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Abstract: We give an exposition of iterant algebra, a generalization of matrix algebra that is motivated
by the structure of measurement for discrete processes. We show how Clifford algebras and matrix
algebras arise naturally from iterants, and we then use this point of view to discuss the Schrödinger
and Dirac equations, Majorana Fermions, representations of the braid group and the framed braids
in relation to the structure of the Standard Model for physics.
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1. Introduction

This is a paper about an approach to algebra that we call iterants. The idea behind the definition
of iterant (see Section 2) is that one is studying a periodic discrete process with an associated action
of a group of permutations on the sequences of the process. The simplest such discrete system is
an alternation between +1 and −1. We will show that this system gives rise in a natural way to
the square root of minus one. This way thinking about the square root of minus one as an iterant
is explained below. More generally, by starting with a discrete time series of positions, one has a
non-commutativity of observations due to time-delays (the clock must tick to measure a velocity) and
this non-commutativity can be encapsulated in a generalized iterant algebra as defined in Section 3 of
the present paper. Iterant algebra generalizes matrix algebra and we shall see how it can be used to
formulate the algebra of the framed Artin Braid Group, the Lie algebra su(3) for the Standard Model
for particle physics, the framed braid representations for Fermions of Sundance Bilson-Thompson,
the Clifford algebra for Majorana Fermions and the structure of the Schrödinger and Dirac equations.
This paper is a sequel to [1] and it uses material from that paper and extends it into the more general
context of the present paper. See also [1–4] for previous work by the author about iterants. This
paper also incorporates results of the author that appear in the joint paper of the author and Rukhsan
Ul-Haq [5]. Our intent is to give a picture of the range of application of the basic mathematical idea of
iterants and to include a description of the basic results that make them work.

This paper is organized as follows. Sections 2–4 are devoted to the mathematics of iterants. Each
remaining section of the paper applies the iterant structure to a topic in mathematical physics that is of
interest to the author. We hope that the reader finds the first few sections to be a readable introduction
to iterants. An interested reader can then turn to the remaining sections to see how iterants can be
used in specific cases. The reader should note that since applying iterants often means reformulating a
topic usually written in matrix algebra in terms of iterant algebra, and the specific interest in such a
formulation may be, at this time, of a formal nature. Nevertheless, the reformulation often raises many
interesting questions, and these will be the subject of subsequent work.

Sections 2 and 3 are an introduction to the process algebra of iterants and how the square root of
minus one arises from an alternating process. Section 4 shows how iterants give an alternative way to
do matrix algebra. The section ends with the construction of the split quaternions. Section 4 considers
iterants of arbitrary period (not just two) and shows, with the example of the cyclic group, how the
ring of all n× n matrices can be seen as a faithful representation of an iterant algebra based on the
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cyclic group of order n. We then generalize this construction (Theorem 1) to arbitrary non-commutative
finite groups G. Such a group has a multiplication table (n× n where n is the order of the group G).
We show that, by rearranging the multiplication table so that the identity elements appear on the
diagonal, we get a set of permutation matrices that represent the group faithfully as n× n matrices.
This gives a faithful representation of the iterant algebra associated with the group G onto the ring of
n× n matrices. As a result, we see that iterant algebra is fundamental to matrix algebra. Section 4 ends
with a number of classical examples including iterant representations for quaternion algebra.

Section 5 is a discussion of the Schrödinger equation. We formulate a discrete model related to
the diffusion equation by following a heuristic that would identify the square root of minus one as a
controlled oscillation between plus one and minus one. The resulting discrete model has the equation
(compare with [1])

ψ(x, t + τ) = ((−1)n(t)/2)ψ(x− ∆, t) + (1− (−1)n(t))ψ(x, t) + ((−1)n(t)/2)ψ(x + ∆, t)

and satisfies a discrete version of the diffusion equation with an extra coefficient of (−1)n(t), where
n(t) denotes the number of time steps τ needed to reach time t. By dividing this discrete system into its
even and odd parts (the parity of (−1)n(t)), we retrieve the Schrödinger equation, and the formalism of
the complex numbers handles the parity. In the discrete model, the iterant structure appears directly.

Section 6 discusses the iterant structure of the framed Artin braid group via framed braids and
discusses the basics of the Sundance Bilson-Thompson model for elementary particles. In Section 7,
we apply this to a formulation of the particle model of Sundance Bilson-Thompson [6], using
framed braids.

In Section 7, we give an iterant interpretation of the su(3) Lie algebra for the Standard Model
using [7]. The resulting formulation of the su(3) Lie algebra is particularly elegant from our point
of view, and we expect it to give further insight into the standard model. This iterant formulation
of the su(3) Lie Algebra is so concise that we show it here in the Introduction. We use the specific
iterant formulas

T+ = [1, 0, 0]A, T− = [0, 1, 0]B,

U+ = [0, 1, 0]A, U− = [0, 0, 1]B,

V+ = [0, 0, 1]A, V− = [1, 0, 0]B,

T3 = [1/2,−1/2, 0], Y =
1√
3
[1, 1,−2].

We have the permutation relations A[x, y, z] = [y, z, x]A and B = A2 = A−1 so that B[x, y, z] =

[z, y, x]B. This reduces the basic su(3) Lie algebra to a very elementary patterning of order three cyclic
operations. The details of this formulation are given in Section 7.

In Section 8 we apply this point of view on the Standard Model to obtain an embedding of the
framed braid algebra for the Sundance Bilson-Thompson model into the iterant version of su(3). These
three sections are an account of research of the author and Rukhsan Ul-Haq in [5].

Section 9 discusses how Clifford algebras are related to the structure of Fermions. We show how
the algebra of the split quaternions, the very first iterant algebra that appears in relation to the square
root of minus one, is behind the structure of the operator algebra of the electron. The Clifford structure
on two generators describes a pair of Majorana Fermion operators. Majorana Fermions are particles
that are their own antiparticles. These Majorana Fermion operators correspond to Clifford algebra
generators a and b such that a2 = b2 = 1 and ab = −ba. Using our iterant formulation, we can take a as
the iterant corresponding to a period two oscillation, and b as the time shifting operator. The product ab
is a square root of minus one in the non-commutative context of this Clifford algebra. The annihilation
operator for an electron can be symbolized by φ = (a + ib)/2 and the creation operator for an electron
by φ† = (a− ib)/2. These form the operator algebra for an electron. Note that
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φ2 = (a + ib)(a + ib)/4 = (a2 − b2 + i(ab + ba))/4 = (0 + i0)/4 = 0 = (φ†)2

and therefore
φφ† + φ†φ = (φ + φ†)2 = a2 = 1.

The electron is seen in terms of its underlying Clifford structure in the form of a pair of Majorana
Fermions. Section 9 shows how braiding is related to the Majorana Femions.

Section 10 discusses the structure of the Dirac equation and how the nilpotent and the Majorana
operators arise naturally in this context. This section provides a link between our work and the
work on nilpotent structures and the Dirac equation of Peter Rowlands [8]. We end this section
with an expression in split quaternions for the the Majorana–Dirac equation in (3 + 1) spacetime.
The Majorana–Dirac equation can be written as follows:

(∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z− ε̂η̂ηm)ψ = 0,

where η and ε are the generators of our simplest iterant algebra with η2 = ε2 = 1 and ηε + εη = 0.
The elements ε̂, η̂ form a commuting copy of this algebra. This use of a combination of the simplest
Clifford algebra with itself is the underlying structure of the Majorana–Dirac equation.

We give a specific real solution to the Majorana–Dirac equation in our iterant/Clifford algebra
formalism. Here, ρ(x, t) = e(p•x−Et), where p = (px, py, pz) is a constant vector momentum, and x
denotes the vector (x, y, z). The solution to the Majorana–Dirac equation is Γ̂ρ(x, t) as shown below:

Γ̂ρ(x, t) = (−E− η̂ηpx − εpy − ε̂ηpz + ε̂η̂ηm)ρ(x, t).

This solution is real in the sense that its coordinates are all real valued functions once the iterant
or matrix forms for the operators are made explicit. The combination of iterant and Clifford algebra
language that we develop here makes the analysis of certain aspects of the Dirac equation and the
Majorana–Dirac equation very clear. More work needs to be done in all these fronts.

This paper is a snapshot of a larger story. Iterant algebra is a basically simple reformulation
of aspects of patterned algebra that can often illuminate correspondingly elementary topics in
mathematics and physics. The present work is a beginning in the larger enterprise of understanding
relationships in discrete physics and relationships between algbra and physics.

2. Iterants

An iterant is a sum of elements of the form

aσ = [a1, a2, ..., an]σ,

where a = [a1, a2, ..., an] is a vector of elements that are scalars (usually real or complex numbers) and
σ is a permutation on n letters. Vectors are added and multiplied coordinatewise (see below), and we
take the following rule for multiplication of vector/permutation combinations:

(aσ)(bτ) = (abσ)στ,

where bσ denotes the vector b with its elements permuted by the action of σ.
If a and b are vectors, then ab denotes the vector, where (ab)i = aibi, and a + b denotes the vector

where (a + b)i = ai + bi. Then,
(ka)σ = k(aσ)

for a scalar k, and
(a + b)σ = aσ + bσ,
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where vectors are multiplied as above and we take the usual product of the permutations. All of matrix
algebra is naturally represented in the iterant framework, as we shall see in the next sections.

For example, if η is the order two permutation of two elements, then [a, b]η = [b, a]. Thus,

[a, b]η = η[a, b]η = η[b, a].

We define
i = [1,−1]η

and then

i2 = [1,−1]η[1,−1]η = [1,−1][−1, 1]]η2 = [1,−1][−1, 1] = [−1,−1] = −1.

In this way, the complex numbers arise naturally from iterants. One can interpret [1,−1] as an
oscillation between +1 and −1 and η as a temporal shift operator. Then, i = [1,−1]η is a time sensitive
element and its self-interaction has square minus one. In this way, iterants can be interpreted as a
formalization of elementary discrete processes.

Note that if we let e = [1,−1], then e2 = 1, η2 = 1 and eη = −ηe. Thus, e and η generate a small
Clifford algebra.

3. Iterants and Discrete Processes

The primitive idea behind an iterant is a periodic time series or “waveform”

· · · abababababab · · · .

We illustrate with period two. The elements of the waveform can be any mathematically or
empirically well-defined objects. We can regard the ordered pairs [a, b] and [b, a] as abbreviations for
the waveform or as two points of view about the waveform (a first or b first). We have called [a, b]
an iterant. Thinking of an iterant as a discrete process, we define a time shift operator η such that
[a, b]η = η[b, a] and η2 = 1.

Discrete Calculus and the Temporal Shift Operator. If we have a discrete time series X, X′, X′′, · · · ,
then it is convenient to define an operator J so that Xt J = JXt+1, and it is this temporal shift operator
that can be used to correlate discrete calculus for the time-series. For example, we can define a discrete
derivative D by the equation

DXt = J(Xt+1 − Xt)/∆t,

(with time increment equal to ∆t). Note then that the derivative is expressed as a commutator:

DXt = J(Xt+1 − Xt)/∆t = (JXt+1 − JXt)∆t = (Xt J − JXt)/∆t = [Xt, J/∆t],

where here [R, S] = RS− SR is the commutator. This means that this discrete derivative satisfies the
Leibniz rule for products, and it can be used for formulations of discrete physics. This use of the
temporal shift operator dovetails with its use for keeping track of observation in a discrete model,
where successive observations require temporal shifts. In particular, let P = mDXt and Q = Xt denote
momentum and position, respectively (m is mass and commutes with J, as does ∆t). Then, PQ and QP
do not commute and the temporal shift operator J keeps track of the fact that measuring momentum
requires a tick of the clock. We can interpret PQ as first measuring Q and then measuring P, while QP
represents first measuring P and then measuring Q :

PQ = (mDXt)(Xt) = (mJ(Xt+1 − Xt)/∆t)Xt = mJ(Xt+1 − Xt)Xt/∆t,

QP = Xt(mJ(Xt+1 − Xt)/∆t) = mJXt+1(Xt+1 − Xt)/∆t.
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Thus,
[Q, P] = QP− PQ = mJ(Xt+1 − Xt)2/∆t = mJ(∆X)2/∆t.

In this form of discrete physics, the commutator equation

[Q, P] = k,

where k is a constant, is satisfied by a Brownian walk with diffusion constant (∆X)2/∆t. In this way,
our interpretation of the square root of negative one in terms of the temporal shift operator fits into a
larger context of the physics of discrete observations. In this paper, we work with periodic series and
use cyclic operators such as η to keep track of the periodicity. For related discussion, see [2,3,5,9–16].
See also [17] for other uses of iterants in the context of Clifford algebras. For papers of the author about
discrete physics and quantum computing see [18–28].

We have defined products and sums of iterants as follows

[a, b][c, d] = [ac, bd]

and
[a, b] + [c, d] = [a + c, b + d].

The operation of juxtapostion of waveforms is multiplication while + denotes ordinary addition of
ordered pairs. These operations are natural with respect to the structural juxtaposition of iterants:

...abababababab...

...cdcdcdcdcdcd...

Structures combine at the points where they correspond. Waveforms combine at the times where
they correspond. Iterants combine in juxtaposition. This theme of including the result of time in
observations of a discrete system occurs at the foundation of our construction.

In the next section, we show how all matrix algebra can be formulated in terms of iterants.

4. Matrix Algebra via Iterants

Here is a direct translation of period-two iterants into 2× 2 matrices. Let

[a, b] + [c, d]η =

(
a c
d b

)
,

where

[x, y] =

(
x 0
0 y

)
,

and

η =

(
0 1
1 0

)
.

The reader will have no difficulty verifying that the usual definition of matrix multiplicaiton
corresponds exactly to the iterant multiplication that we have already described. In particular,

[x, y][z, w] = [xy, zw]

and
[x, y] + [z, w] = [x + y, z + w]
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are rules of matrix multiplication and addition, as are

[x, y]η = η[y, x].

Thus, matrix multiplication and addition is identical with iterant multiplication. There are many ways
to motivate the rules for matrix algebra. Iterants are a natural entry into matrix structure.

The fact that the iterant expression [a, d]1 + [b, c]η captures the whole of 2× 2 matrix algebra
corresponds to the fact that a two by two matrix is combinatorially the union of the identity pattern
(the diagonal) and the interchange pattern (the antidiagonal) that correspond to the operators 1 and η :(

∗ @
@ ∗

)
.

In the formal diagram for a matrix shown above, we indicate the diagonal by ∗ and the anti-diagonal by @.
In the case of complex numbers, we represent(

a −b
b a

)
= [a, a] + [−b, b]η = a1+ b[−1, 1]η = a + bi.

In this way, we see that 2× 2 matrix algebra can be seen as a hypercomplex number system based on
the symmetric group S2. In the next section, we generalize this point of view to arbitrary finite groups
by generalizing Cayley’s Theorem that shows that every finite group has a faithful representation as a
permutation group.

The factorization of i into a product εη of non-commuting iterant operators shows, in the iterant
viewpoint, the temporal nature of i and its algebraic roots.

Note that the quaternions arise from the split quaternions: The split quaternions are the system

{±1,±ε,±η,±i}.

Here, εε = 1 = ηη while i = εη so that ii = −1. The quaternions come about once we construct an
extra square root of minus one that commutes with them. Call this extra root of minus one

√
−1. Then,

the quaternions are generated by

I =
√
−1ε, J = εη, K =

√
−1η

with
I2 = J2 = K2 = I JK = −1.

Remark 1. The rest of this section is an exposition of the higher period iterants and the general Theorem 1 about
finite groups and iterant matrix representations. The exposition follows the corresponding exposition in our
paper [1].

4.1. Iterants of Arbirtarily High Period and General Matrix Algebras

Consider a waveform of period three.

· · · abcabcabcabcabcabc · · ·

Here, we see three natural iterant views (depending upon whether one starts at a, b or c).

[a, b, c], [b, c, a], [c, a, b].
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The appropriate shift operator is given by the cyclic permutation S:

[x, y, z]S = S[z, x, y].

With T = S2, we have
[x, y, z]T = T[y, z, x]

and S3 = 1. We obtain a closed algebra of iterants whose general element is of the form

[a, b, c] + [d, e, f ]S + [g, h, k]S2,

where a, b, c, d, e, f , g, h, k are real or complex numbers. Call this algebra Vect3(R) when the scalars are
in a commutative ring with unit F. Let M3(F) denote the 3× 3 matrix algebra over F. We have the:

Lemma 1. The iterant algebra Vect3(F) is isomorphic to the full 3× 3 matrix algebra M3((F).

Proof.
[a, b, c] + [d, e, f ]S + [g, h, k]S2

maps to the matrix  a d g
h b e
f k c

 ,

preserving the algebra structure. Since any 3× 3 matrix can be written uniquely in this form, it follows
that Vect3(F) is isomorphic to the full 3× 3 matrix algebra M3(F).

We can summarize the pattern behind this expression of 3 × 3 matrices by the following
symbolic matrix:  1 S T

T 1 S
S T 1

 .

Here, the letter T occupies the positions in the matrix that correspond to the permutation matrix
that represents it, and the letter T = S2 occupies the positions corresponding to its permutation
matrix. The 1s occupy the diagonal for the corresponding identity matrix. The iterant representation
corresponds to writing the 3× 3 matrix as a disjoint sum of these permutation matrices such that the
matrices themselves are closed under multiplication. In this case, the matrices form a permutation
representation of the cyclic group of order 3, C3 = {1, S, S2}.

Remark 2. Note that a permutation matrix is a matrix of zeroes and ones such that some permutation of the
rows of the matrix transforms it to the identity matrix. Given an n× n permutation matrix P, we associate to it
a permuation

σ(P) : {1, 2, · · · , n} −→ {1, 2, · · · , n}

via the following formula
iσ(P) = j,

where j denotes the column in P where the i-th row has a 1. Note that an element of the domain of a permutation
is indicated to the left of the symbol for the permutation. It is then easy to check that for permutation matrices
P and Q,

σ(P)σ(Q) = σ(PQ),

given that we compose the permutations from left to right according to this convention.
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This construction generalizes directly for iterants of any period and hence for a set of operators
forming a cyclic group of any order. We shall generalize further to any finite group G. We now define
Vectn(G,F) for any finite group G.

Definition 1. Let G be a finite group, written multiplicatively. Let F denote a given commutative ring with
unit. Assume that G acts as a group of permutations on the set {1, 2, 3, · · · , n} so that given an element g ∈ G
we have (by abuse of notation)

g : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n}.

We shall write
ig

for the image of i ∈ {1, 2, 3, · · · , n} under the permutation represented by g. The notation denotes functionality
from the left. We have (ig)h = i(gh) for all elements g, h ∈ G and i1 = i for all i, in order to have a representation
of G as permutations. We shall call an n-tuple of elements of F a vector and denote it by a = (a1, a2, · · · , an).
We then define an action of G on vectors over F by the formula

ag = (a1g, a2g, · · · , ang),

and note that (ag)h = agh for all g, h ∈ G. Define an algebra Vectn(G,F), the iterant algebra for G, to be the
set of finite sums of formal products of vectors and group elements in the form ag with multiplication rule

(ag)(bh) = abg(gh),

and the understanding that (a + b)g = ag + bg and for all vectors a, b and group elements g. It is understood
that vectors are added coordinatewise and multiplied coordinatewise. Thus, (a + b)i = ai + bi and (ab)i = aibi.

Theorem 1. Let G be a finite group of order n [1]. Let ρ : G −→ Sn denote the right regular representation of
G as permutations of n objects. List the elements of G as G = {g1, · · · , gn}, and let G act on its own underlying
set via the definition giρ(g) = gig. Here, we describe ρ(g) acting on the set of elements gk of G. We also regard
ρ(g) as a mapping of the set {1, 2, · · · n}, replacing gk by k and iρ(g) = k where gig = gk.

Then, Vectn(G,F) is isomorphic to the matrix algebra Mn((F). In particular, Vectn!(Sn,F) is isomorphic
with the matrices of size n!× n!, Mn!((F).

Proof. Take the multiplication table for G to be the n× n matrix with columns and rows listed in
the order [g1, · · · , gn]. Permute the rows of this matrix so that the diagonal consists in all 1 s. Let the
resulting matrix be called the G-Table. The G-Table is labeled by elements of the group. For any vector
a, let D(a) denote the n× n diagonal matrix whose entries in order down the diagonal are the entries
of a in the order specified by a. For each group element g, let Pg denote the permutation matrix with 1
in every spot on the G-Table that is labeled by g and 0 in all other spots. It is now a direct verification
that the mapping

F(Σn
i=1aigi) = Σn

i=1D(ai)Pgi

defines an isomorphism from Vectn(G,F) to the matrix algebra Mn((F). The main point to check is
that σ(Pg) = ρ(g). We now prove this fact.

In the G-Table, the rows correspond to {g−1
1 , g−1

2 , · · · g−1
n } and the columns correspond to

{g1, g2, · · · gn} so that the i-i entry of the table is g−1
i gi = 1. With this, we have that, in the table,

a group element g occurs in the i-th row at column j where g−1
i gj = g. This is equivalent to the

equation gig = gj which, in turn, is equivalent to the statement iρ(g) = j. This is exactly our functional
interpretation of the action of the permutation corresponding to the matrix Pg. Thus, ρ(g) = σ(Pg).
The rest of the proof is straightforward and left to the reader.
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Example 1.

1. Consider the cyclic group of order three.

C3 = {1, S, S2}

with S3 = 1. The multiplication table is  1 S S2

S S2 1
S2 1 S

 .

Interchanging the second and third rows, we obtain 1 S S2

S2 1 S
S S2 1

 ,

and this is the G-Table that we used for Vect3(C3,F) prior to proving the Main Theorem. The same
pattern works for abitrary cyclic groups.

2. Consider the symmetric group on six letters,

S6 = {1, R, R2, F, RF, R2F},

where R3 = 1, F2 = 1, FR = RF2. Then, the multiplication table is

1 R R2 F RF R2F
R R2 1 RF R2F F
R2 1 R R2F F RF
F R2F RF 1 R2 R

RF F R2F R 1 R2

R2F RF F R2 R 1


.

The corresponnding G-Table is

1 R R2 F RF R2F
R2 1 R R2F F RF
R R2 1 RF R2F F
F R2F RF 1 R2 R

RF F R2F R 1 R2

R2F RF F R2 R 1


.

This G-Table encodes the isomorphism of Vect6(S3,F) with the full algebra of six by six matrices. Similarly,
Vectn!(Sn,F) is isomorphic with the full algebra of n!×n! matrices. The permutation matrices are obtained
from the G-Table by choosing a given group element and then replacing it by 1 for each appearance in the
table, and replacing the other elements of the table by 0. For example, we have the permutation matrix for
R given by the formula below:
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R =



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


.

3. Consider the group G = C2×C2, the “Klein 4-Group”. Take G = {1, A, B, C} where A2 = B2 = C2 = 1,
AB = BA = C. G has the multiplication table, which is also its G-Table for Vect4(G,F) :

1 A B C
A 1 C B
B C 1 A
C B A 1

 .

Thus, we have the corresponding permutation matrices that I shall call E, A, B, C. The reader can verify
that A2 = B2 = C2 = 1, AB = BA = C. Let

α = [1,−1,−1, 1], β = [1, 1,−1,−1], γ = [1,−1, 1,−1].

In addition, let
I = αA, J = βB, K = γC.

Then, it is easy to check that

I2 = J2 = K2 = I JK = −1, I J = K, JI = −K.

Thus, we have constructed the quaternions as iterants in relation to the Klein 4-Group. In Figure 1, we
illustrate these quaternion generators with string diagrams for the permutations. The reader can check
that the permuations correspond to the permutation matrices constructed for the Klein 4-Group.

+ + + + + +- - - - - -+ + + +

1 I J K

+ +- -

I

+ + - -

J

+ +- -

+ +- -

K
= =

IJ = K

II = JJ = KK = IJK = -1

Elements of the Klein Four-Group.

Product of I and J perfomed as flat framed 

braid multiplication.

Basic products:

Figure 1. Quaternions from the Klein 4-Group.
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4. Since complex numbers commute with one another, we could consider iterants whose values are in the
complex numbers. This is just like considering matrices whose entries are complex numbers. Thus, we
shall allow a version of i that commutes with the iterant shift operator η. Let this commuting i be denoted
by ι. Then, we are assuming that

ι2 = −1,

ηι = ιη,

η2 = +1.

We then consider iterants of the form [a+ bι, c+ dι] and [a+ bι, c+ dι]η = η[c+ dι, a+ bι]. In particular,
we have ε = [1,−1], and i = εη is quite distinct from ι. Note, as before, that εη = −ηε and that ε2 = 1.
Now, let

I = ιε,

J = εη,

K = ιη.

We find the quaternions once more:

I2 = ιειε = ιιεε = (−1)(+1) = −1,

J2 = εηεη = ε(−ε)ηη = −1,

K2 = ιηιη = ιιηη = −1,

I JK = ιεεηιη = ι1ιηη = ιι = −1.

Thus,
I2 = J2 = K2 = I JK = −1.

This construction shows how the structure of the quaternions comes directly from the non-commutative
structure of period two iterants. The group SU(2) of 2 × 2 unitary matrices of determinant one is
isomorphic to the quaternions of length one.

5. Similarly,

H = [a, b] + [c + dι, c− dι]η =

(
a c + dι

c− dι b

)

represents a Hermitian 2× 2 matrix and hence an observable for quantum processes mediated by SU(2).
Hermitian matrices have real eigenvalues.

If in the above Hermitian matrix form, we take a = T + X, b = T − X, c = Y, d = Z, then we obtain an
iterant and/or matrix representation for a point in Minkowski spacetime:

H = [T + X, T − X] + [Y + Zι, Y− Zι]η =

(
T + X Y + Zι

Y− Zι T − X

)
.

Note that we have the formula
Det(H) = T2 − X2 −Y2 − Z2.
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It is not hard to see that the eigenvalues of H are T±
√

X2 + Y2 + Z2. Thus, viewed as an observable, H
can observe the time and the invariant spatial distance from the origin of the event (T, X, Y, Z). At least
at this very elementary juncture, quantum mechanics and special relativity are reconciled.

6. Hamilton’s Quaternions are generated by iterants, as discussed above, and we can express them purely
algebraicially by writing the corresponding permutations as shown below:

I = [+1,−1,−1,+1]s,

J = [+1,+1,−1,−1]l,

K = [+1,−1,+1,−1]t,

where
s = (12)(34),

l = (13)(24),

t = (14)(23).

Here, we represent the permutations as products of transpositions (ij). The transposition (ij) interchanges
i and j, leaving all other elements of {1, 2, ..., n} fixed.

One can verify that
I2 = J2 = K2 = I JK = −1.

Note that making an iterant interpretation of an entity like I = [+1,−1,−1,+1]s is a conceptual
departure from our original period two iterant (or cyclic period n) notion. Now, we consider iterants such
as [+1,−1,−1,+1] where the permutation group acts to produce other orderings of a given sequence.
The iterant itself can represent a form that can be seen in any of its possible orders. These orders are
subject to permutations that produce the possible views of the iterant. Algebraic structures such as the
quaternions appear in the explication of such forms.

7. In all these examples, we can interpret the iterants as short hand for matrix algebra based on permutation
matrices, or as indicators of discrete processes. The discrete processes become more complex in proportion
to the complexity of the groups used in the construction. We began with processes of order two, then
considered cyclic groups of arbitrary order, then the symmetric group S3 in relation to 6× 6 matrices,
and the Klein 4-Group in relation to the quaternions. In the case of the quaternions, we know that
this structure is intimately related to rotations of three- and four-dimensional space and many other
geometric themes.

5. Schrödinger’s Equation

In this section, we go more deeply into a treatment of Schrödinger’s equation that was begun
in the introduction to [1]. In that paper, we used this example for Schrödinger’s equation to
motivate the introduction of iterants. Here, we already have iterants, but we find that a discrete
model for Schrödinger’s equation instantiates an alternating pattern that is essentially of the form
· · ·+−+−+−+ · · · , and the problem of taking the continuum limit of this discrete model leads to
the complex numbers by a parity consideration. The parity consideration corresponds to our iterant
construction of the square root of minus one, and so we see in this model how the iterant square root
of minus one can correspond to an alternation in a discrete process while the usual square root of
minus one describes the behaviour of the limit of the process.
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5.1. Brownian Walks and the Diffusion Equation

Recall how the diffusion equation arises in discussing Brownian motion. We are given a Brownian
process where

x(t + τ) = x(t)± ∆,

so that the time step is τ and the space step is of absolute value ∆. We regard the probability of left or
right steps as equal, so that if P(x, t) denotes the probability that the Brownian particle is at point x at
time t, then

P(x, t + τ) = P(x− ∆, t)/2 + P(x + ∆, t)/2.

From this equation for the probability, we can write a difference equation for the partial derivative of
the probability with respect to time:

(P(x, t + τ)− P(x, t))/τ = (h2/2τ)[(P(x− ∆, t)− 2P(x, t) + P(x + ∆))/∆2].

The expression in brackets on the right-hand side is a discrete approximation to the second partial of
P(x, t) with respect to x. Thus, if the ratio C = ∆2/2τ remains constant as the space and time intervals
approach zero, then this equation goes in the limit to the diffusion equation

∂P(x, t)/∂t = C∂2P(x, t)/∂x2.

C is called the diffusion constant for the Brownian process.

5.2. An Iterant Intepretation of Schrödinger’s Equation

Recall that Schrödinger’s equation can be regarded as the diffusion equation with an imaginary
diffusion constant. Recall how this works. The Schrödinger equation is

ih̄∂ψ/∂t = Hψ,

where the Hamiltonian H is given by the equation H = p2/2m + V, where V(x, t) is the potential
energy and p = (h̄/i)∂/∂x is the momentum operator. With this, we have p2/2m = (−h̄2/2m)∂2/∂x2.
Thus, with V(x, t) = 0, the equation becomes ih̄∂ψ/∂t = (−h̄2/2m)∂2ψ/∂x2, which simplifies to

∂ψ/∂t = (ih̄/2m)∂2ψ/∂x2.

Thus, we have arrived at the form of the diffusion equation with an imaginary constant, and it is
possible to make the identification with the diffusion equation by setting

h̄/m = ∆2/τ,

where ∆ denotes a space interval, and τ denotes a time interval as explained in the last section
about the Brownian walk. With this, we can ask what space interval and time interval will satisfy
this relationship? One answer is that this equation is satisfied when m is the Planck mass, ∆ is
the Planck length and τ is the Planck time. Note that L2/T = (h̄/Mc)2/(h̄/Mc2) = h̄/M. Here,
h̄ is Planck’s constant divided by 2π. c is the speed of light. G is Newton’s gravitational constant.
M =

√
h̄c/G, L = h̄/Mc, T = h̄/Mc2.

What does all this say about the nature of the Schrödinger equation itself? Consider a discrete
function ψ(x, t) defined (recursively) by the following equation:

ψ(x, t + τ) = (i/2)ψ(x− ∆, t) + (1− i)ψ(x, t) + (i/2)ψ(x + ∆, t).
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In other words, we are thinking here of a random “quantum walk” where the amplitude for stepping
right or stepping left is proportional to i while the amplitude for not moving at all is proportional to
(1− i). It is then easy to see that ψ is a discretization of

∂ψ/∂t = (i∆2/2τ)∂2ψ/∂x2.

Just note that ψ satisfies the difference equation

(ψ(x, t + τ)− ψ(x, t))/τ = (i∆2/2τ)(ψ(x− ∆, t)− 2ψ(x, t) + ψ(x + ∆, t))/∆2.

This gives a direct interpretation of the solution to the Schrödinger equation as a limit of a sum over
generalized Brownian paths with complex amplitudes.

Replacing i by An Iterant. Now, however, suppose that we replace i by (−1)n(t) at time step t = n(t)τ
where n(t) is a non-negative integer. Instead of writing

ψ(x, t + τ) = (i/2)ψ(x− ∆, t) + (1− i)ψ(x, t) + (i/2)ψ(x + ∆, t),

we will write

ψ(x, t + τ) = ((−1)n(t)/2)ψ(x− ∆, t) + (1− (−1)n(t))ψ(x, t) + ((−1)n(t)/2)ψ(x + ∆, t).

Then, we will find that

(ψ(x, t + τ)− ψ(x, t))/τ = (−1)n(t)(∆2/2τ)(ψ(x− ∆, t)− 2ψ(x, t) + ψ(x + ∆, t))/∆2,

so that the diffusion equation seems to have been replaced with an equation of the form

∂ψ/∂t = ±κ∂2ψ/∂x2.

We wish to consider the continuum limit. However, there is no meaning to

(−1)n(t)

in the realm of continuous time. In the discrete world, the wave function ψ divides into ψe and ψo

where the (discrete) time, n(t), is either even or odd. We write

∂tψe = κ∂2
xψo,

∂tψo = −κ∂2
xψe,

and take the continuum limit of ψe and ψo separately.
In fact, we can interpret the {±} as the complex number i. We write

ψ = ψe + iψo,

so that
i∂tψ = i∂t(ψe + iψo) = i∂tψe − ∂tψo

= iκ∂2
xψo + κ∂2

xψe = κ∂2
x(ψe + iψo)

= κ∂2
xψ.

Thus,
i∂ψ/∂t = κ∂2ψ/∂x2.
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This the Schrödinger equation. Instead of the simple diffusion equation, we have a mutual
dependency where the temporal variation of ψe is mediated by the spatial variation of ψo

and vice-versa:
ψ = ψe + iψo,

∂tψe = κ∂2
xψo,

∂tψo = −κ∂2
xψe,

i∂ψ/∂t = κ∂2ψ/∂x2.

Note that in terms of the iterant interpretation, the pair [ψe, ψo] is an abbreviation of the temporal
series · · ·ψt, ψt+τ , ψt+2τ , · · · that represents the discrete process ψt+τ(x) = ((−1)n(t)/2)ψt(x− ∆) +
(1− (−1)n(t))ψt(x) + ((−1)n(t)/2)ψt(x + ∆) Here, the process itself is not periodic, but the underlying
alternation of the parity of (−1)n(t) gives the iterant stucture that allows the use of i as a combination
of shift and permutation.

Remark 3. The discrete recursion at the beginning of this section can be implemented to approximate solutions
to the Schrödinger equation. This will be the subject of another paper. The main point of this section is that a
discrete version of the Schrödinger equation actually uses the temporal iterant interpretation of the square root
of minus one, so that one can think of this oscillation as part of a discrete process in back of the Schrödinger
evolution. This reformulation of basic quantum mechanics deserves further study.

6. The Framed Braid Group and the Sundance Bilson-Thompson Model for Elementary Particles

The reader should recall that the symmetric group Sn has presentation

Sn = (T1, · · · Tn−1|T2
i = 1, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi; |i− j| > 1).

The Artin Braid Group Bn is a relative of the symmetric group that is obtained by removing the
condition that each generator has a square equal to the identity:

Bn = (σ1, · · · σn−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi; |i− j| > 1).

In Figure 2, we illustrate the the generators σ1, σ2, σ3 of the 4-strand braid group and we show the
topological nature of the relation σ1σ2σ1 = σ2σ1σ2 and the commuting relation σ1σ3 = σ3σ1. Topological
braids are represented as collections of always descending strings, starting from a row of points and
ending at another row of points. The strings are embedded in three-dimensional space and can wind
around one another. The elementary braid generators σi correspond to the i-th strand interchanging
with the (i + 1)-th strand. Two braids are multiplied by attaching the bottom endpoiints of one braid
to the top endpoints of the other braid to form a new braid.

There is a fundamental homomorphism

π : Bn −→ Sn

defined on generators by
π(σi) = Ti

in the language of the presentations above. In terms of the diagrams in Figure 2, a braid diagram is a
permutation diagram if one forgets about its weaving structure of over and under strands at a crossing.
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Figure 2. Braid generators.

We now turn to a generalization of the braid group, the framed braid group. In this generalization,
we associate elements of the form ta to the top of each braid strand. For these purposes, it is useful
to take t as an algebraic variable and a as an integer. To interpret this framing, geometrically replace
each braid strand by a ribbon and interpret ta as a 2πa twist in the ribbon. In Figure 3, we illustrate
how to multiply two framed braids. In our formalism, the braids A and B in this figure are given by
the formulas

A = [ta, tb, tc]σ1σ2σ3,

B = [td, te, t f ]σ2σ3,

in the framed braid group on three strands, denoted FB3. As the Figure 3 illustrates, we have the
basic formula

vσ = σvπ(σ),

where v is a vector of the form v = [ta, tb, tc] (for n = 3) and vπ(σ) denotes the action of the permutation
associated with the braid σ on the vector v. In the figure, the permutation is accomplished by sliding
the algebra along the strings of the braid.

a b c

ef
abc d

d e f

a b c +d+e+f

=

= =

t t t

t t t

t t t

t t t

t t t

d e f

t t t

a b c

t t t

A B

AB  =

Figure 3. Framed braids.

We can form an algebra Alg[FBn] by taking formal sums of framed braids of the form ∑ ckvkGk,
where ck is a scalar, vk is a framing vector and Gk is an element of the Artin Braid group Bn. Since
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braids act on framing vectors by permutations, this algebra is a generalization of the iterant algebras
we have defined so far. The algebra of framed braids uses an action of the braid group based on its
representation to the symmetric group. Furthemore, the representation π : Bn −→ Sn induces a map
of algebras

π̂ : Alg[FBn] −→ Alg[FSn],

where we recognize Alg[FSn] as exactly an iterant algebra based in Sn.
In [6], Sundance Bilson-Thompson represents Fermions as framed braids. See Figure 4 for his

diagrammatic representations. In this theory, each Fermion is associated with a framed braid. Thus,
from the figure, we see that the positron and the electron are given by the framed braids

e+ = [t, t, t]σ1σ−1
2 ,

and
e− = σ2σ−1

1 [t−1, t−1, t−1].

Here, we use [ta, tb, tc] for the framing numbers (a, b, c). Products of framed braids correspond to
particle interactions. Note that e+e− = [1, 1, 1] = γ so that the electron and the positron are inverses
in this algebra. In Figure 5 are illustrated the representations of bosons, including γ, a photon and
the identity element in this algebra. Other relations in the algebra correspond to particle interactions.
For example, in Figure 6 the muon decay is illustrated:

µ→ νµ + W− → νµ + ν̄e + e−.

The reader can see the definitions of the different parts of this decay sequence from the three
figures we have just mentioned. Note that strictly speaking the muon decay is a multiplicative identity
in the braid algebra:

µ = νµW− = νµν̄ee−.

Particle interactions in this model are mediated by factorizations in the non-commutative algebra of the
framed braids.

Figure 4. Sundance Bilson-Thompson Framed Braid Fermions (“(3)” under the labels for the up and
down quarks and antiquarks represent the fact that there are three permutations of charge placement
giving the three colours).

Figure 5. Bosons.
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Figure 6. Representation of µ→ νµ + W− → νµ + ν̄e + e−.

By using the representation π̂ : Alg[FB3] −→ Alg[FS3], we can image the structure of
Bilson-Thompson’s framed braids in the the iterant algebra corresponding to the symmetric group.
However, we propose to change this map so that we have a non-trivial representation of the Artin
braid group. This can be accomplished by defining

ρ : Alg[FB3] −→ Alg[FS3],

where
ρ(σk) = [t, t, t]Tk

and
ρ(σ−1

k ) = [t−1, t−1, t−1]Tk

for k = 1, 2. The reader will find that we have now represented the braid group in the iterant algebra
Alg[FS3] and extended the representation to the framed braid group algebra. Thus, the Sundance
Bilson-Thompson representation of elementary particles as framed braids is represented inside the iterant algebra
for the symmetric group on three letters. In Section 10, we carry this further and place the representation
inside the Lie Algebra su(3).

7. Iterants and the Standard Model

In this section, we shall give an iterant interpretation for the Lie algebra of the special unitary
group SU(3). The Lie algebra in question is denoted as su(3) and is often described by a matrix basis.
The Lie algebra su(3) is generated by the following eight Gell Man Matrices [29]:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 i
0 0 0
−i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

The group SU(3) consists of the matrices U(ε1, · · · , ε8) = ei ∑a εaλa , where ε1, · · · , ε8 are real
numbers and a ranges from 1 to 8. The Gell Man matrices satisfy the following relations:

tr(λaλb) = 2δab,
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[λa/2, λb/2] = i fabcλc/2.

Here, we use the summation convention summing over repeated indices, and tr denotes standard
matrix trace, [A, B] = AB− BA is the matrix commutator and δab is the Kronecker delta, equal to 1
when a = b, and equal to 0, otherwise. The structure coefficients fabc take the following non-zero values:

f123 = 1, f147 = 1/2, f156 = −1/2, f246 = 1/2, f257 = 1/2,

f345 = 1/2, f367 = −1/2, f458 =
√

3/2, f678 =
√

3/2.

We now give an iterant representation for these matrices that is based on the pattern 1 A B
B 1 A
A B 1


as described in the previous section. That is, we use the cyclic group of order three to represent all
3× 3 matrices at iterants based on the permutation matrices

A =

 0 1 0
0 0 1
1 0 0

 , B =

 0 0 1
1 0 0
0 1 0

 .

Recalling that [a, b, c] as an iterant, denotes a diagonal matrix

[a, b, c] =

 a 0 0
0 b 0
0 0 c

 ,

the reader will have no difficulty verifying the following formulas for the Gell Mann Matrices in the
iterant format:

λ1 = [1, 0, 0]A + [0, 1, 0]B,

λ2 = [−i, 0, 0]A + [0, i, 0]B,

λ3 = [1,−1, 0],

λ4 = [1, 0, 0]B + [0, 0, 1]A,

λ5 = [i, 0, 0]B + [0, 0,−i]A,

λ6 = [0, 1, 0]A + [0, 0, 1]B,

λ7 = [0,−i, 0]A + [0, 0, i]B,

λ8 =
1√
3
[1, 1,−2].

Letting Fa = λa/2, we can now rewrite the Lie algebra into simple iterants of the form [a, b, c]G
where G is a cyclic group element. Compare with [7]. Let

T± = F1 ± iF2,

U± = F6 ± iF7,

V± = F4 ± iF5,

T3 = F3,
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Y =
2√
3

F8.

Iterant Formulation of the su(3) Lie Algebra. We now have the specific iterant formulas

T+ = [1, 0, 0]A,

T− = [0, 1, 0]B,

U+ = [0, 1, 0]A,

U− = [0, 0, 1]B,

V+ = [0, 0, 1]A,

V− = [1, 0, 0]B,

T3 = [1/2,−1/2, 0],

Y =
1√
3
[1, 1,−2].

We have that A[x, y, z] = [y, z, x]A and B = A2 = A−1 so that B[x, y, z] = [z, y, x]B. We have reduced
the basic su(3) Lie algebra to a very elementary patterning of order three cyclic operations. In a subsequent
paper, we will use this point to view to examine the irreducible representations of this algebra and to
illuminate the Standard Model’s Eightfold Way.

8. Iterants, Braiding and the Sundance Bilson-Thompson Model for Fermions

In the last section, we based our iterant representations on the following patterns and matrices.
The pattern,  1 A B

B 1 A
A B 1

 ,

uses the cyclic group of order three to represent all 3 × 3 matrices at iterants based on the
permutation matrices

A =

 0 1 0
0 0 1
1 0 0

 , B =

 0 0 1
1 0 0
0 1 0

 .

Recalling that [a, b, c] as an iterant denotes a diagonal matrix

[a, b, c] =

 a 0 0
0 b 0
0 0 c

 .

In fact, there are six 3× 3 permuation matrices: {I, A, B, P, Q, R}, where

P =

 0 1 0
1 0 0
0 0 1

 , Q =

 1 0 1
0 0 1
0 1 0

 , R =

 0 0 1
0 1 0
1 0 0

 .

We then have A = QP, B = PQ, R = PQP = QPQ. The two transpositions P and Q generate the entire
group of permuatations S3. It is usual to think of the order-three transformations A and B as expressed
in terms of these transpositons, but we can also use the iterant structure of the 3× 3 matrices to express
P, Q and R in terms of A and B. The result is as follows:
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P = [0, 0, 1] + [1, 0, 0]A + [0, 1, 0]B,

Q = [1, 0, 0] + [0, 1, 0]A + [0, 0, 1]B,

R = [0, 1, 0] + [0, 0, 1]A + [1, 0, 0]B.

Recall from the previous section that we have the iterant generators for the su(3) Lie algebra:

T+ = [1, 0, 0]A,

T− = [0, 1, 0]B,

U+ = [0, 1, 0]A,

U− = [0, 0, 1]B,

V+ = [0, 0, 1]A,

V− = [1, 0, 0]B.

Thus, we can express these transpositions P and Q in the iterant form of the Lie algebra as

P = [0, 0, 1] + T+ + T−,

Q = [1, 0, 0] + U+ + U−,

R = [0, 1, 0] + V+ + V−.

The basic permutations receive elegant expressions in the iterant Lie algebra.
Now that we have basic permutations in the Lie algebra, we can take the map from Section 7

ρ : Alg[FB3] −→ Alg[FS3]

with
ρ(σk) = [t, t, t]Tk

and
ρ(σ−1

k ) = [t−1, t−1, t−1]Tk

for k = 1, 2 and send T1 to P and T2 to Q. Then, we have

ρ(σ1) = [t, t, t]P

and
ρ(σ−1

1 ) = [t−1, t−1, t−1]P

and
ρ(σ2) = [t, t, t]Q

and
ρ(σ−1

1 ) = [t−1, t−1, t−1]Q.

By choosing t 6= 1 on the unit circle in the complex plane, we obtain representations of the
Sundance Bilson-Thompson constructions of Fermions via framed braids inside the su(3) Lie algebra.
This brings the Bilson-Thompson formalism in direct contact with the Standard Model via our iterant
representations. We shall return to these relationships in a sequel to the present paper.
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9. Clifford Algebra, Majorana Fermions and Braiding

This section is based on our paper [1]. We show how the very simple Clifford algebra(s) that
come from iterants figure in studying Fermions and Majorana Fermions. This section also provides the
background for the next section on the Dirac equation. The original paper by Ettore Majorana [30]
led to the notion of Clifford algebraic Majorana operators that we discuss in this section. In the next
section on the Dirac equation, we show how this Clifford algebra is related to Majorana’s original
equation. A key relationship between the physics of the Quantum Hall effect and the kind of braiding
representations considered here originates with the paper of Moore and Read [31]. See also [28] where
we look at the combinatorial topology behind the braid group representations of Moore and Read.

Recall Fermion algebra. One has Fermion annihiliation operators ψ and their conjugate creation
operators ψ†. One has ψ2 = 0 = (ψ†)2. There is a fundamental commutation relation

ψψ† + ψ†ψ = 1.

If you have more than one of them, say ψ and φ, then they anti-commute:

ψφ = −φψ.

Majorana Fermion operators c satisfy c† = c so that the corresponding particles are their own
anti-particles. A group of researchers [32] claims, at this writing, to have found Majorana Fermions in
edge effects in nano-wires.

Majorana operators are related to standard Fermions as follows: the algebra for Majoranas is
c = c† and cc′ = −c′c if c and c′ are distinct Majorana Fermions with c2 = 1 and c′2 = 1. One can make
a standard Fermion operator from two Majorana operators via

ψ = (c + ic′)/2,

ψ† = (c− ic′)/2.

Similarly, one can mathematically make two Majoranas from any single Fermion. If one takes a set
of Majoranas

{c1, c2, c3, · · · , cn},

then there are natural braiding operators that act on the vector space with these ck as the basis.
The operators are mediated by algebra elements that themselves satisfy braiding relations

τk = (1 + ck+1ck)/
√

2,

τ−1
k = (1− ck+1ck)/

√
2.

The Ivanov [33] braiding operators are

Tk : Span{c1, c2, · · · , , cn} −→ Span{c1, c2, · · · , , cn}

via
Tk(x) = τkxτ−1

k .

The braiding is simply:
Tk(ck) = ck+1,

Tk(ck+1) = −ck,

and Tk is the identity otherwise. We have then a unitary representaton of the Artin braid group.
See Figure 7 for a depiction of the braiding of Majorana Fermions in relation to the topology of a
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belt that connects them. In quantum mechanics, we must represent rotations of three-dimensional
space as unitary transformations. This relationship between rotations and unitary transformations
is encoded in the topology of the belt. See [34] for more about this topological view of the physics
of Fermions. In the figure, we see that the strictly topological belt does not know which of the two
Fermions will individually acquire a phase change, but the Ivanov algebra above makes this decision.
More understanding is needed in this area of subtle topological structure of Fermions.

T(x) = y
T(y) = -x

x
x

x

x
y

y

y

y

Topological Exchange

Ivanov Braiding 

Transformation

of Majorana Fermion

Operators

x y

(Note that x goes to the y-position and 
y goes to the x-position with a twist.)

Figure 7. Braiding action on a pair of fermions.

Recall that, in discussing the inception of iterants, we introduce a temporal shift operator η such that

[a, b]η = η[b, a]

and
ηη = 1

for any iterant [a, b]. In this way, we have a Clifford algebra generated by e = [1,−1] and η. We can
take e and η as Majorana Fermion operators and construct Fermion operators

ψ = (e + iη)/2,

ψ† = (e− iη)/2.

Here, i is an extra square root of minus one that commutes with the operators e and η. We arrive at
fermions in a few short steps from the origin of the iterants. Algebraically, we have controlled the
period two oscillation e so that it satisfies the fermion algebra. From the point of view taken in this
paper, it is worth examining if this discrete process view of fermion algebra and Majorana operator
algebra can shed light on the many properties in this domain. In particular, I would like to see if there
is insight into the braiding of Majorana Fermion operators to be gained from the iterant viewpoint.

10. The Dirac Equation and Majorana Fermions

This section goes beyond our paper [1]. We expand on the relationship of a nilpotent formulation
of the Dirac equation and an iterant formulation. We first construct the Dirac equation. The algebra
underlying this equation has the same properties as the creation and annihilation algebra for Majorana
Fermion operators, so it is by way of this algebra that we will come to the Dirac equation.
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If the speed of light is equal to 1 (by convention), then energy E, momentum p and mass m are
related by the (Einstein) equation

E2 = p2 + m2.

Dirac constructed his equation by finding an algebraic square root of p2 + m2. A corresponding linear
operator for E can then take the role of the Hamiltonian in the Schrödinger equation. We first assume
that p is a scalar (using one dimension of space and one dimension of time). Let E = αp + βm, where α

and β are elements of a non-commutative, associative algebra. Then,

E2 = α2 p2 + β2m2 + pm(αβ + βα).

Hence, E2 = p2 + m2 if α2 = β2 = 1 and αβ + βα = 0. We can use the iterant algebra generated by e
and η with α = e and β = η. Recall that the quantum operator for momentum is p̂ = −i∂/∂x and the
operator for energy is Ê = i∂/∂t. The Dirac equation is

Êψ = α p̂ψ + βmψ.

This becomes the explicit equation:

i∂ψ/∂t = −iα∂ψ/∂x + βmψ.

Let
O = i∂/∂t + iα∂/∂x− βm

so that the Dirac equation takes the form

Oψ(x, t) = 0.

A Plane Wave Solution to the Dirac Equation. Note that

Oei(px−Et) = (E− αp− βm)ei(px−Et)

and note also that
(E + αp + βm)(E− αp− βm) = E2 − p2 −m2 = 0.

Thus, it follows that
φ = (E + αp + βm)ei(px−Et)

is a solution of the Dirac equation.

Now let ∆ = (E− αp− βm) and let

U = ∆βα = (E− αp− βm)βα = βαE + βp− αm.

Then,
U2 = −E2 + p2 + m2 = 0.

The nilpotent element U leads to the same plane wave solution to the Dirac equation as follows.
We have shown that

Oψ = ∆ψ

for ψ = ei(px−Et). It then follows that

O(βα∆βαψ) = ∆βα∆βαψ = U2ψ = 0,
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from which it follows that
ψ = βαUei(px−Et)

is a plane wave solution to the Dirac equation.

We can multiply the operator O by βα on the right, obtaining the operator

D = Oβα = iβα∂/∂t + iβ∂/∂x− αm,

and the equivalent Dirac equation
Dψ = 0.

For ψ above, we have D(Uei(px−Et)) = U2ei(px−Et) = 0. This beautiful observation that the Dirac
operator can be modified so that one can directly construct nilpotent solutions to the Dirac equation
was first made by Peter Rowlands [8] in the context of doubled quaternion algebra. Here we have
shown how Rowland’s work fits into the Clifford algebra and iterant approach to the Dirac equation.
Such solutions can be articulated into specific vector solutions by using either an iterant or matrix
representation of the algebra.

10.1. U and U† as Creation and Annihilation Operators

The Clifford algebra element U can be regarded (in the context of this rewrite of the Dirac equation) as a
creation operator for a Fermion.

If, reversing time, we let
ψ̃ = ei(px+Et),

then
Dψ̃ = (−βαE + βp− αm)ψ = U†ψ̃,

giving a definition of U† for the anti-particle for Uψ.

U = βαE + βp− αm

and
U† = −βαE + βp− αm.

Note that here we have

(U + U†)2 = (2βp + αm)2 = 4(p2 + m2) = 4E2,

and
(U −U†)2 = −(2βαE)2 = −4E2.

U2 = (U†)2 = 0,

and
UU† + U†U = 4E2.

The Fermion operator algebra emerges from these plane wave solutions to the Dirac equation.
The decomposition of Uand U† into the corresponding Majorana Fermion operators corresponds
to the decomposition of the energy into momentum and mass: E2 = p2 + m2. Normalizing by dividing
by 2E, we have

A = (βp + αm)/E

and
B = iβα,
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so that
A2 = B2 = 1

and
AB + BA = 0.

Then,
U = (A + Bi)E

and
U† = (A− Bi)E,

showing how the Fermion operators are expressed in terms of the simpler Clifford algebra of Majorana
operators (split quaternions once again). We can take A = e and B = η and regard these Fermion
annihilation and creation operators in the simplest iterant framework.

10.2. Iterant Formulation of the Dirac Equation

Note that the solutions to the Dirac equation that we have written are expressed using abstract
algebra. To write explicit solutions using this algebraic approach, we can write

O = Ê− αP̂− βm,

where Ê is the energy operator and p̂ is the momentum operator. Then, a solution

φ = A + αB + βC + αβD

of the Dirac equation consists in a quadruple of complex functions of (x, t) such that

Oφ = 0.

We can regard [A, B, C, D] = φ = A + αB + βC + αβD as an iterant that is acted upon by α and β.
We see that (by multiplying on the left)

[A, B, C, D]α = [B, A, D, C]

and
[A, B, C, D]β = [C,−D, A,−B].

Thus, the structure corresponds to the action of the split quaternions as a signed Klein 4-group.
The equation Oφ = 0 becomes four operator equations involving these signed permutations:

Oφ = (Ê− α p̂− βm)(A + αB + βC + αβD) =

ÊA + αÊB + βÊC + αβÊD

−α p̂A− p̂B− αβ p̂C− β p̂D

−βmA + αβmB−mC + αmD

= (ÊA− p̂B−mC) + α(ÊB− p̂A + mD) + β(ÊC− p̂D−mA) + αβ(ÊD− p̂C + mB).

Thus, Oφ = 0 is equivalent to the set of equations

ÊA = p̂B + mC,

ÊB = p̂A−mD,
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ÊC = p̂D + mA,

ÊD = p̂C−mB.

This, in turn, can be written in iterant form as

Ê[A, B, C, D] = p̂[B, A, D, C] + m[C,−D, A,−B] = p̂[A, B, C, D]α + m[A, B, C, D]β.

The plane wave solution φ = (E + αp + βm)ei(px−Et)k corresponds, in this iterant formalism, to φ =

[E, p, m, 0]ei(px−Et).
In this way, we can think of a solution to the Dirac equation as an iterant composed of four

complex valued functions taken in order with the given action of the split quaternions as described
above. This can then be reformulated as single recursive system, as we did for the Schrödinger
equation in the introduction. The analogs for the way the recursion acts on the time steps of the
recursion are given by the action of the split quaternions rather than the action of the complex numbers
([a, b]i = [−b, a]). The idea remains the same, and the matrix representations for the Dirac algebra arise
naturally from the algebra itself.

10.3. Writing in the Full Dirac Algebra

This section closely follows our paper [1] and is expanded for the discussion at the end. The aim
is to write the Dirac equation for three dimensions of space and one dimension of time, and then to
write a version of the Majorana–Dirac Equation (that can have real solutions) in terms of a doubled
split quaternion algebra, expressed in iterant language. This provides an alternative to working with
modifications of the 4× 4 Dirac matrices. We formulate it to illustrate again the iterant concept and to
raise the question of finding other matrix representations for equations of Majorana type.

We have written the Dirac equation so far in one dimension of space and one dimension of time.
In order to write in three spatial dimensions, we take an independent Clifford algebra generated
by σ1, σ2, σ3 with σ2

i = 1 for i = 1, 2, 3 and σiσj = −σjσi for i 6= j. Assume that α and β generate an
independent Clifford algebra that commutes with the algebra of the σi. Replace the scalar momentum
p by a 3-vector momentum p = (p1, p2, p3) and let p • σ = p1σ1 + p2σ2 + p3σ3. Replace ∂/∂x with
∇ = (∂/∂x1, ∂/∂x2, ∂/∂x2) and ∂p/∂x with ∇ • p.

The Dirac equation is then written

i∂ψ/∂t = −iα∇ • σψ + βmψ.

The Dirac operator is
O = i∂/∂t + iα∇ • σ− βm.

Using the Dirac operator, the Dirac equation is is

Oψ(x, t) = 0.

Let
ψ(x, t) = ei(p•x−Et)

and construct solutions by first applying the Dirac operator to this ψ. The modified Dirac operator is

D = iβα∂/∂t + β∇ • σ− αm.

We have that
Dψ = Uψ,
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where U = βαE + βp • σ− αm. Here, U2 = 0 and Uψ is a solution to the modified Dirac Equation.
We can use the Fermion operators as creation and annihilation operators, and locate the corresponding
Majorana Fermion operators. We leave these details to the reader.

10.4. Majorana Fermions in the Sense of Majorana

We end with a brief discussion making Dirac algebra distinct from the one generated by
α, β, σ1, σ2, σ3 to obtain an equation that can have real solutions. This was the strategy that Majorana [30]
followed to construct his Majorana Fermions. A real equation can have solutions that are invariant
under complex conjugation and so can correspond to particles that are their own anti-particles. We will
describe this Majorana algebra in terms of the split quaternions ε and η. For convenience, we use the
matrix representation given below. The reader of this paper can substitute the corresponding iterants:

ε =

(
−1 0
0 1

)
, η =

(
0 1
1 0

)
.

Let ε̂ and η̂ generate another, independent algebra of split quaternions, commuting with the first
algebra generated by ε and η. Then, a totally real Majorana Dirac equation can be written as follows:

(∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z− ε̂η̂ηm)ψ = 0.

To see that this is a correct Dirac equation, note that

Ê = αx p̂x + αy p̂y + αz p̂z + βm

(Here, the “hats” denote the quantum differential operators corresponding to the energy and
momentum.) will satisfy

Ê2 = p̂x
2 + p̂y

2 + p̂z
2 + m2

if the algebra generated by αx, αy, αz, β has each generator of square one and each distinct pair of
generators anti-commuting. From there, we obtain the general Dirac equation by replacing Ê by i∂/∂t,
and p̂x with −i∂/∂x (and same for y, z):

(i∂/∂t + iαx∂/∂x + iαy∂/∂y + iαz∂/∂z− βm)ψ = 0.

This is equivalent to
(∂/∂t + αx∂/∂x + αy∂/∂y + αz∂/∂z + iβm)ψ = 0.

Thus, here we take
αx = η̂η, αy = ε, αz = ε̂η, β = iε̂η̂η,

and observe that these elements satisfy the requirements for the Dirac algebra. Since the algebra
appearing in the Majorana–Dirac operator is constructed entirely from two commuting copies of the
split quaternions, there is no appearance of the complex numbers, and when written out in 2× 2
matrices, we obtain coupled real differential equations to be solved.

A solution to the Majorana–Dirac Equation. Let ρ(x, t) = e(p•x−Et). Note that ρ is a a real-valued
function. Let

MO = (∂/∂t + η̂η∂/∂x + ε∂/∂y + ε̂η∂/∂z− ε̂η̂ηm).

This is the Majorana–Dirac operator, as we have explained above. Then, we have the equation

MOρ(x, t) = (−E + η̂ηpx + εpy + ε̂ηpz − ε̂η̂ηm)ρ(x, t).
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Let
Γ = −E + η̂ηpx + εpy + ε̂ηpz − ε̂η̂ηm,

and
Γ̂ = −E− η̂ηpx − εpy − ε̂ηpz + ε̂η̂ηm.

Then, we have
Γ̂Γ = 0,

since all algebraic coefficients square to minus one, and anti-commute. Therefore,

MO(Γ̂ρ(x, t)) = Γ̂Γρ(x, t) = 0.

Thus,
Γ̂ρ(x, t) = (−E− η̂ηpx − εpy − ε̂ηpz + ε̂η̂ηm)ρ(x, t)

is a solution to the Majorana–Dirac equation. When this solution is written out into its components, it
is an entirely real valued solution since the components of the matrices representing the algebra are all
real numbers. Recall from the earlier part of this section that we were able to reformulate solutions of
this kind for the usual Dirac equation in terms of the nilpotent formalism with the algebraic element
U with U2 = 0. Here, we can produce real solutions to the Majorana–Dirac equation, but it does not
seem possible to put them in the nilpotent formalism. This is surely a reflection of the fact that these
solutions are not Fermions in the usual sense. On the other hand, one can regard the solution Γ̂ρ(x, t)
in relation to the algebra element Γ̂, and this algebra element is a combination of Majorana Fermion
operators {η̂η, ε, ε̂η, ε̂η̂η} in the sense of Clifford algebra or iterant operators that we have used earlier
in this paper. Thus, we see that there is at least the beginning of a relationship between the modern use
of the Majorana Fermion operators and the original intents of Ettore Majorana to find real solutions to
the Dirac equation.

We would like to know if there are other ways to produce such real Dirac equations, and particularly
if there are ways to accomplish this aim that do not algebraically entangle the two copies of the split
quaternions as our construction (and Majorana’s original construction) seems to require.
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