0 for k 6= j.

Finally, we replace the (j− n)th row with the jth row and update the jth row by setting zji = 1
and all other xjks and zjks to 0 for all k. We output rj = 0 or rj = 1 with equal probability for the
measurement result. This procedure takes O(n2) operations because each rowsum operation takes
O(n) operations and up to n− 1 rowsums may be necessary.

Case 2: Deterministic Measurement

Ẑi commutes with all generators. In this case, there is no j ∈ {n + 1, n + 2, ..., 2n} such that xji = 1
and we don’t need to update any of the generators. However, we do need to do some work to retrieve
the measurement outcome.

Measurement Ẑi commutes with all of the stabilizers; therefore, either +Ẑi or −Ẑi is a stabilizer of
the state. Therefore, it must be generated by the generators. The sign ±1 is the measurement outcome
we are looking for. This means that

n

∏
j=1

ĝ
cj
j = ±Ẑi, (38)

where cj = 1 or 0.
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For those destabilizers g′k that satisfy

{ĝ′k,±Ẑi} = 0, (39)

ck = 1. Otherwise, ck = 0. This can be seen from

{ĝ′k,±Ẑi} = {ĝ′k,
n

∏
j=1

ĝ
cj
j } =

n

∏
j=1
j 6=k

ĝ
cj
j {ĝ

′
k, ĝck

k } = 0, (40)

where we used part (ii) of Definition 2 of the destabilizers and Equation (39). The last equality requires
ck = 1.

Therefore, to find the deterministic measurement outcome, the stabilizers whose corresponding
destabilizer anti-commutes with the measurement operation Ẑi must be multiplied together. Every
row (n + j) in the bottom half of the tableau, such that xji = 1 (for j ∈ {1, . . . , n}), can be added up
together and stored in a temporary register. The resultant phase ±1 of this sum is the measurement
result we are looking for.

Checking if each destabilizer commutes or anti-commutes with Ẑi takes a constant number of
operations. One multiplication takes O(n) operations, and there are O(n) multiplications needed.
Therefore, a measurement takes O(n2) operations overall.

5. Discussion

As we made clear throughout Section 4, the scaling of the number of required operations with
respect to number of qudits n is exactly the same in the (d = 2) Aaronson–Gottesman algorithm as
in the (odd d) Wigner algorithm presented in Section 3. The two algorithms also require the same
number of dits of temporary storage for performing the deterministic measurement. Moreover, there
is a correspondence between the tableau employed by Aaronson–Gottesman and the matrix Φt and
vector rt we use. In particular, the tableau is equal to

(
Φt rt

)
:

Φt =

 ∂p0
∂pt

∂p0
∂qt

∂q0
∂pt

∂q0
∂qt

 ≡



x11 . . . x1n z11 . . . z1n
...

. . .
...

...
. . .

...
xn1 . . . xnn zn1 . . . znn

x(n+1)1 . . . x(n+1)n z(n+1)1 . . . z(n+1)n
...

. . .
...

...
. . .

...
x(2n)1 . . . x(2n)n z(2n)1 . . . z(2n)n


(41)

and

rt =

(
rp

rq

)
≡



r1
...

rn

rn+1
...

r2n


. (42)

This can be seen through the following equation:

exp

(
2πi

d

2n

∑
j=1

Φtn+i,j x̂j

)
|Ψt〉 =

2n

∏
j=1

exp
(

2πi
d

Φtn+i,j x̂j

)
|Ψt〉

= exp
(

2πi
d

rti

)
|Ψt〉 , (43)
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where x̂ ≡ (p̂, q̂). Multiplying the right-hand side of the first equation and the second equation by
exp

(
− 2πi

d rti

)
, it follows that

exp
(
−2πi

d
rti

) 2n

∏
j=1

exp
(

2πi
d

Φtn+i,j x̂j

)
Ψt = ĝi |Ψt〉 = |Ψt〉 . (44)

In other words, rti specifies the phase exp
(
− 2πi

d rti

)
of the ith stabilizer, which is itself specified by

Φtn+i,j for j ∈ {0, . . . , 2n}. These are the same roles for r and the tableau in the Aaronson–Gottesman
tableau algorithm [2].

Indeed, both algorithms check the bottom half of their matrices for finite elements of Φn+j,i to
determine if a measurement on the ith qudit will be random or not. They also use a very similar
protocol to determine the outcome of deterministic measurements. The Wigner-based algorithm
motivates these manipulations in terms of the symplectic structure of Weyl phase space and the
relationship between the two Wigner functions specified by the top and bottom of Φ, providing a
strong physical intuition for their effects. Aaronson and Gottesman motivate these manipulations
using the anti-commutation relations between the stabilizer and destabilizer generators. In addition,
the latter half of both the Wigner function’s rt and Aaronson–Gottesman’s r are used to determine
measurement outcomes. The only fundamental algorithmic difference between the approaches is that
the Wigner-based algorithm does not require updates of rt during unitary propagation. The reason
for this lies in the fact that Aaronson–Gottesman’s algorithm deals with systems with d = 2 while the
Wigner-based algorithm is restricted to odd d.

In particular, for the one-qubit Clifford group gate operator Â = {P̂i, F̂i} ∀i = {1, . . . , n}, the
Aaronson–Gottesman algorithm specifies that for a q- or p-state, its Wigner function evolves by:

WΨ(MÂx). (45)

However, for |r〉 = 1√
2
(|0〉 ± i |1〉), a Y-state which is diagonal in the pq plane, its Wigner function

must first be translated:
WΨ

(
MÂx + β

)
, (46)

where the translation β can be (1, 0) or (0, 1) equivalently. There is a similar state-dependence for the
two-qubit CNOT gate Ĉij.

This demonstrates that the Aaronson–Gottesman algorithm is state-dependent on the qubit
stabilizer state it is acting on. On the other hand, the Wigner function algorithm on odd d qudit stabilizer
states is state-independent. This likely is a consequence of the fact that the Weyl–Heisenberg group,
which is made up of the boost and shift operators defined in Equations (4) and (5) that underlie the
discrete Wigner formulation, are a subgroup of U(d) instead of SU(d) for d = 2 [15]. Furthermore,
qubits exhibit state-independent contextuality while odd d qudits do not [16]. Recent progress on this
subject relating non-contextuality to classical simulatability for qubits can be found here [17,18].

6. Example of Stabilizer Evolution

As a demonstration of what stabilizer state propagation looks like in the Wigner formalism, we
proceed to go through an example of Bell state preparation and measurement starting from the state
|0〉 ⊗ |0〉. To illustrate this process we decompose the two qutrit Wigner function of this state into nine
3× 3 grids, as shown in Figure 2. The prepared Wigner function is denoted in Figure 3 with the color

black, and the Wigner function represented by setting Φ0 =

(
1 0
0 0

)
(i.e., considering the top n

rows of Φ to be a separate Wigner function, as discussed at the end of Section 3.1) is denoted with the
color gray.
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Figure 2. A decomposition of the two qutrit Wigner function into nine 3× 3 grids, where each 3× 3
grid denotes the value of the Wigner function at all pt1 and qt1 for a fixed value of pt2 and qt2 denoted
by the external axes. This organization is used in Figure 3 below.

Figure 3. The Wigner function of two qutrits initially prepared in (a) the state |0〉 ⊗ |0〉. (1) This is
evolved under F̂1 to produce (b) 1√

3
(|0〉+ |1〉+ |2〉)⊗ |0〉. (2) Subsequently, this state is evolved under

Ĉ12 producing (c) the Bell state 1√
3
(|00〉+ |11〉+ |22〉). (3) Qutrit 1 is then measured producing the

random outcome 1, which collapses qutrit 2 into the same state, so that (d) |1〉 ⊗ |1〉 results. The black
color indicates the Wigner function specified by the lowest n rows of δΦt x,rt , and the gray color
indicates the Wigner function specified by the highest n rows (q0(pt, qt) and p0(pt, qt), respectively).
The evolution and algorithmic implementation are explained in the text.

We begin with

WΨ(x) = (47)

δ
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




pt1
pt2
qt1
qt2

,


0
0
0
0


= δ

pt1
pt2
qt1
qt2

,


0
0
0
0


,
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denoting an initially prepared state of |0〉 ⊗ |0〉. This is clear in Figure 3a by the black band that lies
along all Weyl phase space points with qt1 = 0 and qt2 = 0. On the other hand, the gray manifold is
perpendicular to the black one, and lies along Weyl phase space points with pt1 = 0 and pt2 = 0.

Acting on this state with F̂1 produces 1√
3

(
e

2πi
3 0×0 |0〉+ e

2πi
3 1×0 |1〉+ e

2πi
3 2×0 |2〉

)
⊗ |0〉. Applying

the algorithm specified at the end of Section 3.2, we find:

WΨ(x) = (48)

δ
0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1




pt1
pt2
qt1
qt2

,


0
0
0
0


= δ

−qt1
pt2
pt1
qt2

,


0
0
0
0

.

Thus, the momentum of qutrit 1 is now determined and is 0 while the second qutrit is unchanged.
This can be seen in Figure 3b, where the qt2 values of the non-zero Weyl phase space points are the
same, while the state has rotated by −π/2 in (pt1, qt1)-space. A similar transformation has occurred
for the perpendicular gray manifold.

Acting next with Ĉ12 produces the Bell state 1√
3
(|00〉+ |11〉+ |22〉), which is represented by the

following Wigner function:

WΨ(x) = (49)

δ
0 0 −1 0
0 1 0 0
1 1 0 0
0 0 −1 1




pt1
pt2
qt1
qt2

,


0
0
0
0


= δ

−qt1
pt2

pt1 + pt2
−qt1 + qt2

,


0
0
0
0

.

The entanglement between the two qutrits is evident in both of their dependence on each other’s
momenta and positions, pt1 = −pt2 and qt1 = qt2, specified by the last two rows. Figure 3c
shows that the state is still representable as lines in Weyl phase space, except they now traverse
through the different planes of (qt1, pt1) associated with each value of (qt2, pt2). However, if you
consider the left column in Figure 3c corresponding to qt2 = 0, you can see that the only black Weyl
phase points are at qt1 = 0. Similarly, the middle column corresponding to qt2 = 1 shows that
qt1 = 1, and the right column corresponding to qt2 = 2 shows that qt1 = 2 too, confirming that
|Φ〉 = 1√

3
(|00〉+ |11〉+ |22〉). Thus, the entanglement of the two qutrits’ positions is clearly evident

in this Figure of the Wigner function.
We then proceed to measure qutrit 1. Since the lower two equations involve pt1, we know that

this is a random measurement. Let us pick the outcome to be 1 and set the third row as such, replacing
the first row with the old third row. This collapses qutrit 2 into the same state:

WΨ(x) = (50)

δ
1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1




pt1
pt2
qt1
qt2

,


0
0
1
0


= δ

pt1 + pt2
pt2
qt1

−qt1 + qt2

,


0
0
1
0

.

The lower two rows show that now qt1 = 1, as we chose, and qt2 = qt1 = 1. The collapse of qutrit 2
into |1〉 can also been seen in Figure 3c by the fact that qt1 = 1 only in the 3× 3 grids that correspond
to qt2 = 1 too.

Finally, the fact that a measurement of qt2 would be deterministic at this point can be seen in
the fact that pt2 is not present in the last two rows of Φt. Furthermore, it is clear, since the first row
has a coefficient of 1 in front of pt1, that the corresponding third row must be added with weight 1 to
the fourth row to obtain this deterministic measurement outcome of qt2 = 1. This can also be seen in



Entropy 2017, 19, 353 16 of 17

Figure 3 by finding the projection of p01 onto pt2, which are shown by the gray manifolds in panels (a)
and (d), respectively. They are collinear and so the projection is equal to 1. (Perpendicular manifolds
corresponds to a projection of 0, and those that lie π/4 diagonally with respect to each other have a
projection equal to 2 in this discrete geometry.)

7. Conclusions

In summary, we introduced an algorithm that efficiently simulates stabilizer state evolution
under Clifford gates and measurements in the Ẑ Pauli basis for odd d qudits. We accomplished
this by relying on the phase-space perspective of stabilizer states as discrete Gaussians and
Clifford operators as having underlying harmonic Hamiltonians. We showed the equivalence of
our algorithm, through Equations (43) and (44), to the well-known Aaronson–Gottesman tableau
algorithm [2] for qubits, revealing that Aaronson–Gottesman’s tableau corresponds to a discrete
Wigner function. As a consequence, we revealed the physically intuitive phase space perspective of
Aaronson–Gottesman’s algorithm, as well as its extension to higher odd d.

This work illustrates that no efficiency advantage is gained by using the Heisenberg representation
for stabilizer propagation. Equation (44) indicates that the Heisenberg representation is equivalent to
the Schrödinger representation in this context; evolving the operators is just as efficient as evolving the
states, as perhaps expected.

Lastly, the correspondence between the Wigner-based algorithm and the Aaronson–Gottesman
tableau algorithm may point the direction on how to resolve the long-standing issue of describing
the Wigner–Weyl–Moyal and center-chord formalism for d = 2 systems. We have shown that
the Aaronson–Gottesman algorithm is essentially a d = 2 treatment of the Wigner approach.
The salient difference appears to be the state-dependence of this evolution, and likely is related
to the state-independent contextuality that qubits exhibit, which odd d qudits do not. Exploring the
details of this state-dependence is a promising subject of future study.
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