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Abstract: The aim of this paper is to present some preliminary results and non-extensive statistical
properties of selected operating system counters related to hard drive behaviour. A number of
experiments have been carried out in order to generate the workload and analyse the behaviour of
computers during man–machine interaction. All analysed computers were personal ones, worked
under Windows operating systems. The research was conducted to demonstrate how the concept of
non-extensive statistical mechanics can be helpful in the description of computer systems behaviour,
especially in the context of statistical properties with scaling phenomena, long-term dependencies
and statistical self-similarity. The studies have been made on the basis of perfmon tool that allows the
user to trace operating systems counters during processing.
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1. Introduction

One of the main areas of interest in computer engineering is the description of behaviour of
selected parts in modern computer systems. The understanding of complex processes that appeared
in computer systems is a crucial challenge not only for better understanding of physical and logical
phenomena that exist on hardware and software levels, but also to make a significant progress in
the design of new solutions and improvement of their performance [1]. It will be a trivial statement,
but the level of complexity of modern computer systems is considerable and the same can be said
about the complexity level of processed tasks. The multi-task processing and very sophisticated
access interfaces incorporated in operating systems enable personal computer users to work in a very
convenient and efficient way. It is obvious that these solutions require significant amount of available
computer resources, but it should be remembered that these resources are managed by operating
systems in such a way that both efficiency and convenience should be guaranteed [2]. This is not
easy taking into account the fact that the amount of available resources is always limited [3]. It is
worth noting that the structural complexity of computer systems (hardware level) is connected with
software complexity that is processed. Therefore, it is difficult to guarantee that these complex systems
will work efficiently assuming that most of this work is done as a combination of algorithmic and
interactive processing [4]. The aforementioned combination may pose a problem, especially if physical
and technological constraints are considered.

The statement that computer systems are complex is not a new one, it has its roots in the works
by Dijkstra [5] in the seventies of the 20th century and a few years later by Gell-Man [6]. The term
complex systems is usually referred to the pioneering works by von Bertalanffy (a father of General
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Systems Theory) and his followers [6]. Currently, it is believed by many researchers that this is the
science of the XXIst century [7] and a lot of attention is paid to recognising, describing, modelling and
stimulating a number of natural and artificial systems in order to understand their real behaviour [8].
This is done in a spatial and time domain looking for emergent phenomena that are not visible at a
first glance because they appear as a consequence of many interactions between different parts of the
systems analysed. However, it is not common practice to use this interesting approach in the field of
computer science and engineering. In this work, we would like to emphasize that complex systems
approach seems to be interesting and helpful in better understanding of computer systems behaviour
similarly to approaches presented in sociology and social networks [9], economy [10,11], ecology [12],
biology [13], hydrology [14], medicine [15], etc.

There are many important aspects of system analysis in terms of complex systems. This paper
focuses on analysis of time series that represent behaviour of two selected operating system counters.
We would like to present their complex properties including power-law behaviour of probability
distributions, long-term dependencies in time series and scaling. Conclusions presented here are based
on statistical methods that are related to the concept of non-extensive entropy and statistics.

The approach proposed in this paper is simultaneously an extension to the results which have
already been demonstrated in literature. For example, as shown in [16], the authors have collected
data for the UNIX file server, proposed a method for simulation of time and spatial correlations with
analysis of Boltzmann–Gibbs entropy trying at the same to understand the real nature of bursty disk
traffic. The approach presented in paper [17] is similar to the one in question; however, the authors
have collected data of the disk arrival patterns focusing on three computer systems: cello—time sharing
system (similar to [16]); snake—a file server; and hplajw—one personal workstation. All systems
working under a UNIX operating system. They have used three methods for calculations of the
Hurst parameter, yet they have neither included information about how the data traces were collected,
nor about the analysed processes probability distributions and their stationarity. Hence, the calculations
of the H parameter should be improved. Ref. [18] deals with a study of self-similarity (based on
methods given by SELFIS tool) of RAID-arrays in various systems (web-servers, e-mail servers, game
consoles). There is no information, however, how data sets were collected (due to Non-Disclosure
Agreement). Furthermore, the study does not include any information about the processes probability
distributions and stationarity. The researchers used two methods that allow calculations of Hurst
exponent; however, they did not propose any information about statistical properties of probability
distributions. Therefore, the obtained results are incomplete—see the details in Section 2.3. There is an
extension of previous results in paper [19]; however, the traces were collected from enterprise systems
with different resolutions. The authors analysed the dynamics of the read and write traffic, the disks
utilization out of the entire drives family. The analysis presented in [20] refers to Windows NT systems
(seven different servers), but the workload was also generated with regard to different benchmarks.
The collected records were based on Event Tracing for Windows (ETW) tool. On the other hand, in Ref.
[21], it was noted that the existence of statistical self-similarity at large time scales does not significantly
affect disk behaviour with respect to response times.

The purpose of this paper is to confirm the results presented in [17–20] and references therein,
as well as focus on personal computers (workstations) working under the Windows 7 operating
system where the workload was generated only during long-term human–computer interaction.
The perfmon tool, which enabled to trace the results, is a part of every Windows system from Windows
ME. Therefore, it is not necessary to have any special tracing components of computer programs.
The collected traces were recorded with sampling resolution 1 s for two important system counters,
namely Average Disk sec/Transfer and Disk Transfers/s, facilitates the extension of the already existing
approaches. Owning the analysis of power-law behaviour of probability distributions, it is worth
noting that the non-extensive entropy formalism may be adopted in the quest for better understanding
of complex hard disk behaviour in relation to operating system management.
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The paper is divided into five sections. The foreword in the Introduction, Section 2, where
mathematical background with necessary definitions have been presented, Section 3, which includes a
short description of the experiment that has been conducted, Section 4 where all the calculation results
have been proposed, and Section 5 is devoted to Conclusions.

2. Non-Extensive Statistical Mechanics and Long-Range Dependencies

The concept of entropy non-extensivity has its history in literature, dating back to 1988 when
Tsallis published a research paper on the then-new idea [22]. Since then a gradual development
of this theory has been observed and it is quite commonly accepted that there is no possibility to
understand the behaviour of complex systems without the idea of non-extensive entropy [23,24].
The term non-extensive is understood as a feature of the system in which its properties entirely differ
from the sum of the characteristics of system components and cannot be inferred on the basis of a
simple summation of these components. In this work, we take into consideration some applications of
this theory in statistics (statistical mechanics) called non-extensive statistics mainly used for analysis of
time series.

2.1. Definitions of Non-Extensive Entropy

Non-extensive formalism is based on the concept of q-generalization of logarithm given by

lnq(x) =
x1−q − 1

1− q
q ∈ R, ln1(x) = ln(x). (1)

Based on (1), Tsallis proposed in [22] to extend classical definition of Boltzmann-Gibbs entropy
given by

SBG = −k ln(W), (2)

where k is Boltzmann constant and W stands for the number of system microstates to the form:

Sq = −k lnq(W). (3)

Equation (1) has a pseudoadditivity property

lnq(x · y) = lnq(x) + lnq(y) + (1− q) lnq(x) lnq(y), (4)

which means that the principal property of entropy, called additivity, is strictly related to values of q
parameter giving for q > 1 pseudo-additivity and for q < 1 super-additivity.

System microstates W are given with the set of probabilities pi and in discrete cases result in:

SBG = −k
W

∑
i=1

pi ln(pi) with ∑
i

pi = 1 and pi ∈ 〈0, 1〉 , (5)

which, for equiprobable states (pi = 1/W, ∀i), gives (2). In the case of (3), we have:

Sq = k
1−∑W

i=1 pq
i

q− 1
and ∑

i
pq

i 6= 1. (6)

2.2. Probability Distributions in Sq Entropy

In the continuous form, the set of pi probabilities is given by the function p(x). The extremization
of (5) in continuous form

SBG = −k
+∞∫
−∞

p(x) ln p(x)dx, (7)
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with the constraints
+∞∫
−∞

p(x)dx = 1, 〈x〉 ≡
+∞∫
−∞

xp(x)dx = 0,
〈

x2〉 ≡ +∞∫
−∞

x2 p(x)dx = σ2, leads to the

Gaussian equilibrium probability distribution given by:

pBG(x) =
e−βx2∫ ∞

−∞ e−βx2 dx
, (8)

where β > 0 is the Lagrange parameter determined by σ2 and (8) is a ground state of the Central Limit
Theorem (CLT) [25]. Cognately, the same can be applied to (6) and as a result the stationary pq(x)
distribution called q-Gaussian can be obtained:

pq(x) =
e−βx2

q∫ ∞
−∞ e−βx2

q dx
(q < 3; β > 0) , (9)

where eq is called the q-exponential function given by:

ex
q = [1 + (1− q)x]

1
1−q with ex

1 = ex (10)

as the inverse function to Equation (1).
The most surprising point in (9) appears when we have a set of N such random variables and

their sum given by
XN = ∑N

i=1 pi (11)

is calculated because, for q < 5/3 and N → ∞, it converges to a (stable) Gaussian distribution
(variance of distribution (9) is limited), but, for q > 5/3, relation (9) converges to a set of α-stable
Lévy distributions [26]. It is a well-known fact that α-stable distributions for many years haven’t
got commonly accepted reference to statistical mechanics (paper [27] has elucidated this situation),
but, on the other hand, they were used in statistics to generalize CLT for probability distributions with
power laws.

Owning the non-extensive entropy the α parameter can be described as

α =
3− q
q− 1

with q ∈
(

5
3

, 3
)

. (12)

It can be also worth noting that for q < 5/3, one has distributions with finite variance, whereas,
for q ≥ 5/3, the variance is infinite.

Tsallis’s definition of entropy also offered a new kind of formalism for probability distributions in
stationary states; according to [28], we can define q-normal distributions:

P(x) = Nq

(
1 + Bqx2(q− 1)

) 1
1−q , (13)

where
Bq =

(
(5− 3q) σ2

)−1
, (14)

with σ2 as a data variance. Nq is given as

Nq =
Γ( 1

q−1 )

Γ( 3−q
2q−2 )

√
q− 1

π
Bq, (15)

with Γ Gamma function. When |x| → ∞ Equation (13) takes the form: P(x) ∼ x2/(1−q), and for
cumulative distribution, there is P(|a| > x) ∼ x−(3−q)/(q−1) as it is in Equation (12).
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The existence of power-law distributions in the analysed system indicates that the system:

• is out of equilibrium [29];
• some of its statistical properties (especially second moment) are difficult to be interpreted [30];
• is governed by long-term (time domain) and long-range (spatial domain) dependencies [31];
• is described by multifractals and scaling phenomena [32];
• has complex spatial structure and collective dynamics [33].

The concept of non-extensive (mechanical) statistics, outlined above, has become one of the most
interesting ideas in recent years leading to many important achievements and results—see [34] and
references therein.

The existence of power-law distributions is not the only manifestation of non-extensive statistics.
For example, regarding the results given in [35,36], a relation between the non-extensive q parameter
and the statistical self-similarity Hurst exponent H, which is used to measure long-range dependencies
in complex systems leading to H = 1/(3− q), can be suggested.

2.3. Long-Range Dependencies

Statistical self-similarity and multifractals are well-known features of many complex systems
enabling a better understanding of their behaviour. The existence of long-term dependencies in
different time series was first observed by Hurst [37].

Generally, the process X(t) can be seen as self-similar if for some H > 0 a relation (16) holds:

X(at)
d≈ aHX(t) for every a > 0. (16)

Equation (16) states that if the process is self-similar, its invariant under suitable translations of
time and scale [38]. Usually, t is time and X(t) is a process space—relation (16) shows that change of
time scale a > 0 corresponds to change of space scale aH . There are two main classes of self-similar
processes: fractional Brownian motions (fBm), where H exponent is as a parameter that reflects the
process memory effects (called long-term (long-range) dependencies) measured by d, d ∈< −0.5, 0.5 >

and H = d + 1/2, but also gives information of time series persistence. The second class of such
processes are—Lévy-stable processes (with power-like distributions), where H = 1/α, and Hurst
parameter is responsible for space scaling. In the most complex case, there are Lévy processes with
memory effects described by d parameter and H = 1/α + d.

Since Hurst’s discovery, a lot of interesting, similar examples have been shown where the ubiquity
of such phenomena is very surprising; additionally, it enabled a better understanding of the real nature
of the complex world. In the case of computer systems, the existence of long-range dependencies
can lead to the decrease of throughput [39]. There are plenty of statistical methods that are used for
calculations of statistical self-similarity—their detailed description and analysis is shown in [40]. In our
study, we show the results of experiment where 10 different computers were traced by a perfmon tool.
There is a list of necessary details for each computer hardware configuration in Table 1. The results
were obtained on the basis of proven statistical methods used for analysis of probability distributions
and long-range dependencies. The analysis of every single computer enables to obtain a set of statistics
that consists of: determination of the slope of heavy tail probability distribution and Hurst parameter
H with information about long-range dependencies measured by d parameter.
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Table 1. Configurations of computers systems used in the experiment.

Id CPU RAM HDD OS Number of Records

1
AMD Athlon X2
Dual-Core QL-65
2.10 GHz

2.0 GB DDR2 Hitachi HTS5432225L9A300 ATA Win 7 698848

2
DualCore Intel Core
i5 450 M, 2.666 GHz 4.0 GB DDR3

Western Digital
WD5000BEVT-22A0RT0 Win 7 872891

3
Intel Core i5 CPU M
520 2.4 GHz 8.0 GB DDR3 Seagate ST9500420AS ATA Win 7 439615

4
DualCore AMD
Athlon II X2 250,
2.952 GHz

4.0 GB DDR2 Seagate ST3500418AS ATA Win 7 557020

5
QuadCore AMD
Phenom II X4 Black
Edition 955, 3.2 GHz

8.0 GB DDR2 Seagate ST31000528AS ATA Win 7 684518

6
Intel Pentium
Dual-Core E5200
2.5 GHz

2.0 GB PC800 CL4 Seagate ST3500320AS ATA Win 7 506599

7
Intel Core 2 Duo
CPU, T5450,
1.66 GHz

3.0 GB DDR2 Seagate ST9250827AS ATA Win 7 1048569

8
Intel Core 2 duo
P7350 2.00 GHz 3.0 GB DDR2 Fujitsu MHZ2320BH G2 ATA Win 7 309766

9
AMD Athlon 64 X2
Dual-Core TK-55
1.80 GHz

3.0 GB DDR2 Hitachi HTS542512K9SA00 ATA Win 7 696955

10
Intel Core i5 650
3.20 GHz 4.0 GB DDR2 Seagate ST3500320AS ATA Win 7 519946

3. Experiment Details

A typical approach for modelling different problems of workload and processing in computer
systems is usually referred to the theory of queues. This gives a very comprehensive and useful
approach including many analytical solutions and simulation results that have practical applications.
This is a natural consequence of the approach proposed by Kendall, Kleinrock and their followers.
However, it should be remembered that most of these solutions can be calculated according to
some assumptions that may be too restrictive to be able to model real-world situations precisely [41].
The most important limitations include: the possibility that the waiting space may be limited, the arrival
rate is state dependent, the arrival process is not stationary (peak, slack and bursty periods), and
the queue discipline may not be first come first served (FCFS). Moreover, queuing models give steady
state giving a lot of information, for instance whether the queuing system operates long enough
excluding unsteady states of the system. In a typical service system, we denote by A the number
of income tasks (requests to be served) and by X the number of served tasks C during time T and
(X = C/T), then λ = A/T parameter can set as the requests intensity. Only if λ ≤ X is the system in
a stable state [42]—for the rest of the cases, the system is out of equilibrium.

If we denote by N the number of served tasks and by R the system response time, it can be
written, according to Little’s law [43], that NT = CR, which gives N = RX for λ ≤ X. For closed
service systems (served tasks come again into the system), there is also user waiting time Z, thus
N = (R+ Z)X. There are certain limitations incorporated in service systems that describe performance
in terms of throughput X(N) (the number of served tasks per one unit of time) and response time
R(N). They are expressed as follows [42]:

N/(ND + Z) ≤ X(N) ≤ min{1/Dmax, N/(D + Z)}
ND ≥ R(N) ≥ max{NDmax − Z, D, } (17)
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where Dmax is the maximal service time at service node i. If there is only one served task in the system,
(n = 1), the left part of first formula in Equation (17) is given as

Xmax(N) = 1/(D + Z). (18)

If the number of served tasks N increases, X(N) = N/(D + Z) (the right part of formula (17))
and according to [44] (Equation (6)) it can be written that

X(N) = dN(t)/dt = rN(t), (19)

where r is the rate of system performance growth—in the simplest case r = 1/(D + Z) = const.
In the Boltzmann–Gibbs entropy, the size frequency distribution function N(x) is given as:

dN(x)
dx

= −λN(x) λ = const, (20)

with the solution:
N(x) = N0 exp(−λx). (21)

Similarly, Tsallis q-entropy proposes the following equation:

dN(x)
dx

= −λNq(x) λ = const; (22)

thus, we can finally observe that

N(x) = N0eq(−λx) =
N0

[1 + (1− q)λx]
1

1−q
, (23)

with eq(x) = (1 + (1− q)x)
1

1−q and q 6= 1, 1 + (1− q)x ≥ 0. If q > 1, Equation (23) results with
power-law behaviour of distribution N(x) when x → ∞.

Comparatively, following the same way of thinking, Equation (19) can be extended to
Equation (22), exposing the possible connection of Tsallis entropy and service system performance.
A similar approach was proposed, for instance, by [45].

A literature review in the field of hard disk behaviour analysis (as it presents, for example,
in the Introduction) shows that most of the data gathered so far focuses on the analysis of
statistical self-similarity without any references to statistical properties of distribution probabilities.
Figures 1 and 2 illustrate easily noticeable bursty periods and high peaks of measured parameters.
As shown in Table 2, all values of mean and standard deviation suggest that there is no evidence of
possible existence of heavy tailed distributions in the analysed process. Tsallis’s entropy presents a
convincing background for such distributions. Thus, the entropy in question may be considered as a
“denominator” for different approaches presented so far.

The authors focus in this paper on real measurements that were obtained in different
personal computer systems that worked under Windows family of operating systems (Windows 7).
These measurements were done on the basis of the solutions that are inside this system, especially
those that are available in the system performance monitor called perfmon. This useful administration
tool is included in Windows systems and can be used for tracing different parts of the system [46].
In most cases, the results obtained due to this monitor are used by many system administrators to get
the overview of the computer systems (especially servers) and are helpful in ongoing management.
There are many technical and online reports that explain how to gather data from the perfmon and
how the recorded findings may be used to monitor and optimize system performance and reliability.
On one hand, a great number of these reports give exact advice; on the other hand, they do not focus on
the possibility to make advanced statistical analysis. In this paper, such a possibility is taken because



Entropy 2017, 19, 335 8 of 19

perfmon allows for gathering data as time series with different sampling time—the highest is 1 s.
Some online forums report that this is the best solution for data analysis [47]. Additionally, an official
Microsoft Technet Support believes that [48] If you do set it to 1 s, it could tax your system, but it is also
written that: the short period of time is for being able to see items such as something kicking off that triggers
the problem that you are seeing. For 1 s sampling resolution, it is always easy to have lower resolutions
(minutes, hours, days) using sums or averages over the period of time. Resolution 1 s allowed to
catch as much as possible details in counter behaviour and helped to achieve very long time series
(see Table 1).

Table 2. Calculated means, standard deviations and min/max values for time series of Average Disk
sec/Transfer counter.

Id µ σ Min. Max.

1 0.15315 27.84289 1.99998 × 10−4 9293.79366
2 0.0905 18.10498 1.50105 × 10−4 7757.53781
3 0.00582 0.03968 2.50004 × 10−4 2.5388
4 0.00288 0.01095 3.17642 × 10−4 2.19522
5 0.00261 0.01501 7.37 × 10−5 1.71806
6 0.00315 0.03627 1.99997 × 10−4 25.07448
7 0.00879 0.01669 0 2.13655
8 0.08761 15.45299 1.49874 × 10−4 7599.39
9 0.24258 35.72358 1.49984 × 10−4 15,152.58086
10 0.00293 0.01852 0 3.6076

The key issue when using perfmon tool is the fact that performance system merely generates any
additional workload. It needs to be remembered that tracing of computer system is not easy, as it is
necessary to have a special computer program that allows data collection. However, such a program
is also processed the on investigated system and influences obtained results. Perfmon presents data
that is usually gathered by operating systems in order to guarantee its work. Nonetheless, perfmon
does not create any performance data per se, and it only shows data provided by other Windows
subsystems. In [49], it was calculated that if perfmon stores data on hard drive for computers with
Windows ME and CPU 550 MHz, during 40 k of Input/Output operations per second, it adds about
5% (∼2 k) of additional workload; thus, its possible influence on final results can be neglected.

It was also assumed in our experiment that computer workload was made by normal computer
users (humans). Presented considerations are based on long-term tracing of 10 different (with different
hardware configurations) personal computers that were used for normal, typical work. This is the
case in a situation when computer users are generating workload that is mostly based on office
programs, Internet browsers, multimedia, email clients, etc. The experiment was hands-off where
the users could use the computer and the Internet freely, without any scenarios. However, it was
emphasized that, during one session, which should last at least 1 h, they should browse through
webpages, check their mail several times, use word processor or spreadsheet, play games, etc. It was
also assumed that normal work with the computer permits short breaks, thus no computer–user
interaction, which should last no longer than fifteen minutes. It was not necessary to conduct any
additional tests or benchmarks. The approach described here has its strengths and weaknesses. Firstly,
it is clearly noticeable that its weakest point is the fact that every computer user chooses his or her
unique ways of interaction as well as preferred computer programs. Some common features can
be found, however generally, the behaviour of one user cannot be copied by another. This can be
guaranteed if special tests based on benchmarks are used. Even so, such tests are not realistic and do
not reflect the whole possible range of different situations. Extreme (yet repeatable) values of workload
are commonly generated by benchmarks due to artificial (unrealistic) tests, which does not reflect
normal computer work. The question is, however, how many times does a typical computer users
force the computer to process such workload? Moreover, according to [20], it should be remember
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that: the real-world behaviour drawn from analyses of benchmark traces are only as accurate as the
benchmarks’ accuracy in representing real-world environments.

As it was noted before, the typical approach for modelling queuing systems is based on Kendall’s
notation and efforts to find analytical solutions. After the development of first simple (Poisson) models,
most of the more complex obtained results were related to (computer) networks with (heavy) traffic
models (especially those with fractal nature) [50,51]. As far as hard disks are concerned, the most
popular measure oft heir performance is the average access time expressed by waiting time (understood
as the time until the disk head is over the track to serve the request) plus rotational latency (mostly
governed by rotational disk speed) and transfer time (necessary to read/write requested data) [52].
One can also find another term: “seek time” considered as the amount of time needed to the reposition
of head during request service, but this is the part of wait time, and ”seeking” stands as a synonym
for process of moving the read/write head [53]. In regard to the queuing theory, usually a hard disk
drive is modelled as a FIFO M/G/1 queue, and this is connected with an implicit assumption that
the speed of seeking and the task of scheduling algorithm do not influence the overall performance
[53]. Nonetheless, this is not necessarily the truth because hard disks have special requests’ scheduling
schemes that unnecessarily reflect the FIFO regime. Among them, there are: SCAN, C-SCAN, Shortest
Seek Time First, Shortest Positioning Time First (both better than SCAN/C-SCAN in average access
time but have higher variance), First Come First Served, the latter being the worst one. Moreover, the
term “average access time” is used as a meaningful measure, but it is important only when the system
is ergodic and has well established distribution over states (is in equilibrium state).

In this paper, a statistical analysis of the following system counters is presented:

1. Average Disk sec/Transfer (that consists of a sum of counters Average Disk sec/Read and
Average Disk sec/Write). It represents the average time the disk transfers (reads/writes, I/O
requests) took to complete, in seconds (the counter has a millisecond precision). It does not
include the time that is necessary to be spent in the system queue but is the most important
counter that reflects the physical disk properties; they are usually related to the disk speed, and,
for many computer systems, one can find some recommendations about their suggested or critical
values [52].

2. Disk Transfers/s. It is a counter that shows the number of transfers (consisting of disc read/write)
during a time unit (1 s for the purpose of this paper). It shows how many different application
requests are necessary to be handled by the disk.

In perfmon, for physical disk, the data is captured at the Partition Manager level in the storage
stack (Figure 3). Whenever the application demands an I/O request, it uses the Windows I/O
Subsystem as a intermediate stage (see the top of the stack in Figure 3) to serve it. Depending on
the request type, it can be sent further to the Files System, which imposes the structure of the files in
the operating system, and to the Volumes Manager, which presents disk volumes like C:, D:, E:, etc.,
which decides, for example, which physical hard drive is taken and then to the Partitions Manager
that manages logical disks (partitions). Below the Partitions Manager, there is a Device Classes level
that acts as a manager of the device type (hard disk, tape, CD, etc.)—and the Port/Miniport level that
is responsible for the transport protocol (SCSI, FC, SATA, etc.) along with the device driver for the
Storage Adapter (supplied by the vendor of the device). Disk Subsystem is a physical level of this
structure considered as a simple cable connected to a single physical hard disk or even more complex
solution like a Storage Area Network (SAN). Average Disk sec/Transfer counter measures the whole
time spent below the Partitions Manager level. However, the important issue is not only how long
each request will be served, but also how many requests should be served. This is the role of the Disk
Transfers/s counter, which gives profound insights into a given problem. The analysis of the findings
on this counter permit a better understanding of system non-stationarity or long-range dependencies
(the existence of peak, slack and bursty periods).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1. Behaviour of Average Disk sec/Transfer counters for computers with Id 1÷10 (subfigures
(a–j)). In the case of (a,b,h,i) 0 y-axis has a break and the second part is plotted in log scale.



Entropy 2017, 19, 335 11 of 19

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2. Behaviour of counter Disk Transfers/s for computers with Id 1÷10 (subfigures (a–j)).
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Figure 3. Windows storage stack.

4. Experiment Results

In this paper, we focus mainly on a real computer-user behaviour traced for some periods of
time. The shortest available data set has 309,766 observations, whereas the longest >1 M (see details in
Table 1). In every case, the collected data is considered as a time series that permit statistical analysis.
Figure 1 shows the behaviour of Average Disk sec/Transfer counter of each traced system. Taking into
account the data presented in Table 1, it is worth mentioning that, in the case of non-Seagate disks
(Hitachi—Id. 1 and Id. 9, Western Digital—Id. 2, Fujitsu—Id. 8), the range of the counter fluctuations
is much bigger than in the case of others. On the basis of information gathered in Table 2, which shows
calculated mean µ and standard deviation σ for all disks, it is easy to notice that Seagate disks have
the smallest values of µ and σ. The same principle can be applied to min and max values. If we try to
compare their observations with the amount of available RAM memory in computers, we can pose a
question about whether there is any relation between the amount of the available memory and the hard
disk type. In order to prove this, further investigations need to be conducted, and a greater number
of computers with hardware configurations are also necessary. Nevertheless, in order to present a
dynamical nature of this counter for Figure 1a,b,h,i, we put a break in the 0 y-axis. This is caused by
max values for these Ids, and it reaches more than 7 k.

The counters Disk Transfers/s are shown in Figure 2. Again, the attentive observer would be
able to see the periods of bursty behaviour. The existence of high peaks in these time series enables to
make an assumption that the Tsallis formalism plays an important role in understanding of counters
behaviour; however, this will be confirmed when the processes of distribution probability are tested.
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Our analysis starts with statistics that refer the probability distributions of time series to Tsallis
proposals. It was assumed that these probabilities can have slowly vanishing tails for large counter
values. The simplest approach assumes that estimation of the distributions slope is done on a
log-log probability distribution plot with the fit of allometric equation y = βxα, where α is the
slope. In addition, a more accurate graphical method is suggested referring to log-log plot of
P(|a| > x) ∼ x−(3−q)/(q−1) and allometric fit for large values of x. However, both of these methods
may not necessarily lead to convincing results of tail behaviour—they show its power-law property,
but the estimation of α parameter is not necessarily exact [54]. Other methods that can be used are
based on Hill estimator or maximum likelihood estimator [55]. The estimation of the heavy tail index α̂

by means of the Hill method is quite often used by researchers. It is believed that this is one of the best
methods [56]. The estimator is based on the approach where, for a set of Yi of recorded data, a new
ordered, in a decreasing fashion, set Xi is given, with X1 being the highest value from Yi. Then, the
procedure given by Equation (24) is done, and, as a result, a plot of tail distribution is given:

α̂k =

[
1
k

k−1

∑
i=0

ln
Xn−i,n

Xn−k,n

]−1

for k ∈ {1, 2, . . . , n}. (24)

The use of Hill estimator poses a problem when choosing the appropriate number k. This is a
critical issue because this estimator is very sensitive when it comes to this choice. The most common
technique applied to solve this problem is the use of plot α̂ vs. k as well as choosing a part of the plot
that looks stable. There are also effective techniques and approaches based on statistical testing [56].

The estimation of an α index according to the Hill method is given in Figures 4 and 5. We based
on a graphical approach having plots that show behaviour of α vs. sample size n. For Average Disk
sec/Transfer counter (Figure 4), almost in all cases with the exception of (c), (d) and (e), the obtained
values of α for large n are lower than 2. This suggests that probability distributions of analysed
counters may have the property of infinite variance and description of counters by standard deviation
(see Table 2) may lead to some misunderstandings, especially in the case of standard deviation. This is
also exceptionally important if the property of statistical self-similarity is analysed because it is present
in spatial and temporal domains. Heavy-tailed distributions are a manifestation of long-range spatial
correlations. If the α stability index is lower than 2, we not only obtain processes with infinite variance,
but also evidence that suggest that the system is in out-of-equilibrium state and the use of Tsallis
thermostatistics should be preferred. In all cases of Disk Transfers/s, counter Hill plots show (see
Figure 5) that the spectrum of α values are in the range of ∼1.6 ÷ ∼2.3 for large n. This particular
counter represents the number of requests generated by applications that were handled by the disk.
Taking into account that Windows I/O subsystem (Figure 3) is responsible for serving these demands,
a more detailed view on a more complex nature of operating system behaviour may be observed.
Again, this problem requires more time series (this case focuses only on 10) and other statistical tests
and comparisons of results for different estimators. We assume that a rough estimation is enough
in order to confirm or deny whether probability distributions are closer to Gaussian or power-law
ones—some similar results were also given in [57], yet dealing mostly with cache memory.

According to Equation (12) having the slope α, it is possible to calculate the q index as

q =
α + 3
α + 1

. (25)

Table 3 shows calculated slopes and q-indexes for all computer systems hardware configurations
in the case of both counters. It is clear that the q index differs from value 1 in all cases—non-extensive
entropy seems to be the right choice. Moreover, in most cases, q > 5/3, thus the power-law behaviour of
distributions can be expected for both counters. A more detailed analysis is needed in order to confirm
and define the obtained results; however, they indicate the existence of spatial scaling phenomena.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Hill estimator of counters Average Disk sec/Transfer for computers with Id 1÷10 (subfigures (a–j)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Hill estimator of counters Disk Transfers/s for computers with Id 1÷10 (subfigures (a–j)).
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Table 3. Tsallis q-indexes for analysed counters.

Average Disk Sec/Transfer Disk Transfers/s

Id α q α q

1 2.19 1.62 1.54 1.78
2 1.88 1.69 1.67 1.74
3 2.37 1.59 1.79 1.71
4 2.01 1.66 1.23 1.89
5 2.14 1.63 1.64 1.75
6 2.28 1.61 1.63 1.75
7 2.15 1.63 1.95 1.67
8 1.64 1.75 1.85 1.70
9 1.88 1.69 2.03 1.66

10 1.67 1.74 1.74 1.73

The possible existence of long-range dependencies in analysed time series is checked by the use
of two different methods (DFA and spectral density), due to which calculations of Hurst parameter
H are feasible. There are other methods that can be used in this field; however, both of the selected
methods work very well even with time series that can have non-stationary parts. The problem of
time series stationarity analysis can be solved, for example, by the approach based on quantile lines
test [58]. Here, we can assume that analysed time series are at least weak stationary owing to the fact
that they have well-defined probability distributions. This tacit assumption is connected with the use
of the above-mentioned methods, which enabled the production of convincing and reliable results.
Details are given in Table 4.

Table 4. Long-range dependencies in analysed counters measured by H parameter.

Average Disk Sec/Transfer Disk Transfers/s

Id DFA Spectrum DFA Spectrum

1 0.501 0.53 0.92 0.91
2 0.494 0.5 1.04 0.98
3 0.988 0.99 0.96 0.95
4 0.858 0.78 0.98 0.99
5 0.791 0.77 0.86 0.79
6 0.654 0.55 0.94 0.89
7 0.878 0.83 0.84 0.88
8 0.488 0.5 0.90 0.93
9 0.509 0.51 0.77 0.8
10 0.773 0.74 0.70 0.91

For Average Disk sec/Transfer counter, six cases have a value of H > 0.5. The other four with Ids:
1, 2, 8, 9 have value H very close to 0.5. The most surprising fact is that they have exactly the same Ids
like in Table 2 with high values of µ and σ. These cases can be a confirmation of a situation described
and analysed in details in [59], where it was proved that, in the case of the Internet, if load increases,
the Internet traffic tends to Poisson models. If there is little or no queueing on links, the nature of traffic
is long-range dependent with bursty periods. Still, if the workload increases, the behaviour of network
traffic (due to the superposition of marked point processes) pushes the statistical properties of traffic
toward Poisson process, where long-range dependencies are non-existent. Obviously, the hypothesis
needs further investigations. Another important issue may be the research in the field of multifractal
spectrum analysis. The MF-DFA method (details and its improvement are given, for example, in [60])
can be used in order to obtain fractal spectrum of analysed time-series.
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5. Conclusions

In this paper, it is shown that the mathematical formalism related to the non-extensive concept
of entropy can give valuable outcomes. Our experiment and statistical analysis lead to some results,
when referred to the concept of complex systems, scaling and long-range time and spatial dependencies
can have interesting applications in the description of computer systems behaviour and be used in
computer systems management, where we always have a problem of limited resources. We can
easily notice that the computer operating systems is responsible for management of system limited
resources—the main goal is to find such solutions that would hinder this fact for computer users.
Usually, the simplest solution would be to buy a computer with a higher amount of RAM memory;
however, our results show that there are certain phenomena on a hardware level that should be
better recognized.

In order to confirm and expand obtained outcomes, further experiments and more detailed
statistical analysis are needed. It is obvious that a set of experiments with a higher number of
computers is necessary. It will be also very interesting to confirm obtained results with experiments
mostly based on tests with benchmarks, but the challenge is even to find such benchmarks that will
last for weeks.

In comparison to the previous works, which presents similar results in this field, we were not
only able to show the self-similarity property measured by H parameter, but were also able to give a
description of probability distributions analysis in terms of non-extensive statistics. It was possible
due to experiments performed on personal computers during user–computer interaction. Table 1 gives
information that these were mainly purpose computers working under Windows 7. The power-law
behaviour of the analysed counters with estimation of α indexes can be the evidence that non-extensive
statistics may play a crucial role in further development of so far obtained results, and the use of the
complex system approach becomes more popular.

Conflicts of Interest: The author declares no conflict of interest.
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