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Abstract: With a privacy-aware reputation system, an auction website allows the buyer in a 
transaction to hide his/her identity from the public for privacy protection. However, fraudsters can 
also take advantage of this buyer-anonymized function to hide the connections between 
themselves and their accomplices. Traditional fraudster detection methods become useless for 
detecting such fraudsters because these methods rely on accessing these connections to work 
effectively. To resolve this problem, we introduce two attributes to quantify the buyer-anonymized 
activities associated with each user and use them to reinforce the traditional methods. 
Experimental results on a dataset crawled from an auction website show that the proposed 
attributes effectively enhance the prediction accuracy for detecting fraudsters, particularly when 
the proportion of the buyer-anonymized activities in the dataset is large. Because many auction 
websites have adopted privacy-aware reputation systems, the two proposed attributes should be 
incorporated into their fraudster detection schemes to combat these fraudulent activities. 
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1. Introduction 

Rapid progress in Internet technology and electronic payment has made online auctions more 
prevalent and convenient [1]. In online auctions, merchandise is often purchased from a complete 
stranger. Therefore, building trust between potential buyers and sellers is important to ensure the 
success of auction websites. Most auction websites are equipped with a reputation system to 
evaluate the credibility of each auction account. The reputation system uses a simple scheme to 
compute and publish a reputation score for each auction account; this scheme is based on a 
collection of opinions that other auction accounts hold about the account. For example, on eBay, the 
seller and buyer in a transaction can give each other a positive, negative, or neutral rating. 
Intuitively, sellers with more positive ratings and fewer negative ratings are more reputable and are 
likely to draw more sales. 

The lucrative opportunity associated with a favorable online reputation attracts both honest 
and fraudulent sellers to pursue high reputation scores. Honest sellers achieve higher reputation 
scores by providing improved services (e.g., higher quality products, lower prices, and faster 
response) to their buyers. However, fraudulent sellers use a deceitful scheme, known as inflated 
reputation fraud [2], to boost their reputation scores. In this scheme, fraudulent sellers perform 
many transactions for low-priced merchandise within a group of collusive accounts to boost the 
positive ratings of the group’s members [3]. Because the cost of conducting the scheme is low, 
inflated reputation fraud is prevalent in online auctions. In this paper, we focus on detecting 
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inflated reputation fraud. Notably, inflated reputation fraud is often the first step toward other 
fraudulent activities, such as selling counterfeit products or failing to deliver products. 

Most recent approaches for detecting inflated reputation fraud are based on Social Network 
Analysis (SNA) [1–13]. These SNA-based approaches construct a social network of buyers and 
sellers based on their past transactions, and then detect fraudsters by finding cohesive groups in the 
network. However, some auction websites adopt a privacy-aware reputation system that enables 
buyers to hide their links to sellers. Fraudsters can also use this function to hide the links within their 
collusive group, making them hard to detect with traditional SNA-based approaches.  

This paper presents a solution for detecting inflated reputation fraud in auction websites that 
use a privacy-aware reputation system. To the best of our knowledge, all SNA-based approaches in 
the literature use either synthetic datasets [6] or real datasets crawled from auction websites. Thus, 
these approaches have no access to the hidden links between buyers and sellers. We propose two 
privacy-related attributes to quantify the proportion of hidden links associated with each account, 
and show that the addition of these two attributes enhances the prediction accuracy for detecting 
fraudsters. 

The remainder of this paper is organized as follows. The second section reviews previous work 
on the reputation systems in online auctions and the existing methods for detecting inflated 
reputation fraud. The third section describes the privacy-aware reputation systems on auction 
websites and proposes two privacy-related attributes associated with each user. The fourth section 
describes the dataset used in this study. The fifth section presents a performance study to evaluate 
the effectiveness of using the proposed privacy-related attributes to detect fraudsters. Finally, a 
discussion and concluding remarks are given in the sixth and seventh sections, respectively. 

2. Related Work  

2.1. Reputation Systems in Online Auction 

Two factors are crucial to the success of an online auction website [14]. The first is how easily 
buyers can find sellers. The second is the trust that the website facilitates through its reputation 
system. The reputation systems in online auctions are essentially recommendation systems. Both 
parties in a transaction can give each other a positive, negative, or neutral rating, and the reputation 
system calculates a reputation score for each user based on all the ratings that the user has received 
from his/her past transactions, and the reputation score is available to the public. A third party can 
also access detailed information about each rating that a user has received so far. Detailed 
information is provided for the following aspects of a transaction: 

• Date and time of the transaction. 
• Seller and buyer of the transaction. This information can be used to construct a social network 

of users (see Section 2.2). 
• Merchandise description. 
• The rating (positive, negative or neutral) that the user received from his/her counterpart in the 

transaction. 
• Textual feedback comment. 

Such a reputation system builds trust in online auctions that lack typical human interaction [15], 
forming a large-scale, word-of-mouth network among users [16]. Reputable sellers can not only gain 
trust but also generate price premiums from potential buyers [17–19]. By contrast, a high proportion 
of negative ratings reduces the sales price [20]. A high proportion of neutral ratings impairs sales for 
sellers with high proportions of positive ratings, but facilitates sales for sellers with high proportions 
of negative ratings [21]. In case a negative rating is received, textual feedback comments and 
reactions are important for rebuilding trust [22]. The information that sellers provide to buyers can 
also affect the sellers’ reputation [23]. 
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2.2. Constructing Social Networks from Reputation System 

Based on the transaction history, a transaction network can be constructed, in which each node 
indicates an auction account and each link depicts a transaction between two auction accounts. 
Although the transaction network provides a complete view of the social interactions among auction 
accounts, a single factor prevents the use of the transaction network: on auction websites, the 
complete transaction history is not available to the public. Notably, only after at least one party in a 
transaction rates his/her counterpart does the transaction appear in the reputation system, which is 
open to the public. However, providing a rating after each transaction is not mandatory. 

By contrast, a rating network is constructed based on the rating history of auction accounts. On 
many auction websites (e.g., eBay, Taobao, Ruten, and Yahoo! Kimo), the rating history is accessible 
to the public. Similar to a transaction network, each node in a rating network indicates an auction 
account, but each link depicts a rating relationship between two connected nodes. Because 
providing a rating after each transaction is not mandatory, each link in the rating network 
corresponds to a link in the transaction network, but not vice versa. Because the transaction history 
is not available to the public, and inflated reputation fraud requires the accumulation of positive 
ratings, most previous studies have adopted the rating network as a suitable surrogate for the 
transaction network [4,8,10,11]. 

2.3. Methods for Detecting Fraudsters in Online Auction 

Previous techniques for detecting inflated reputation fraud used mostly user-level features such 
as the median, mean, sum, or standard deviation of the merchandise prices that a user sold or 
bought over a period [5,24]. The reputation systems on most auction websites also play a significant 
role in fraudster detection. Studies have shown that recent negative ratings are useful for predicting 
future fraud, and that experienced buyers can use the reputation system to avoid potential 
fraudulent auctions [25]. However, this approach does not fully utilize the information provided by 
the reputation system to uncover the interaction among users, who may still be deceived by 
fraudsters [26]. 

More recent approaches incorporate network-level features to combat inflated reputation fraud. 
Because inflated reputation fraud requires a collusive group of users to give each other positive 
ratings, a cohesive relation occurs within the collusive group. Many SNA-based approaches can 
identify cohesive subgroups in a network (see Table 1), and some of these approaches (e.g., k-core 
and k-plex) have been applied to detect collusive groups of fraudsters in a rating network [2,4,11]. In 
addition to basic features, such as degree and betweenness [11], more sophisticated features (e.g., 
neighbor diversity, neighbor driven attributes, credibility, and density) have been proposed for 
fraudster detection (see Table 2). 

Table 1. Subgroups in Social Network Analysis (SNA). 

Subgroups Description
clique A maximal fully connected subnetwork of a network G 

n-clique 
A maximal subnetwork of a network G in which every pair of nodes is 

connected by a path in G of length n or less 
n-clan An n-clique which has a diameter less than or equal to n 

k-core 
A maximal connected subnetwork of a network G in which each node is 

connected to at least k other nodes in the subnetwork 

k-plex 
A maximal subnetwork of a network G in which each node is connected to at 

least n-k other nodes in the subnetwork, where n is the number of nodes in the 
subnetwork. 
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Table 2. SNA-based network-level features for detecting fraudsters in online auctions. 

Attribute References
k-core [2,4,11] 

core/periphery ratio [2] 
center-weight [4] 

credibility [3] 
density [3,7] 

degree (in-degree, out-degree) [11] 
normalized betweenness [11] 

k-plex =2 and (size = 5 or 6 or 7) [11] 
n-clique = 1 and (size = 3 or 4 or 5) [11] 

neighbor diversity [13] 
neighbor driven attributes [12] 

3. Privacy-Aware Reputation System and Privacy-Related Attributes 

3.1. Privacy-Aware Reputation System 

Many auction websites have adopted privacy-aware reputation systems, where the buyer in a 
transaction can decide whether to hide his/her identity from the public. Ruten, Yahoo! Kimo 
Auction, and eBay adopted privacy-aware reputation systems in 2008, 2009, and 2013, respectively. 

On Yahoo! Kimo Auction, after winning the bid of the merchandise, within 60 days, the buyer 
has the option of hiding from the public the information about both the seller and the merchandise 
in the rating that the buyer receives from the seller. By doing so, in the rating that the seller receives 
from the buyer, the information about the buyer is also hidden from the public. A similar 
buyer-anonymized function is also available in the reputation system of Ruten, except that 
transactions can be set to the hidden mode within 6 months, instead of 60 days. 

If a buyer chooses to hide his/her identity in a transaction, the transaction is referred to as an 
anonymous transaction. Since Ruten adopted the privacy-aware reputation system in 2008, a 
substantial proportion of the transactions on Ruten have been anonymous. A random sample of 
190,782 transactions on Ruten between 2008 and 2011 across 24 categories of merchandise showed 
that 11.38% of the transactions were anonymized [27]. The proportions of anonymous transactions 
across different categories of merchandise varied from 0.87% in the Books and Stationery category to 
27.45% in the Women's Intimates and Sleepwear category and 28.57% in the Real Estate and 
Specialty Services category. The results reflect that buyers often demand privacy when purchasing 
personal or intimate products. Although the original intention of anonymous transactions is to 
protect customers’ privacy, fraudsters can abuse anonymous transactions to hide their criminal 
activities from the public (see Section 5.2.1). 

Once a transaction is anonymized, the following information that originally appears in the 
ratings of the buyer and the seller is no longer available to the public: 

• In the rating that the buyer receives from the seller, the seller ID and information about the 
merchandise are hidden. 

• In the rating that the seller receives from the buyer, the buyer ID is hidden. 

Although the rating (i.e., positive, neutral, or negative) and textual comments of an anonymous 
transaction are still public, third parties do not know who gave the rating. Consequently, a third 
party cannot construct the link between the buyer and the seller of an anonymous transaction. Thus, 
the privacy of the buyer is protected. 

3.2. Privacy-Related Attributes 

Although privacy-aware reputation systems provide more shopping privacy to buyers, 
fraudsters can also exploit anonymous transactions to hide the links to collusive auction accounts. 
Consequently, if a third party crawls an auction website to build the rating network of auction 
accounts (see Section 2.2), the transactions within a collusive group of auction accounts may be 
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hidden and thus cannot be reconstructed. Because many fraud detection approaches [1–13] employ 
the rating network to detect fraudsters, anonymous transactions in the reputation system may 
render these approaches unfeasible to detect fraudsters who take advantage of anonymous 
transactions. To the best of our knowledge, most fraud detection approaches are based on datasets 
crawled from auction websites instead of datasets directly provided by the auction websites. 
Therefore, fraudsters exploiting anonymous transactions are likely to be overlooked. 

For example, previous studies have shown that a fraudster requires accomplices to provide 
positive ratings; thus, intensive transactions must occur between them. Consequently, they are likely 
to appear in the 2-core subgraphs of the rating network [2,11]. However, if the fraudster and 
accomplices use anonymous transactions to hide the buyers’ identities in their transactions, then the 
links among them may not appear in rating networks constructed by third parties. Consequently, 
the members of the collusive group may not belong to the same 2-core subgraphs. 

To overcome this problem, we propose two privacy-related attributes to capture the proportion 
of anonymous activities associated with each auction account. Let n denote the number of positive 
ratings that a user has received. Because a transaction can be either anonymous or non-anonymous, 
we can decompose n into na and nn, where na is the number of positive ratings resulting from 
anonymous transactions, and nn is the number of positive ratings resulting from non-anonymous 
transactions. Depending on the user’s role in a transaction (buyer or seller), a rating can be given as a 
seller or as a buyer. We can further decompose na into two parts: the number of anonymous positive 
ratings given by sellers (denoted as nas) and the number of anonymous positive ratings given by 
buyers (denoted as nab). That is, 

n = na + nn = (nab + nas) + nn. (1)

In this paper, we use the number of anonymous positive ratings that an account has received from 
its buyers (i.e., nab) as the first privacy-related attribute. Notably, because only the buyer in a 
transaction has the right to decide whether to anonymize the transaction, an account with a high nab 
is likely to belong to a fraudster who uses a large number of anonymized accomplices to boost its 
rating. 

The second attribute is the anonymous ratio (denoted by Ra), which is defined as the number of 
anonymous positive ratings divided by the number of all positive ratings that an account has 
received or given to other accounts. Intuitively, an account with a high Ra is likely to belong to a 
fraudster. Section 5 describes an experiment that applies both Ra and nab to detect fraudsters in a real 
world dataset (see Section 4) by using decision trees and artificial neural networks. 

4. Data Collection and Dataset Preparation 

A dataset collected from Ruten [28] was used in this study. A subset of this dataset was also 
used in our previous work [12,13]. The data collection process proceeded in a level-by-level manner 
[4,8,10,11,29] and is explained as follows: 

Step 1. Collecting accounts (first level). Ruten regularly releases a list of recently suspended 
accounts, together with the reasons for the suspension. Our data collection process began with the 
collection of all 9168 accounts suspended by Ruten in July 2013. Because some of these accounts were 
not fraud-related (e.g., selling alcohol or prescribed medicine), we manually checked the 9168 
accounts and retained only the 3101 whose suspension reasons were fraud-related, such as 
evaluation hype, selling counterfeit products, fake bidding, and failure to deliver products. 
Furthermore, because inflated reputation fraud works by accumulating positive ratings from 
accomplices, we removed the accounts that had not yet received any ratings. The remaining 1064 
accounts were denoted as L1 accounts. Ruten altered the status of one L1 account to normal in 
October 2013. Therefore, the L1 accounts included 1063 fraudster accounts and 1 non-fraudster 
account. Notably, for 132 of the 1063 L1 fraudster accounts, all of the positive ratings they received 
were anonymous. Furthermore, 121 of these 132 accounts had an anonymous ratio Ra of 1, indicating 
that all of the positive ratings they had received and given to other accounts were anonymous. 
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Step 2. Collecting accounts (second level). We then collected all of the non-anonymous accounts 
that had received ratings from or given ratings to any L1 account. Consequently, 3475 new accounts 
were discovered and were denoted as L2 accounts. Because each L2 account was linked to at least one 
L1 account and all L1 accounts were not anonymous, each L2 account had an anonymous ratio of <1. 
Among the 3475 L2 accounts, 149 of them were suspended by Ruten due to fraudulent activities and 
were treated as fraudster accounts in this experiment. Table 3 shows the numbers of fraudster and 
non-fraudster accounts in the L1 and L2 accounts.  

Table 3. Numbers of fraudster and non-fraudster accounts in the L1 and L2 accounts. 

Level Fraudsters Non-Fraudsters Total
L1 1063 1 1064 
L2 149 3326 3475 

Total 1212 (26.7%) 3327 (73.3%) 4539 

Step 3. Collecting accounts (third level). To reveal the accounts that were involved in transactions 
with these L2 accounts, we further collected all non-anonymous accounts that had received ratings 
from or given ratings to any of the 3475 L2 accounts. In this step, 233,169 new accounts were 
discovered and were denoted as L3 accounts. On average, each L2 account transacted with 
233169/3475 = 67 L3 accounts. By contrast, on average, each L1 account transacted with only 
3475/1064 = 3.2 L2 accounts. Notably, non-fraudster accounts received positive ratings from many 
accounts, whereas fraudster accounts received positive ratings mostly from their accomplices. In 
Table 1, the proportion of fraudster accounts was much higher in L1 accounts (1063/1064) than in L2 
accounts (149/3475). Therefore, the ratio between the numbers of L2 accounts and L1 accounts 
(approximately 3.2) was much lower than the ratio between the numbers of L3 accounts and L2 
accounts (approximately 67). 
Step 4. Constructing the social network. We constructed a social network comprising all of the L1, 
L2, and L3 accounts, where each node in the network represents an account. If an account had given 
at least one positive rating to another account before 31 July 2013, then the nodes representing the 
two accounts were connected through a link in the social network. The resulting network contained 
237,708 (= 1064 + 3475 + 233,169) nodes and 348,259 links. Notably, 121 nodes in the social network 
were not connected to any other node. They represented the 121 L1 accounts with an anonymous 
ratio of 1, as described in Step 1. Notably, a user can be a buyer, a seller, or both in the network. 
Among the L1 accounts, 96 were buyers, 884 were sellers, and 84 were both. Among the L2 accounts, 
2561 were buyers, 58 were sellers, and 856 were both. 
Step 5. Calculating SNA-related attributes. Based on the social network created in the previous 
step, we calculated several SNA-related attributes (shown in Table 4) for the nodes representing the 
L1 or L2 accounts to build a dataset for this performance study. We did not include the L3 accounts in 
the dataset, because the social network did not include all of the accounts that had received ratings 
from or given ratings to the L3 accounts. Therefore, the resulting dataset contained 4539 (=1064 + 
3475) records (Table 3). The dataset is available at the supplementary of this paper. 

Table 4. SNA-related attributes. 

Notation Definition
Ra Anonymous ratio. See Section 3.2. 
nab Anonymous count. See Section 3.2. 

k-core The largest k value of all k-core components that the node resides. See [2,4]. 
CW Center weight. See [4]. 

nBetweenness Normalized betweenness. See [11]. 

binary_k-core Binary attributes indicating whether the node is in a k-core component. In 
this study, k = 2 to 6 are used, as in [11]. 

2-plex_and_size = s 
Binary attributes indicating whether the node is in a 2-plex component with 

size = s. In this study, s = 5 to 7 are used, as in [11]. 
NDr Neighbor diversity on the number of received ratings [13]. 

NDAmean Mean of the numbers of received ratings of the node’s neighbors [12]. 
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5. Performance Study 

5.1. Experimental Design 

The experiment was designed from two perspectives: attributes and datasets. Concerning the 
attributes used to build a classifier for detecting fraudsters, our goal was to evaluate whether the 
addition of the two privacy-related attributes (i.e., Ra and nab) can improve the performance of the 
existing sets of attributes used in previous work. Five sets of attributes were considered in this study. 
The first set contained only one attribute, k-core [2], and the second set contained two attributes, 
k-core and center weight (CW) [4]. The third set (denoted as S9) contained eight binary attributes 
(binary_k-core for k = 2 to 6, and 2-plex_and_size = s for s = 5 to 7, shown in Table 4) and one numeric 
attribute (normalized betweenness) [11]. The fourth set contained only one attribute, NDr (neighbor 
diversity on the number of received ratings [13]). The fifth set contained only one attribute, NDAmean 
(the mean of the numbers of received ratings of the node’s neighbors [12]). In this performance 
study, we tested these five sets of attributes and then evaluated whether their performance can be 
improved by adding Ra and nab. 

Regarding the datasets, our goal was to evaluate whether a given approach can detect 
fraudsters effectively among users with various proportions of anonymous transactions. Let D100 
denote the dataset collected as described in Section 4; we generated three subsets of D100 (D0, D0+, and 
D15 shown in Table 5) based on the anonymous ratio Ra. Dataset D0 contained the accounts that have 
never engaged in any anonymous transactions (Ra = 0), and D0+ contained accounts that have 
engaged in at least one anonymous transaction (Ra > 0). Thus, D0∩D0+ = ϕ and D0∪D0+ = D100. Dataset 
D15 contained the top 15% of accounts based on Ra. Thus, D15 ⊂ D0+ ⊂ D100. Ordering these datasets by 
the proportion of anonymous transactions gives D15 > D0+ > D100 > D0, and by testing these datasets, we 
could verify whether a given approach can still perform effectively if anonymous transactions 
become prevalent. Notably, the last column of Table 5, baseline accuracy, represents the prediction 
accuracy of always predicting that an account is a non-fraudster (or fraudster) account if 
non-fraudster (or fraudster) accounts mainly comprise the dataset. 

Table 5. Datasets. 

Notation Description # of Fraudsters # of Non-Fraudsters Baseline Accuracy (%)
D100 All collected data, described in Section 4. 1212 3327 73.2981 
D0 Subset of D100 with Ra = 0. 705 1966 73.6054 
D0+ Subset of D100 with Ra > 0. 507 1361 72.8587 
D15 The top 15% of D100 with the highest Ra. 385 296 56.5345 

In this study, we divided the experiment into four tests, and each test used a dataset from Table 
5. In each test, we used various combinations of attributes to evaluate whether adding the two 
proposed privacy-related attributes improves the prediction accuracy. Two classification algorithms 
from Weka [30], the J48 decision tree and the artificial neural network (ANN), were used in this 
study to conduct 10-fold cross validation. The experiment adopted the default parameter settings of 
both algorithms in Weka. 

5.2. Experiment Results 

5.2.1. Results from Dataset D100 

Dataset D100 is the dataset collected following the steps described in Section 4. It includes all of 
the accounts collected, regardless of their anonymous ratio. As indicated in Table 5, D100 contains 
1212 fraudster accounts and 3327 non-fraudster accounts, yielding a baseline accuracy of 73.2981%. 

Tables 6 and 7, respectively, show the performance results of J48 and ANN with D100. When 
using the nine attributes in S9, the addition of the two privacy-related attributes, Ra and nab, 
improved the prediction accuracy from 75.8537% to 82.5072% for J48 and from 75.0606% to 79.4228% 
for ANN. Recall and precision were also significantly improved. Similar results were observed using 
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k-core, k-core and CW, or NDr. When using NDAmean, the addition of Ra and nab improved the 
prediction accuracy and precision but slightly reduced recall. Notably, among the 4539 accounts in 
dataset D100, 1868 accounts (approximately 41%) had at least one anonymous rating (i.e., Ra > 0). By 
adding Ra and nab, the accounts with Ra > 0 could be more effectively predicted, which therefore, 
results in an improved prediction accuracy for both J48 and ANN. However, 59% of the accounts in 
D100 still had Ra = 0. Thus, using only Ra and nab resulted in poor recall, as shown in the last rows of 
Tables 6 and 7. 

For both J48 and ANN, the addition of Ra and nab reduced the number of false negatives, except 
when using the attribute NDAmean. However, J48 and ANN produced slightly different results for 
false positives. For J48, the addition of Ra and nab always reduced the number of false positives; for 
ANN, the addition of Ra and nab occasionally increased the number of false positives. 

Table 6. J48 performance with dataset D100. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 75.8537 0.2525 0.6169 190 906 

S9 & (Ra & nab) 82.5072 0.4586 0.8029 137 657 
k-core 77.5281 0.3193 0.6649 195 825 

k-core & (Ra & nab) 82.2868 0.4381 0.8119 123 681 
k-core & CW 86.9354 0.7120 0.7796 244 349 

k-core & CW & (Ra & nab) 89.2928 0.7360 0.8431 166 320 
NDr 84.6883 0.8226 0.6750 480 215 

NDr & (Ra & nab) 86.7812 0.8234 0.7211 386 214 
NDAmean 88.6980 0.8581 0.7531 341 172 

NDAmean & (Ra & nab) 90.3503 0.8267 0.8146 228 210 
Ra & nab 80.2159 0.2855 0.9153 32 866 

Table 7. Artificial Neural Network (ANN) performance with dataset D100. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 75.0606 0.1988 0.5995 161 971 

S9 & (Ra & nab) 79.4228 0.3977 0.7026 204 730 
k-core 74.4437 0.2335 0.5506 231 929 

k-core & (Ra & nab) 78.6737 0.3738 0.6843 209 759 
k-core & CW 85.6356 0.5066 0.9192 54 598 

k-core & CW & (Ra & nab) 87.0456 0.5611 0.9239 56 532 
NDr 83.8070 0.8069 0.6613 501 234 

NDr & (Ra & nab) 84.2476 0.8119 0.6689 487 228 
NDAmean 84.4679 0.7995 0.6771 462 243 

NDAmean & (Ra & nab) 84.6001 0.7904 0.6828 445 254 
Ra & nab 78.5636 0.2294 0.8770 39 934 

To investigate whether fraudsters use anonymous transactions more often than non-fraudsters 
do, we compared the Ra distribution of the 1212 fraudster accounts with that of the 3327 
non-fraudster accounts in dataset D100. Figure 1 shows the proportion of fraudster (or non-fraudster) 
accounts with a Ra of more than or equal to a certain threshold among all 1212 fraudster (or 3327 
non-fraudster) accounts. Among the 1212 fraudster accounts, 507 (approximately 41.83%) accounts 
satisfied Ra > 0; 429 (approximately 35.4%) satisfied Ra ≥ 0.1; and 121 (approximately 9.98%) satisfied 
Ra = 1. In each Ra range in Figure 1, we observed a significant proportion of fraudster accounts. By 
contrast, among the 3327 non-fraudster accounts, 1361 (approximately 40.91%) accounts satisfied Ra 
> 0; 555 (approximately 16.68%) satisfied Ra ≥ 0.1; and none of the non-fraudster accounts satisfied Ra 
= 1. As the threshold of Ra increased, the proportion of non-fraudster accounts decreased more 
quickly than the proportion of fraudster accounts did. Overall, for the same threshold of Ra in Figure 
1, the proportion of fraudster accounts was always larger than the proportion of non-fraudster 
accounts. The result indicated that fraudsters use anonymous transactions more often than 
non-fraudsters do. 
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Figure 1. Proportions of fraudster and non-fraudster accounts w.r.t. Ra in dataset D100. 

5.2.2. Results from Dataset D0 

Dataset D0 contained all accounts in D100 where Ra = 0. This dataset comprised 705 fraudster 
accounts and 1966 non-fraudster accounts, yielding a baseline accuracy of 73.6054% (Table 5). Note 
that if Ra = 0, then nab = 0. Because Ra and nab are 0 for all accounts in D0, adding Ra and nab to the 
classification algorithms did not improve performance. With or without Ra and nab, the results were 
the same for J48 (Table 8). The decision tree algorithm selects the most discriminating attribute to 
split the tree at each step. However, because Ra and nab are 0 throughout the dataset, they are the least 
discriminating attributes. For ANN, the results were similar with or without Ra and nab (Table 9). 
Using only Ra and nab for dataset D0 predicted that all accounts were non-fraudster accounts (i.e., the 
majority class), resulting in a baseline accuracy of 73.6054% and 0 recall, as shown in the last rows of 
Tables 8 and 9. 

Table 8. J48 performance with dataset D0. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 76.8252 0.2411 0.6693 84 535 

S9 & (Ra & nab) 76.8252 0.2411 0.6693 84 535 
k-core 76.3010 0.2199 0.6513 83 550 

k-core & (Ra & nab) 76.3010 0.2199 0.6513 83 550 
k-core & CW 85.6608 0.6553 0.7674 140 243 

k-core & CW & (Ra & nab) 85.6608 0.6553 0.7674 140 243 
NDr 82.2538 0.8511 0.6192 369 105 

NDr & (Ra & nab) 82.2538 0.8511 0.6192 369 105 
NDAmean 88.5062 0.8652 0.7421 212 95 

NDAmean & (Ra & nab) 88.5062 0.8652 0.7421 212 95 
Ra & nab 73.6054 0.0000 N/A 0 705 

Table 9. ANN performance with dataset D0. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 76.5631 0.2284 0.6626 82 544 

S9 & (Ra & nab) 76.5631 0.2284 0.6626 82 544 
k-core 75.2153 0.2667 0.5646 145 517 

k-core & (Ra & nab) 75.2153 0.2667 0.5646 145 517 
k-core & CW 83.3396 0.4312 0.8736 44 401 

k-core & CW & (Ra & nab) 83.4519 0.4567 0.8451 59 383 
NDr 81.1307 0.7887 0.6103 355 149 

NDr & (Ra & nab) 81.5799 0.8000 0.6164 351 141 
NDAmean 85.0618 0.8922 0.6607 323 76 

NDAmean & (Ra & nab) 84.6499 0.8539 0.6623 307 103 
Ra & nab 73.6054 0.0000 N/A 0 705 
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5.2.3. Results from Dataset D0+ 

Dataset D0+ contained all accounts where Ra > 0 in D100. This dataset comprised 507 fraudster 
accounts and 1361 non-fraudster accounts, yielding a baseline accuracy of 72.8587% (Table 5). As 
shown in Tables 10 and 11, with the addition of Ra and nab, the prediction accuracy improved, and in 
most cases, precision and recall also improved. Because Ra > 0 for all accounts in D0+, the addition of 
Ra and nab improved performance. As shown in the last rows of Tables 10 and 11, using only Ra and 
nab on D0+ yielded accuracies of 89.6146% for J48 and 86.0278% for ANN, which is more than a 7.1% 
improvement over the corresponding baseline accuracy of 72.8587%. By contrast, using only Ra and 
nab on D100 yielded an accuracies of 80.2159% for J48 and 78.5636% for ANN, which is a less than 5.3% 
improvement over the corresponding baseline accuracy of 73.2981% (see Tables 5–7). Because the 
proportion of anonymous transactions was larger in D0+ than in D100, the impact of adding Ra and nab 
to the classification accuracy was also larger in D0+ than in D100. 

Table 10. J48 performance with dataset D0+. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 74.3041 0.1499 0.6080 49 431 

S9 & (Ra & nab) 91.1670 0.7416 0.9171 34 131 
k-core 81.0493 0.4813 0.7284 91 263 

k-core & (Ra & nab) 91.0600 0.7456 0.9087 38 129 
k-core & CW 89.4004 0.6371 0.9585 14 184 

k-core & CW & (Ra & nab) 94.7537 0.8501 0.9514 22 76 
NDr 87.6338 0.7929 0.7614 126 105 

NDr & (Ra & nab) 93.4154 0.7949 0.9550 19 104 
NDAmean 90.4176 0.8343 0.8166 95 84 

NDAmean & (Ra & nab) 93.6831 0.8067 0.9534 20 98 
Ra & nab 89.6146 0.6627 0.9359 23 171 

Table 11. ANN performance with dataset D0+. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 73.6081 0.1598 0.5473 67 426 

S9 & (Ra & nab) 86.3490 0.6746 0.7917 90 165 
k-core 73.2334 0.1578 0.5229 73 427 

k-core & (Ra & nab) 87.2591 0.6844 0.8165 78 160 
k-core & CW 88.2762 0.6055 0.9417 19 200 

k-core & CW & (Ra & nab) 92.4518 0.8185 0.8944 49 92 
NDr 87.4732 0.8698 0.7241 168 66 

NDr & (Ra & nab) 88.8116 0.8619 0.7587 139 70 
NDAmean 89.2398 0.9073 0.7492 154 47 

NDAmean & (Ra & nab) 89.9893 0.8462 0.7974 109 78 
Ra & nab 86.0278 0.5740 0.8661 45 216 

5.2.4. Results from Dataset D15 

Dataset D15 contained the top 15% accounts in D100 based on Ra, representing a dataset with a 
large proportion of anonymous transactions. The smallest anonymous ratio of the accounts in D15 
was 0.2. As indicated in Table 5, dataset D15 contained 385 fraudster accounts and 296 non-fraudster 
accounts, yielding a baseline accuracy of 56.5354%. As shown in Tables 12 and 13, the addition of Ra 
and nab improved both the prediction accuracy and precision, but in some cases, recall was 
decreased. 
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Table 12. J48 performance with dataset D15. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 56.2408 0.9816 0.5617 291 7 

S9 & (Ra & nab) 88.8399 0.8579 0.9449 20 56 
k-core 63.8767 0.4500 0.8221 37 209 

k-core & (Ra & nab) 89.1336 0.8597 0.9430 20 54 
k-core & CW 83.2599 0.7868 0.9006 33 81 

k-core & CW & (Ra & nab) 92.3642 0.8935 0.9690 11 41 
NDr 76.9457 0.8597 0.7627 103 54 

NDr & (Ra & nab) 90.8957 0.8571 0.9792 7 55 
NDAmean 84.2878 0.9403 0.8117 84 23 

NDAmean & (Ra & nab) 88.8399 0.8545 0.9427 20 56 
Ra and nab 89.7210 0.8649 0.9487 18 52 

Table 13. ANN performance with dataset D15. 

Attributes Accuracy (%) Recall Precision False Positives False Negatives 
S9 53.7445 0.7842 0.5612 233 82 

S9 & (Ra & nab) 79.1483 0.8026 0.8240 66 76 
k-core 61.5272 0.4711 0.7458 61 201 

k-core & (Ra & nab) 79.5888 0.8442 0.8045 79 60 
k-core & CW 74.7430 0.6605 0.8537 43 129 

k-core & CW & (Ra & nab) 87.8120 0.8727 0.9081 34 49 
NDr 77.6799 0.9169 0.7463 120 32 

NDr & (Ra & nab) 78.7078 0.8156 0.8093 74 71 
NDAmean 82.5257 0.9714 0.7759 108 11 

NDAmean & (Ra & nab) 86.9310 0.9117 0.8645 55 34 
Ra and nab 77.9736 0.8052 0.8052 75 75 

6. Discussion 

The results in Tables 5–13 showed that the addition of Ra and nab improved the prediction 
accuracy. In most cases, the addition of Ra and nab reduced either the number of false positives, the 
number of false negatives, or both. Except in the experiment with dataset D0, the addition of Ra and 
nab to the attribute NDAmean always reduced false positives but increased false negatives. However, 
the number of reduced false positives was greater than the number of increased false negatives. 
Therefore, the prediction accuracy was improved. 

To evaluate the performance improvement of adding Ra and nab, we calculated the difference in 
the prediction accuracy of datasets evaluated with and without adding Ra and nab (Table 14). For all 
attributes in Table 14, the ordering of accuracy improvement was D15 > D0+ > D100. That is, the addition 
of Ra and nab had a stronger positive impact on accuracy for datasets with higher percentages of 
anonymous transactions. Therefore, as using anonymous transactions to hide fraudulent activities 
becomes more prevalent, the importance of using the privacy-related attributes to detect fraudsters 
also increases. 

Table 14. Percentage of accuracy improvement with the addition of Ra & nab. 

Attributes 
J48 ANN

D100 D0+ D15 D100 D0+ D15

S9 6.6535 16.8629 32.5991 4.3622 12.7409 25.4038 
k-core 4.7587 10.0107 25.2569 4.23 14.0257 18.0616 

k-core & CW 2.3574 5.3533 9.1043 1.41 4.1756 13.069 
NDr 2.0929 5.7816 13.95 0.4406 1.3384 1.0279 

NDAmean 1.6523 3.2655 4.5521 0.1322 0.7495 4.4053 

In Table 15, the baseline accuracy and the accuracy of using only Ra and nab were copied from 
the last column of Table 5 and the last rows of Tables 6–13, respectively. The improvement column 
was calculated as the accuracy of using only Ra and nab subtracted from the corresponding baseline 
accuracy. Notably, ordering the datasets by the accuracy improvement over the baseline accuracy 
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was the same as ordering them by their proportions of anonymous transactions: D15 > D0+ > D100 > D0. 
Thus, the importance of Ra and nab increased with the proportion of anonymous transactions in the 
dataset. 

Table 15. Prediction accuracy (%) of baseline, using only Ra & nab, and improvement. 

Datasets Baseline Accuracy 
J48 ANN

Accuracy Improvement Accuracy Improvement 
D15 56.5345 89.7210 33.1865 77.9736 21.4391 
D0+ 72.8587 89.6146 16.7559 86.0278 13.1691 
D100 73.2981 80.2159 6.9178 78.5636 5.2655 
D0 73.6054 73.6054 0 73.6054 0 

Because dataset D0+ contained all accounts where Ra > 0 in D100, we chose dataset D0+ to evaluate 
how Ra and nab are distributed among fraudster and non-fraudster accounts (Table 16). Although the 
mean value of Ra was smaller for non-fraudster accounts than for fraudster accounts, the reverse was 
true for the standard deviation of Ra. Similar results were also found for nab.  

Table 16. Mean and standard deviation of Ra and nab in dataset D0+. 

- 
Ra nab 

Mean Stdev Mean Stdev
Fraudsters 0.567901819 3.069033531 0.361071348 13.81824708 

Non-fraudsters 0.147264717 18.50183688 0.190070867 88.81797154 

To indicate how Ra affects fraudster distribution, we calculated the proportions of fraudster 
and non-fraudster accounts for several subsets of the dataset D100, where each subset only contained 
the accounts where Ra was more than or equal to a certain threshold (Table 17). The proportions of 
fraudster accounts in the datasets where Ra ≥ 0 (i.e., D100) and Ra > 0 (i.e., D0+) were 26.7% and 
27.14%, respectively; the difference was only 0.44%. However, when the threshold of Ra was 
increased to ≥0.1, the proportion of fraudster accounts in the dataset became 43.6%, a 16.46% 
increment over the dataset with Ra > 0. The proportion of fraudster accounts in the resulting dataset 
increased with the threshold. Finally, when Ra reached its maximal value of 1, the resulting dataset 
contained only fraudster accounts. Thus, the fraudster distribution reflected that an account with a 
higher Ra was more likely to be a fraudster account. 

Table 17. Fraudster distribution in datasets with Ra greater than or equal to a certain threshold. 

Subset of D100 
Fraudsters Non-Fraudsters

Count Percentage Count Percentage
Ra ≥ 0 1212 26.70% 3327 73.30% 
Ra > 0 507 27.14% 1361 72.86% 

Ra ≥ 0.1 429 43.60% 555 56.40% 
Ra ≥ 0.2 385 55.56% 308 44.44% 
Ra ≥ 0.3 344 64.30% 191 35.70% 
Ra ≥ 0.4 314 70.40% 132 29.60% 
Ra ≥ 0.5 297 75.57% 96 24.43% 
Ra ≥ 0.6 259 78.96% 69 21.04% 
Ra ≥ 0.7 226 80.71% 54 19.29% 
Ra ≥ 0.8 189 84.75% 34 15.25% 
Ra ≥ 0.9 155 92.81% 12 7.19% 
Ra ≥ 1.0 121 100.00% 0 0.00% 

7. Conclusions 

A privacy-aware reputation system in online auctions offers the same service to everyone and 
does not discriminate between honest and fraudulent users. Although it protects the privacy of each 
user, it can also be misused to cover criminal activities by enabling a fraudster to hide the fact that all 
or most of his/her positive ratings are given by accomplices. Without considering this fact, the scores 
provided by the reputation system can be misleading. 
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In this paper, we proposed two privacy-related attributes to quantify the proportion of 
anonymous ratings that a user received. We showed that both attributes improved the performance 
of the fraudster detection method. Future work should address how to calculate the reputation score 
to avoid an inflated reputation. The reputation system can employ a more sophisticated method to 
calculate the reputation score, for example, by assigning lower and higher weights to anonymous 
and non-anonymous ratings, respectively. Because the reputation score is available to all users to 
evaluate the trustworthiness of a buyer in real time, its impact can be quite substantial. 

On some auction websites (e.g., eBay), anonymity is allowed, not only for giving ratings, but 
also for placing bids. This anonymous bidding function can also be abused by fraudsters to protect 
shill bidders, who bid on items with the intent to artificially raise their prices. Previous work on shill 
bidding detection includes deriving features from the bidding history to calculate the likelihood of a 
user participating in shill bidding [31], introducing a formal model checking approach to detect shill 
bidding [32], investigating the relationship between final auction prices and shill activities [33], and 
so on. Applying privacy-related features similar to the anonymous ratio to detect shill bidding is a 
potential area for further study. 

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/7/338/s1. 
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