
entropy

Article

Information-Theoretic Bound on the Entropy
Production to Maintain a Classical Nonequilibrium
Distribution Using Ancillary Control

Jordan M. Horowitz * and Jeremey L. England

Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology,
400 Technology Square, Cambridge, MA 02139, USA; jengland@mit.edu
* Correspondence: jhorowit@mit.edu; Tel.: +1-617-452-2904

Received: 23 March 2017; Accepted: 1 July 2017; Published: 4 July 2017

Abstract: There are many functional contexts where it is desirable to maintain a mesoscopic system in
a nonequilibrium state. However, such control requires an inherent energy dissipation. In this article,
we unify and extend a number of works on the minimum energetic cost to maintain a mesoscopic
system in a prescribed nonequilibrium distribution using ancillary control. For a variety of control
mechanisms, we find that the minimum amount of energy dissipation necessary can be cast as
an information-theoretic measure of distinguishability between the target nonequilibrium state and
the underlying equilibrium distribution. This work offers quantitative insight into the intuitive idea
that more energy is needed to maintain a system farther from equilibrium.
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1. Introduction

Small systems are continually bombarded by noise from their surroundings. Sometimes this
noise is helpful; thermal and chemical fluctuations are the fuel that power biological molecular
motors [1]. More often, though, noise is a nuisance. Fluctuations in gene expression or transcription
can lead to errors in downstream macromolecules, like RNA, that can be detrimental to a cell’s
function [2]. Noise can also interfere with the functioning of artificial mesoscopic devices, such as
micromechanical [3] and nanomechanical resonators [4,5]. In all these situations, an ancillary control
mechanism can be employed to suppress fluctuations. This can take the form of a kinetic proofreading
scheme [2] or the addition of an auxiliary control device that employs active feedback, as in a Maxwell’s
demon [6–12].

No matter the control mechanism, the effect is to force the system into a statistical state distinct
from its noisy equilibrium, where it will inevitably dissipate energy. Thus maintaining a system
away from equilibrium comes with an energetic cost. Attempts at predicting the properties of such
nonequilibrium states by minimizing the energy dissipation have a long history, starting with Prigogine
and coworkers [13] within linear irreversible thermodynamics (see also [14]). However, it seems no
such general variational principle exists beyond the linear regime [14–16]. As such, our goal in this
work is not to characterize the nonequilibrium state through a thermodynamic variational principle.
Instead, we aim to characterize the energetic requirement to hold an originally equilibrium system
in a prescribed out-of-equilibrium state using an additional external control system that does not
alter the original system’s properties. Indeed, previously in Refs. [17,18], we showed that for specific
classes of externally imposed controls, this minimum energetic cost could be expressed simply in
terms of the systems underlying equilibrium dynamics. In this Article, we expand this program to
include new control mechanisms, and in the process offer a unifying perspective on these previous
results. In particular, we demonstrate that for various control mechanisms the minimum entropy
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production (or dissipation) to keep a mesoscopic system in a specified nonequilibrium distribution
can be expressed as a time derivative of the relative entropy between the target distribution and
the uncontrolled equilibrium Boltzmann distribution. This information-theoretic characterization
quantitatively characterizes the intuitive notion that the farther a system is from equilibrium the more
energy must be dissipated to maintain it.

2. Setup

We have in mind a small mesoscopic system making random transitions among a set of discrete
mesostates, or configurations, i = 1, . . . , N, each with (free) energy Ei. We can visualize this dyanmics
occurring on a graph (or network) like in Figure 1, where each configuration is assigned a vertex
(or node), and possible transitions are represented by edges (or links).

Figure 1. Illustration of three types of control: (Top) Graph representation of the system’s configuration
space without control. Mesoscopic configurations are represented as vertices (or nodes) with
edges signifying allowed transitions; (Bottom) Control is implemented by adding additional edges
(red dashed) or nodes (red dots) in order to drive the system into a nonequilibrium distribution.
From Left to Right: Edge control, Node control, and Auxiliary control.

The dynamical evolution is modeled as a Markov jump process on our graph according to
transition rates Wij from j→ i, with Wij 6= 0 only when Wji 6= 0, so that every transition has a reverse.
As such, the system’s time-dependent probability density pi(t) evolves according to the Master
Equation [19]

∂t pi(t) = ∑
j 6=i

Wij pj(t)−Wji pi(t), (1)

which constitutes a probability conservation equation with probability currents

Jij(p) = Wij pj(t)−Wji pi(t). (2)

Now, in the absence of any external control, we assume that our system relaxes to a thermal
equilibrium steady state at inverse temperature β = 1/kBT, given by the Boltzmann distribution
peq

i = eβ(Feq−Ei) with equilibrium free energy Feq = −kBT ln ∑i e−βEi . To guarantee this, we impose
detailed balance on the transition rates [19],

Wij p
eq
j = Wji p

eq
i . (3)

In equilibrium, each transition is counter-balanced by its reverse. Our goal is then to maintain
the system in a predetermined target nonequilibrium steady state p∗ 6= peq, and to characterize
the minimum dissipation necessary.
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3. Minimum Dissipation to Suppress Fluctuations

We are interested in pushing and holding our system into a statistical state distinct from
the equilibrium Boltzmann distribution. One could imagine a variety of schemes to accomplish
this goal. Perhaps the simplest, is if we have complete control to vary the system’s energy function
{Ei}. We could then hold the system in the statistical state p∗ by shifting all the energy levels to
E∗i = −kBT ln p∗i , thereby making the target state the new equilibrium state: p∗i = e−βE∗ . After an initial
transient relaxation, the system would then remain in p∗ indefinitely as it is in equilibrium. While there
is a one time energetic cost to vary the energy levels equal to the free energy difference [20], the system
can be held in p∗ for free. Implementing such a protocol, however, generically requires very fine
control over all the individual energies, which often is prohibitive [20]. As a result, there are a number
of situations where this is not possible or not desirable. For example, nature does not utilize this control
mechanism; in cells, where the free energies of molecules are fixed, noise reduction is implemented by
coupling together various driven chemical reactions that constantly burn energy [2,21,22]. Whereas
fluctuations in quantum mesoscopic devices are often suppressed by coupling an auxiliary device that
continually and coherently extracts noise through feedback [4,23–25].

Motivated by this observation, we analyze control mechanisms where we cannot alter the internal
energies {Ei}. Instead, the statistical state of our system is manipulated by introducing additional
pathways. In particular, the scenarios we address, depicted in Figure 1, are: (i) Edge control—additional
driven transitions (or edges) are added with transition rates {Mlk}, which model the coupling of
additional thermodynamic reservoirs; (ii) Node control—additional configurations are incorporated
and coupled to the original network through driven transitions with rates {Mlk}, allowing for ancillary
intermediate configurations, such as in dissipative catalysis; (iii) Auxiliary control—an entirely
new system is coupled to the controlled system, as in feedback control; and finally (iv) Chemical
control—where new chemical reactions are included. Though ostensibly a special case of edge control,
it adds new complications due to the possibility of breaking conservation laws. The addition of such
controllers alters the system’s dynamics leading to a modified Master Equation (cf. (1))

∂t pi(t) = ∑
j 6=i

Wij pj(t)−Wji pi(t) + ∑
j 6=i

Mij pj(t)−Mji pi(t)

= ∑
j 6=i

Jij(p) + JM
ij (p). (4)

Yet no matter which control mechanism is employed, we assume the net effect is to push our
target system into the nonequilibrium steady state p∗. While designing such control is generically
a challenging problem, we take it as a given and instead focus on the minimum cost.

Our only assumption is that the additional control transition rates satisfy a local detailed
balance relation connecting them to the entropy flow into the thermodynamic reservoir that mediates
the transition [26,27]:

ln
Mkl
Mlk

= ∆se
kl . (5)

For example, if we implement control by coupling a thermal reservoir at a different inverse temperature
β′, then we require ln(Mkl/Mlk) = β′(El − Ek), which is proportional to the heat flow into the
environment.

The local detailed balance relation implies that our super-system, composed of the system of
interest and the controller, with rates {Wκ

ij} = {Wij, Mij}, where κ specifies an uncontrolled or
controlled transition, satisfies the second law of thermodynamics: Namely, the (irreversible) entropy
production is positive

Ṡi = kB ∑
i>j,κ

Jκ
ij(p) ln

Wκ
ij pj

Wκ
ji pi
≥ 0, (6)
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which is typically split into the derivative of the Shannon entropy

∂tS = −kB∂t ∑
i

pi ln pi = kB ∑
i>j,κ

Jκ
ij(p) ln

pj

pi
, (7)

and the entropy flow

Ṡe = kB ∑
i>j,α

Jκ
ij(p) ln

Wκ
ij

Wκ
ji

. (8)

Our goal will be to bound the entropy production (or dissipation) over all controls that fix the steady
state distribution to be p∗. Due to the local detailed balance relations (3) and (5), we can always connect
the dissipation to the underlying energetics. Thus, our bound on the entropy production can always
be reframed as a minimum energetic cost.

3.1. Edge Control

We begin our investigation with the edge control scheme, where we add a collection of additional
edges to the graph, corresponding to new transitions mediated by additional thermal or chemical
reservoirs. This analysis was originally carried out in [17]. We briefly review it here, as this control
scheme is the simplest and all the following developments will build on it.

In this scenario the super-system produces entropy in the controlled steady state p∗ at a rate

Ṡi = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

+ kB ∑
k>l

JM
kl (p∗) ln

Mkl p∗l
Mlk p∗k

. (9)

We now wish to bound this sum solely in terms of properties of the system’s environment as codified
by the {Wij} and the target distribution p∗.

To this end, we observe that not only is the total entropy production positive, but link by
link the entropy production is positive, Jkl ln(Mkl pl/Mlk pk) ≥ 0 [12], which follows readily from
the inequality (x− y) ln(x/y) ≥ 0. Thus, each control edge only contributes additional dissipation,
implying that the only unavoidable dissipation occurs along the system’s original links:

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

≥ 0. (10)

No matter how control is implemented, the system will inevitable make jumps along the original links,
and those will on average dissipate free energy into the environment when the system is held in the
target state p∗.

We now offer some physical insight into the meaning of (10). To this end, we recognize that Ṡmin

is the entropy production rate of the equilibrium dynamics when the statistical state is the target state
p∗. In other words, it represents the instantaneous entropy production we would observe if we turned
off the control and allowed p∗ to begin to relax to equilibrium. An enlightening reformulation of this
observation is offered by recalling the intimate connection between the time derivative of the relative
entropy, D( f ||g) = ∑i fi ln( fi/gi) [28], and the entropy production rate:

− kB∂tD(p(t)||peq) = ∑
i>j

Jij(p) ln
Wij pj

Wji pi
, (11)

which is a direct consequence of detailed balance (3). As such, we immediately recognize that
the minimum dissipation (10) can be equivalently formulated as

Ṡi ≥ Ṡmin = −kB∂
eq
t D(p∗||peq), (12)



Entropy 2017, 19, 333 5 of 10

where the derivative ∂
eq
t should be understood to operate on p∗ as if it were evolving under

the uncontrolled equilibrium dynamics. As the relative entropy is an information-theoretic measure of
distinguishability [28], Equation (12) quantifies precisely the intuitive fact that it costs more to control
a system the farther it is from equilibrium.

We note that this analysis immediately offers the condition under which we saturate the minimum.
As our bound originates in setting aside the extraneous entropy production due to the control
transitions, we immediately find as a consequence that this additional entropy production is zero
when the control transitions operate thermodynamically reversibly. This requires them to operate
much faster than the system dynamics, so that at any instant the system is locally detailed balanced
with respect to the control transitions on a link-by-link basis. In other words, the optimal transition
rates must verify

M∗kl p∗l = M∗lk p∗k . (13)

Indeed, this implies the optimal dissipation on each driven link (cf. (5)) should be

∆s∗kl = ln
M∗kl
M∗lk

= ln
p∗k
p∗l

. (14)

3.2. Node Control

More than a fundamental result, the preceding analysis outlines an approach for characterizing
the minimum dissipation to hold a system out of equilibrium. We now carry out this analysis again in
a new scenario, but allow the addition of C extra nodes in the network and edges connecting them
(Figure 1).

When we add additional nodes, the system plus controller will have α = 1, . . . , N + C
configurations, with a steady-state distribution ρss

α over the super-system. Now, in this case control
will be successful when in the resulting steady state the relative likelihood of the N original states
are in the target distribution p∗i = ρss

i /P , where P = ∑N
i=1 ρss

i . Unfortunately, this is not sufficient to
fix the dissipation rate on the original set of links, as the currents are left undetermined. Indeed, it is
possible to have the subset of N system nodes in the target distribution p∗, but have P small; leading to
small currents on the uncontrolled links Jij(ρ

ss) = P Jij(p∗) and negligible dissipation (cf. (6)). Thus to
arrive at a sensible bound we must also fix the probability currents Jij(ρ

ss) = P Jij(p∗) on the original
uncontrolled links, or equivalently P , the total probability to be in the original configurations. In effect,
we are maintaining the function of the system, as the currents represent different possible tasks for
the system, e.g., they are the rate of production of a molecule or the rate at which heat flux is converted
into useful work.

With this setup, the minimum entropy production rate is again given by the entropy production
on the original undriven links in the global steady state

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(ρ
ss) ln

Wijρ
ss
j

Wjiρ
ss
i

. (15)

To make this an expression that only depends on p∗ and P , we substitute ρss
i = p∗i P to find

Ṡmin = kBP∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

= −kBP∂
eq
t D(p∗||peq). (16)

Again, the minimum dissipation is dictated by how different the target state is from equilibrium,
but here weighted by the total probability P , which fixes the system’s currents. Similarly, optimality
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is reached when the additional edges that connect the control nodes are very fast, minimizing their
contribution to the entropy production.

3.3. Auxiliary Control

Another scheme for control is the addition of an entirely new system, which we call the auxiliary.
This scheme was original analyzed in [18] for quantum mesoscopic devices modeled by a Markovian
quantum Master equation. In an effort to unify various results, we recapitulate this argument here,
translated into classical language.

We now amend our state space with the addition of an auxiliary control system with states
α = 1, . . . , C, so that each configuration of the super-system is labeled by the pair (i, α). Transition
rates of the original system are assumed unaltered, but the new transitions between auxiliary states
{Mi

αγ}must depend on the system state in order to implement the feedback control. Such a structure
is called bipartite [10,29–31], and is captured in the graph structure by the absence of diagonal links
where the system and auxiliary transition simultaneously (Figure 1). Here, control is successful when
the steady-state distribution ρss

iα has a marginal distribution on the system that is the target distribution
∑C

α=1 ρss
iα = p∗i .

Again we can bound the total entropy production in the system plus auxiliary with the entropy
production on just the system links

Ṡi ≥ kB ∑
(i,α)>(j,γ)

Jij(ρ
ss) ln

Wijρ
ss
jγ

Wjiρ
ss
iα

. (17)

At this point the lower bound still depends on the full distribution ρss over the entire super-system.
However, if we coarse-grain over the auxiliary, we can use the monotonicity of the relative entropy
under coarse-graining [28], to weaken the bound to

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

= −kB∂
eq
t D(p∗||peq). (18)

This result was originally derived in the context of quantum mesoscopoic devices [18]. Here we have
reframed it in classical language.

3.4. Controlling Chemical Reaction Networks

As a final scenario, we turn to the control of a chemical reaction network. This scenario adds
an additional complication: the incorporation of additional control reactions can break an underlying
conservation law of the equilibrium dynamics [32,33]. For example, adding a chemostat that exchanges
matter breaks the conservation of particle number or mass. This observation requires a slight
modification of (12).

To set the stage, consider a chemical reaction network with configurations specified by the vector
of chemical species number X = {X1, . . . , XS}. Transitions then correspond to chemical reactions
that change the value of X subject to system-specific constraints; an illustrative example of which is
pictured in Figure 2. For simplicity, we take the only constraint to be particle number N = ∑S

i=1 Xi.
In which case, the equilibrium steady state is a Poisson distribution constrained to the manifold of fixed

particle number, peq
N (X) = ∏i

X̄
Xi
i

Xi !
e−X̄i δ(∑j Xj −N ) [19]; and detailed balance respects the constraints

as well:
WX′X peq

N (X) = WXX′ p
eq
N (X

′). (19)
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Figure 2. Illustration of chemical control: Two species X1 and X2 interconvert through a single
chemical reaction X1 ⇀↽ X2 that conserves particle number, depicted as solid black lines. As a result,
the dynamical evolution of this chemical reaction network is restricted to a single diagonal subspace
of the network of states. Control can be implemented by chemostating one of the species, say X1,
by allowing X1 molecules to be added and subtracted from the reaction volume through the reaction
X1 ⇀↽ φ, depicted as red dashed lines. As this reaction breaks the particle number conservation law,
it extends the possible configurations the system can dynamically explore.

Now, for control we add new reactions that maintain the system in a fixed target distribution
p∗(X) over chemical space, which may not respect our particle number constraint, i.e., it may have
support on configurations X that have different numbers of total particle number (cf. Figure 2).
To make this explicit, we split the target distribution p∗(X) = p∗N (X)PN into two controlloable pieces:
the conditional probability given the total particle number, p∗N (X) and the probability to have N
particles, PN . With this splitting, the minimum dissipation to maintain p∗ again is only due to
the entropy produced in the original reactions

Ṡmin = kB ∑
X′>X

JX′X(p∗) ln
WX′X p∗(X)
WXX′ p∗(X′)

= kB ∑
N
PN ∑

X′>X
JX′X(p∗N ) ln

WX′X p∗N (X)
WXX′ p∗N (X

′)
, (20)

An information-theoretic interpretation is provided by recalling that the equilibrium transitions WX′X
conserve particle number, to find

Ṡmin = −kB ∑
N
PN ∂

eq
t D(p∗N ||p

eq
N ). (21)

In a chemical system, the minimum dissipation depends only on how different the target distribution
is from the equilibrium distribution on the conserved sectors, whereas shifting only the number
distribution PN can in principle be accomplished for free. This conclusion should remain true when
there are additional conservation laws as well. Note that when the target distribution conserves
particle number, PN = 1 and we recover (12).

4. Discussion

We investigated the minimum entropy production or free energy dissipation to maintain a system
in a target nonequilibrium distribution using ancillary control. We found that in a variety of scenarios
this minimum cost can be formulated using the information-theoretic relative entropy as a measure of
how distinguishable the target nonequilibrium state is from equilibrium. Our analysis further revealed
that the minimum is reached when the driven control transitions operated reversibly.



Entropy 2017, 19, 333 8 of 10

As in previous analyses of nonequilibrium thermodynamics, the relative entropy [34–39] appeared
as a key tool in characterizing dissipation. In these previous works, however, the relative entropy
compared the true evolution of the system to the underlying stationary state. By contrast, here we
find that when using external control the cost is characterized by the time-variation of the relative
entropy under a fictitious uncontrolled equilibrium dynamics, evaluated against the unperturbed
equilibrium state.

Looking ahead, we note that while we had in mind throughout the paper autonomous control,
nonautonomous control through reversible hidden pumps offer an intriguing alternative to saturate
our energetic bound [40]. Additionally, we have focused on the average or typical behavior of the state
of our system, but a number recent predictions, collectively known as thermodynamic uncertainty
relations, relate the dissipation to fluctuations in currents or flows [41–45]. Such work suggests that it
would be intriguing to understand how our lower bound is modified, when one wants to use external
control to constrain not just the typical state, but fluctuations as well. Our hope is that the approach
developed here offers the possibility of quantifying the minimum energetic cost of nonequilibrium
states in other more general scenarios.

Acknowledgments: This work was supported by the Gordon and Betty Moore Foundation through Grant GBMF4343.
Jeremey L. England further acknowledges the Cabot family for their generous support of Massachusetts Institute of
Technology (MIT).

Author Contributions: Jordan M. Horowitz and Jeremey L. England conceived of the project and wrote the paper;
Jordan M. Horowitz carried out the project. Both authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Parrondo, J.M.R.; De Cisneros, B.J. Energetics of Brownian motors: A review. Appl. Phys. A 2002, 75, 179–191.
2. Bialek, W. Biophysics: Searching for Principles; Princeton University Press: Princeton, NJ, USA, 2012.
3. Li, T.; Kheifets, S.; Raizen, M. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys.

2011, 7, 527–530.
4. Tian, L. Ground state cooling of a nanomechanical resonator via parametric linear coupling. Phys. Rev. B

2009, 79, 193407.
5. Palomaki, T.A.; Harlow, J.W.; Teufel, J.D.; Simmonds, R.W.; Lehnert, K.W. Coherent state transfer between

itinerant microwave fields and a mechanical oscillator. Nature 2013, 495, 210–214.
6. Horowitz, J.M.; Sagawa, T.; Parrondo, J.M.R. Imitating chemical motors with optimal information motors.

Phys. Rev. Lett. 2013, 111, 010602.
7. Munakata, T.; Rosinberg, M.L. Entropy production and fluctuation theorems under feedback control:

The molecular refrigerator model revisited. J. Stat. Mech. 2012, 2012, P05010.
8. Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139.
9. Sandberg, H.; Delvenne, J.C.; Newton, N.J.; Mitter, S.K. Maximum work extraction and implementation

costs for nonequilibrium Maxwell’s demons. Phys. Rev. E 2014, 90, 042119.
10. Horowitz, J.M.; Esposito, M. Thermodynamics with continuous information flow. Phys. Rev. X 2014,

4, 031015.
11. Horowitz, J.M.; Sandberg, H. Second-law-like inequalities with information and their interpretations.

New J. Phys. 2014, 15, 125007.
12. Shiraishi, N.; Sagawa, T. Fluctuation theorem for Partially-masked nonequilibrium dynamics. Phys. Rev. E

2015, 91, 012130.
13. Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed.;

John Wiley & Sons, Ltd.: Chichester, UK, 2014.
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