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Abstract: How to analytically deal with the general entanglement dynamics of separate
Jaynes–Cummings nodes with continuous-variable fields is still an open question, and few analytical
approaches can be used to solve their general entanglement dynamics. Entanglement dynamics
between two separate Jaynes–Cummings nodes are examined in this article. Both vacuum state
and coherent state in the initial fields are considered through the numerical and analytical methods.
The gap between two nonidentical qubit-field coupling strengths shifts the revival period and changes
the revival amplitude of two-qubit entanglement. For vacuum-state fields, the maximal entanglement
is fully revived after a gap-dependence period, within which the entanglement nonsmoothly decreases
to zero and partly recovers without exhibiting sudden death phenomenon. For strong coherent-state
fields, the two-qubit entanglement decays exponentially as the evolution time increases, exhibiting
sudden death phenomenon, and the increasing gap accelerates the revival period and amplitude
decay of the entanglement, where the numerical and analytical results have an excellent coincidence.

Keywords: coherent state; Jaynes–Cummings nodes; quantum entanglement; nonidentical qubit-field
coupling; concurrence; sudden death

1. Introduction

Generation and preservation of the quantum entanglement between the qubit and field have
played an important role for both fundamental quantum theories and experiments [1–37], and
they are still a challenge for real applications [38–48], such as quantum key distribution and
teleportation. In theory, it is feasible to generate and preserve quantum entanglement based on
the well-known Jaynes–Cummings model [49–56]. There have some physical systems dealing with
quantum correlation and entanglement through autocorrelation function recently [57–60], such as
semiconductor microcavities [59] and optomechanics [60].

However, since there is not a general measure for multi-body quantum systems so far [61,62],
only two-particle entanglement is definitely quantified and the entanglement dynamics becomes hard
to analytically handle as the dimension of qubit-field systems increases. Previous study [49] has
shown that the entanglement sudden death and rebirth appear in two separate nodes and each node is
analytically described by the Jaynes–Cummings model Hamiltonian, where two initial fields are both
in the vacuum state, which are very difficult to generate and preserve in real experiments.

Coherent-state field, as a kind of continuous-variable physical system, contains infinite eigenstate
spectrums and can be efficiently generated by a classical monochromatic current [63], which is an easily
feasible experiment resource and most resembles a classical electromagnetic field [64,65], resisting
for decoherence induced by the environment. These excellent features have made coherent-state
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field be widely used in many fields of quantum information processing recently, such as quantum
transport [66,67] and storage [68–70]. However, coherent-state field is hard to obtain the analytical
time-dependent dynamics when it is coupled to the qubit due to its infinite-dimensional Hilbert space.
It has been theoretically reported [69] that one-ebit entanglement reciprocation between two qubits
and two coherent-state fields is feasible based on numerical results. Although the time-dependent
eigenfunction of separate Jaynes–Cummings nodes with coherent-state fields is known by numerical
diagonalization in a truncated Hilbert space, its analytical solutions is quite necessary for clearly
capturing and experimentally controlling the fundamental entanglement physics.

As far as we know, how to analytically deal with the general entanglement dynamics of separate
Jaynes–Cummings nodes with continuous-variable fields is still an open question, and few analytical
approaches can be directly used to solve their general entanglement dynamics. Recent study [71,72]
uses a saddle point method to show that the two-qubit entanglement dynamics of two identical
Jaynes–Cummings nodes can be analytically predicted by an exponentially decaying formula when
the amplitudes of the coherent-state fields are both large enough. However, due to analytical
diagonalization obstacle in the asymmetric infinite-dimension Hilbert space, the entanglement
dynamics of two separate Jaynes–Cummings nodes with nonidentical qubit-field coupling constants
have not been extensively studied [46] but is common in real experiments.

Based on the previous study [72], we focus here on the analytic entanglement dynamics between
two independent, separate standard Jaynes–Cummings models, where the node is the qubit inside
the cavity field and the qubit-field coupling constants for the local subsystem are different. Both
vacuum-state and coherent-state fields are considered through the numerical and analytical methods.
By using the saddle point method for coherent-state fields, the numerical and analytical results have
an excellent coincidence. Our method is suitable for physical systems with ignored dissipation or
without dissipation, such as the cavity losses and atomic spontaneous emissions. We find that the
gap between two qubit-field coupling strengths shifts the revival period and changes the revival
amplitude of two-qubit entanglement. For vacuum-state fields, the maximal entanglement is fully
revival after a gap-dependence period, within which the entanglement nonsmoothly decreases to zero
and partly recovers without exhibiting sudden death phenomenon. For strong coherent-state fields,
the two-qubit entanglement decays exponentially as the evolution time increases, exhibiting sudden
death phenomenon, and the increasing gap accelerates the revival period and amplitude decay of
the entanglement. Our result demonstrates that when the average photon number is large enough,
the decay exponent has a quadratic dependence on the qubit-field coupling strengths, and the non-full
revival period is linearly shifted by the cooperative qubit-field coupling strength.

2. Separate Jaynes–Cummings Nodes

Two separate Jaynes–Cummings nodes with nonidentical qubit-field coupling strengths are
described by the Hamiltonian (h̄ = 1)

H =
ω0

2
σA

z + (GAσA
+ a + G∗AσA

− a†) + ωa†a +
ω0

2
σB

z + (GBσB
+b + G∗BσB

−b†) + ωb†b, (1)

where ω0 is the transition frequency between the high level |ex〉 and the low level |gx〉 of the qubit
x (x = A, B). σx

z and σx
± are the general Pauli matrices of the qubit x. a† (a) and b† (b) are the creation

(annihilation) operators for two single-mode fields with angular frequency ω, respectively. Gx is the
coupling strength between the qubit x and its localized field, and G∗x is the conjugate complex of Gx.
The assumption GA 6= GB, referred to as two nonidentical qubit-field coupling constants, represents
a clear distinction from two standard Jaynes–Cummings nodes with GA = GB [72], which has been
predicted to exhibit the exponential decay of two-qubit entanglement and its revival timing and
duration by an approximately analytic formula when the fields are nearly classical. For simplicity,
we further assume that there is not any interaction between two qubits or two fields and the qubit
resonantly couples to its localized field, i.e., ω0 = ω, as illustrated in Figure 1.
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Since the dynamics of single Jaynes–Cummings node has been experimentally realized for
different quantum systems [2], such as cavity quantum electrodynamics (QED) and circuit QED
systems, the physical realization of two Jaynes–Cummings nodes with different qubit-field coupling
strengths is certainly feasible when the parameters GA and GB are not perfectly identical, which is
more common than that of two standard Jaynes–Cummings nodes with identical qubit-field coupling
strengths in realistic experiments. Considering the reality in the experiment, it is not necessary to
require that two sites are identical and here we focus on the elementary influences caused by two
nonidentical qubit-field coupling strengths for two-qubit entanglement.
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Figure 1. Sketch illustrating two separate Jaynes–Cummings nodes. Qubits A and B are independently
placed in Nodes 1 and 2, resonantly coupling to the fields a and b, respectively. There is not any
interaction between A and B or between a and b.

To analytically explain two-qubit entanglement for a little excited and a highly excited (nearly
classical) field modes, we start from a simple case where the field modes are initially in their vacuum
states and the two qubits are in the maximally entangled states. Since there is not any interaction
between two nodes, the time-dependent evolution of the whole Jaynes–Cummings Hamiltonian can
be analytically wrote out. Eigenvector evolutions of each node are the well-known Rabi oscillations [3],
described by

|ψe,n(t)〉 = e−iHt|ex, ny〉

= cos(Gxt
√

n + 1)|ex, ny〉 − i sin(Gxt
√

n + 1)|gx, n + 1y〉 (2)

and

|ψg,n(t)〉 = e−iHt|gx, ny〉

= cos(Gxt
√

n)|gx, ny〉 − i sin(Gxt
√

n)|ex, n− 1y〉, (3)

where the field mode’s photon state is denoted as the Fock state |ny〉 (n is a positive integer) in the
field mode y (y = a, b) and t is the evolution time.

Our target is to analytically measure the entanglement between two nonlocal qubits
obtained from the time-dependent four-body state, so we adopt the Wootters concurrence
C [73] as the entanglement measure for two-particle states expressed in the standard qubit basis
Γ = {|eAeB〉, |eAgB〉, |gAeB〉, |gAgB〉}, which is defined as

C = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4
}

, (4)

where λ1, λ2, λ3, and λ4 are the eigenvalues arranged in decreasing order of the following matrix:

ξ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), (5)
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where ρ is the two-qubit reduced density matrix and σy is the Pauli matrix. C = 0 is for two unentangled
qubits and C = 1 stands for the maximally entangled state for two qubits.

2.1. Vacuum-State Field

When the field modes are initially in their vacuum states and the two qubits are initially in the
maximally entangled states, i.e.,

|Ψ(0)〉 = 1√
2
(|eAgB〉+ |gAeB〉)⊗ |0a, 0b〉, (6)

the evolution of the whole qubit-field system is

|Ψ(t)〉 =
e−iHt
√

2
(|eAgB〉+ |gAeB〉)⊗ |0a, 0b〉

=
1√
2

[
cos(GAt)|eA, gB; 0a, 0b〉 − i sin(GAt)|gA, gB; 1a, 0b〉

+ cos(GBt)|gA, eB; 0a, 0b〉 − i sin(GBt)|gA, gB; 0a, 1b〉
]
. (7)

By tracing out two field modes within Γ, the resulting two-qubit mixed state has the following X
form [74]

ρ = Tra,b(|Ψ(t)〉〈Ψ(t)|) =


0 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

 , (8)

where ρ22 = 1
2 cos2(GAt), ρ23 = ρ32 = 1

2 cos(GAt) cos(GBt), ρ33 = 1
2 cos2(GBt), and ρ44 =

1
2 cos2(GAt) + 1

2 sin2(GBt). The concurrence of this mixed state is analytically found to be

C = 2 max{0, |ρ23|,−
√

ρ22ρ33}

=
1
2

∣∣∣∣ cos
[
(GA + GB)t

]
+ cos

[
(GA − GB)t

]∣∣∣∣. (9)

When GA 6= GB, the analytical period of C in Equation (9) is

Tc =
π

|G2
A − G2

B|
LCM

(
|GA + GB|, |GA −GB|

)
, (10)

where the symbol LCM(· · · ) represents the least common multiple among the numbers within its
bracket. While when GA = GB, the period of C is π/GB. Figure 2 plots the time-dependent evolution
of two-qubit concurrence for different values of two qubit-field coupling strengths. From Figure 2, we
see that the maximum of C reaches 1, meaning that the maximal entanglement fully recovers after a
evolution period Tc even when the qubit-field coupling strengths are different. Between the oscillation
periods, the entanglement nonsmoothly decreases to zero and partly recovers without staying zero for
a finite interval of time, i.e., without exhibiting sudden death [49]. This concurrence shows that when
the qubit-field coupling strengths are nonidentical, i.e., GA 6= GB, its oscillation amplitude and period
nonlinearly depend on the cooperative interaction terms GA + GB and GA−GB, which is very different
from two identical standard Jaynes–Cummings nodes where the concurrence exhibits a standard Rabi
oscillation having a fixed period without depending on the qubit-field coupling strength [49].
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Figure 2. Time-dependent evolution of C for: (a) GA = 0.9GB; (b) GA = GB; and (c) GA = 1.1GB.
The corresponding periods are 10π/GB, π/GB, and 10π/GB, respectively.

2.2. Coherent-State Field

When the field modes are initially in the identical coherent states and the two qubits are initially
in the maximally entangled states, i.e.,

|Ψ(0)〉 = 1√
2
(|eAgB〉+ |gAeB〉)⊗ |αa, αb〉, (11)

where the coherent states are expanded by the Fock states

|αy〉 =
∞

∑
n=0

An|ny〉 =
∞

∑
n=0

e−|α|
2/2αn
√

n!
|ny〉. (12)

Therefore, the evolution dynamics can be expressed as

|Ψ(t)〉 =
e−iHt
√

2
(|eAgB〉+ |gAeB〉)⊗ |αa, αb〉

=
1√
2

∞

∑
n=0

∞

∑
m=0

An AmKnm, (13)

where

Knm = −iCA
n+1SB

m|eA, eB; na, m− 1b〉+ CA
n+1CB

m|eA, gB; na, mb〉 − SA
n+1SB

m|gA, eB; n + 1a, m− 1b〉

−iSA
n+1CB

m|gA, gB; n + 1a, mb〉 − iSA
n CB

m+1|eA, eB; n− 1a, mb〉 − SA
n SB

m+1|eA, gB; n− 1a, m + 1b〉

+CA
n CB

m+1|gA, eB; na, mb〉 − iCA
n SB

m+1|gA, gB; na, m + 1b〉, (14)

in which Cx
n = cos(Gxt

√
n) and Sx

n = sin(Gxt
√

n). Since the qubit-field coupling strengths are
nonidentical in the infinite-dimension Hilbert space, the analytical two-qubit entanglement C is hard
to obtain under a general condition. However, it is highly desirable to get analytical results for
understanding the entanglement’s fundamental physics. In the following, we use the analytical
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formula of saddle point method [72] to tackle the entanglement dynamics of Equation (13) when the
coherent states are both highly excited (nearly classical).

When the average photon number n̄ >> 1, it is reasonable to assume that photon number in the
coherent state is a Poisson distribution that tightly centers around n̄, and photon number without
centering around n̄ can be ignored. By approximately replacing |αy〉 with |n̄y〉 and tracing out two
field modes for Equation (13), we obtain the approximate X-form reduced density matrix of two qubits
within Γ

ρ ≈


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
0 0 0 ρ44

 , (15)

where ρ∗23 is the conjugate complex of ρ23. The concurrence of this ρ is

C = 2 max{0, |ρ23| −
√

ρ11ρ44}. (16)

Based on the time-dependent eigenstate evolutions in Equations (2) and (3) of each node, it is workable
to analytically figure out the matrix elements ρ23, ρ11, and ρ44 in Equation (16) by tracing out two field
modes ρ = Tra,b(|Ψ(t)〉〈Ψ(t)|). The analytical expressions of doubly infinite summations for ρ23, ρ11,
and ρ44 are expressed as

ρ23 =
1
2

∞

∑
n=0

∞

∑
m=0

(
A2

n A2
mCA

n+1CA
n CB

m+1CB
m + An An−2 Am Am+2SA

n SA
n−1SB

m+1SB
m+2

−An An−1 Am Am+1SA
n CA

n+1SB
m+1CB

m − An An−1 Am Am+1SA
n CA

n−1SB
m+1CB

m+2
)
, (17)

ρ11 =
1
2

∞

∑
n=0

∞

∑
m=0

[(
An AmCA

n+1SB
m
)2

+
(

An AmSA
n CB

m+1
)2

+ An An+1 Am Am−1CA
n+1SA

n+1SB
mCB

m

+An An−1 Am Am+1SA
n CA

n CB
m+1SB

m+1

]
, (18)

and

ρ44 =
1
2

∞

∑
n=0

∞

∑
m=0

[(
An AmSA

n+1CB
m
)2

+
(

An AmCA
n SB

m+1
)2

+ An An+1 Am Am−1SA
n+1CA

n+1SB
mCB

m

+An An−1 Am Am+1SA
n CA

n SB
m+1CB

m+1

]
. (19)

These summation expressions cannot be analytically completed for the general average photon number.
However, when n̄ ≈ α2

y >> 100, it is feasible to introduce an error-deviation order 1/n̄ centering
around the Poisson peak n ≈ m ≈ n̄ and the terms An An±1 Am Am±1 can be approximated with A2

n A2
m.

Therefore, we obtain the following approximate expressions

ρ23 ' 1
2

[ ∞

∑
n=0

(
A2

nCA
n CA

n+1
)
×

∞

∑
n=0

(
A2

nCB
n CB

n+1
)
+

∞

∑
n=0

(
A2

nSA
n SA

n+1
)
×

∞

∑
n=0

(
A2

nSB
n SB

n+1
)]

−
∞

∑
n=0

∞

∑
m=0

(
A2

n A2
mSA

n CA
n+1CB

mSB
m+1

)
, (20)

ρ11 ' 1
2

[ ∞

∑
n=0

(
AnCA

n
)2 ×

∞

∑
n=0

(
AnSB

n
)2

+
∞

∑
n=0

(
AnSA

n
)2 ×

∞

∑
n=0

(
AnCB

n
)2
]
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+
∞

∑
n=0

(
A2

nSA
n CA

n
)
×

∞

∑
n=0

(
A2

nSB
n CB

n
)
, (21)

and

ρ44 ' 1
2

[ ∞

∑
n=0

(
AnSA

n
)2 ×

∞

∑
n=0

(
AnCB

n
)2

+
∞

∑
n=0

(
AnCA

n
)2 ×

∞

∑
n=0

(
AnSB

n
)2
]

+
∞

∑
n=0

(
A2

nSA
n CA

n
)
×

∞

∑
n=0

(
A2

nSB
n CB

n
)
. (22)

It is easy to find that the approximate expressions satisfy ρ11 ' ρ44 under the condition of large average
photon numbers. Based on the two-times angle cosine formula

Cx
nCx

n+1 =
1
2
{

cos[Gxt(
√

n +
√

n + 1)] + cos[Gxt(
√

n + 1−
√

n)]
}

, (23)

and the second-order Taylor expansion of large n̄

√
n + 1 '

√
n +

1
2
√

n
, (24)

the expression Cx
nCx

n+1 can be compressed to

Cx
nCx

n+1 '
1
2

[
cos

(
Gxt
2
√

n

)
+ cos

(
2Gxt
√

n
)]

. (25)

Analogously, the other useful approximations are

Cx
nCx

n =
1
2
[1 + cos(2Gxt

√
n)], (26)

Sx
nSx

n =
1
2
[1− cos(2Gxt

√
n)], (27)

Sx
nSx

n+1 ' 1
2

[
cos

(
Gxt
2
√

n

)
− cos

(
2Gxt
√

n
)]

, (28)

Sx
nCx

n+1 ' 1
2

[
sin
(
2Gxt
√

n
)
− sin

(
Gxt
2
√

n

)]
, (29)

Sx
n+1Cx

n ' 1
2

[
sin
(
2Gxt
√

n
)
+ sin

(
Gxt
2
√

n

)]
. (30)

With the above approximations, ρ23, ρ11, and ρ44 can be further simplified as

ρ23 ' 1
4
{[

∞

∑
n=0

A2
n cos(2GAt

√
n)][

∞

∑
n=0

A2
n cos(2GBt

√
n)] + [

∞

∑
n=0

A2
n cos(

GAt
2
√

n
)][

∞

∑
n=0

A2
n cos(

GBt
2
√

n
)]

−
∞

∑
n=0

A2
n[sin(2GAt

√
n)− sin(

GAt
2
√

n
)]×

∞

∑
n=0

A2
n[sin(2GBt

√
n)− sin(

GBt
2
√

n
)]}, (31)

and

ρ11 ' ρ44

' 1
4
{1− [

∞

∑
n=0

A2
n cos(2GAt

√
n)][

∞

∑
n=0

A2
n cos(2GBt

√
n)]

+[
∞

∑
n=0

A2
n sin(2GAt

√
n)][

∞

∑
n=0

A2
n sin(2GBt

√
n)]}. (32)
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The above results Equations (31) and (32) lead to

ρ23 −√ρ11ρ44

' 1
4
{[

∞

∑
n=0

A2
n cos(

GAt
2
√

n
)][

∞

∑
n=0

A2
n cos(

GBt
2
√

n
)]− [

∞

∑
n=0

A2
n sin(2GAt

√
n)][

∞

∑
n=0

A2
n sin(

GBt
2
√

n
)]

+2[
∞

∑
n=0

A2
n cos(2GAt

√
n)][

∞

∑
n=0

A2
n cos(2GBt

√
n)]− 2[

∞

∑
n=0

A2
n sin(2GAt

√
n)][

∞

∑
n=0

A2
n sin(2GBt

√
n)]

+[
∞

∑
n=0

A2
n sin(

GAt
2
√

n
)][

∞

∑
n=0

A2
n sin(2GBt

√
n)] + [

∞

∑
n=0

A2
n sin(

GAt
2
√

n
)][

∞

∑
n=0

A2
n sin(

GBt
2
√

n
)]− 1}. (33)

To analytically calculate Equation (33), we need to rewrite the sums into integrals by considering
discrete n as continuations when n̄ is large enough. Based on the integral results demonstrated
in Ref. [72]

∞

∑
n=0

A2
n cos(

Gxt
2
√

n
) '

∫ ∞

0
A2

n cos(
Gxt
2
√

n
)dn

' e
−G2

x t2

32α4 cos(
Gxt
2α

), (34)

∞

∑
n=0

A2
n sin(

Gxt
2
√

n
) '

∫ ∞

0
A2

n sin(
Gxt
2
√

n
)dn

' e
−G2

x t2

32α4 sin(
Gxt
2α

), (35)

∞

∑
n=0

A2
n cos(2Gxt

√
n) '

∫ ∞

0
A2

n cos(2Gxt
√

n)dn

' e−
G2

x t2

2 cos(2αGxt) +
∞

∑
k=1

√
1

πk
e
−(Gx t−2kπα)2

1+π2k2 cos[2α(Gxt− 2kπα)], (36)

∞

∑
n=0

A2
n sin(2Gxt

√
n) '

∫ ∞

0
A2

n sin(2Gxt
√

n)dn

' e−
G2

x t2

2 sin(2αGxt) +
∞

∑
k=1

(−1)k
√

1
πk

e
−(Gx t−2kπα)2

1+π2k2 sin[2α(Gxt− 2kπα)], (37)

we can finally obtain the effective formula

ρ23 −
√

ρ11ρ44 ' 1
4
{e
−(G2

A+G2
B )t2

32α4 cos[
(GA − GB)t

2α
] + 2e

−(G2
A+G2

B )t2

2 cos[2α(GA + GB)t]

+2e
−G2

At2

2

∞

∑
k=1

√
1

kπ
e
−(GBt−2kπα)2

1+k2π2 cos[2αGAt + (−1)k(2αGBt− 4kπα2)]

+2e
−G2

Bt2

2

∞

∑
k=1

√
1

kπ
e
−(GAt−2kπα)2

1+k2π2 cos[2αGBt + (−1)k(2αGAt− 4kπα2)]

+2
∞

∑
k1=1

∞

∑
k2=1

1
π

√
1

k1k2
e
− (GA t−2k1πα)2

(1+k2
1π2)

− (GB t−2k2πα)2

(1+k2
2π2) cos[(−1)k1 (2αGAt− 4k1πα2)

+(−1)k2 (2αGBt− 4k2πα2)]− 1}. (38)

It is necessary to emphasize that only the terms of Gxt = 2kπα, 2k1πα, and 2k2πα with the
corresponding k, k1, and k2 in Equation (38) give a significant contribution to the sums, and the
other terms’ contribution to the sums is proportional to the exponential functions in Equation (38).
Thus, the sums decay exponentially with the difference from k, k1, and k2, which are the main results
for the evolution of two-qubit concurrence. This result demonstrates that, when the average photon
number is large enough, the decay exponent has a quadratic dependence on GA and GB, and the



Entropy 2017, 19, 331 9 of 14

non-full revival period is linearly shifted by the cooperative coupling strength GA ± GB, leading to the
relative revival envelope heights

2

√
1

kπ
+

1
π

√
1

k1k2
− 1− e

−(G2
A+G2

B)t2

32α4

2
. (39)

This concurrence evolution of two Jaynes–Cummings nodes reduces to that of two identical standard
Jaynes–Cummings nodes at both the decay exponent and revival period. In Figure 3, we plot the
long-time system dynamics under the coherent states with the large average photon number for
analytical and numerical calculations. We find that the two-qubit entanglement exhibits sudden death
phenomenon, and its peaks are not fully revived and decrease quadraticly as the gap δ between two
qubit-field coupling strengths enlarges. The two-qubit entanglement decays exponentially as the
evolution time increases. When GA > GB, the revival period is linearly shifted to the “left” side,
i.e., becoming shorter; while when GA < GB, it is linearly shifted to the “right” side, i.e., becoming
longer. Note that the numerical results in Figure 3b are not perfectly predicted by the analytical results
in Figure 3a, and their main difference is the absence of Rabi-type oscillations during the revivals,
i.e., the disappearance of tiny revivals in numerical results, which is not predicted by this analytical
method [72]. Therefore, it is safe to say that the analytical results predict the numerical results for small
gaps between two qubit-field coupling strengths in both the entanglement revival peek and period.
Our result is physically important because the formula reveals analytically the relation between the
entanglement evolution dynamics and two nonidentical qubit-field coupling strengths, which further
clarifies the mechanism of entanglement sudden death and rebirth and provides another effective
direction for entanglement control.

0.90

δ
1.00

1.1080π
60π

40π
GBt

20π
0

1

0.5

0

C

0.90

δ
1.00

1.1080π
60π

40π

GBt

20π
0

0.5

1

0

C

(a)

(b)

Figure 3. Two-qubit concurrence as a function of the evolution time under different ratios δ = GA/GB

with n̄ = 100: (a) analytical results and (b) numerical results, where analytical results are based on the
X-form ρ in Equation (15) and numerical results are based on the original ρ = Tra,b(|Ψ(t)〉〈Ψ(t)|).

To quantitatively show the periodic modulations by the amplitude of coherent states and two
qubit-field coupling strengths, we simulate the evolution dynamics with two other average photon
numbers n̄ = 25 and n̄ = 36 for analytical and numerical results in Figure 4. We see that even when the
average photon number n̄ decreases to 25, the analytical results can predict well the numerical results
under small ratios δ. Figure 5 further shows that, for the same α, peeks of the first revival envelope
PC depend quadraticly on the ratio δ, and their periods TPC linearly decrease as the ratio δ increases,
which mathematically fits
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2αGBt
π

+
28(1− δ)

5
. (40)

This result demonstrates that the bigger gap between two qubit-field coupling strengths becomes,
the smaller and faster entanglement revival will be, meaning that the increasing gap between two
qubit-field coupling strengths accelerates the revival period and amplitude decay of two-qubit
entanglement, which also can be explained from the decaying contribution of ratio factor 1 + δ2 within
the exponents and 1 + δ within the cosine functions of Equation (38). Note that system asymmetry
can be caused not only by the difference of the coupling strengths, but also by the difference of the
amplitudes αx and αy. Based on numerical simulations, it is easy to find that the difference of the
amplitudes αx and αy causes the similar influence on the two-qubit entanglement with that caused by
the difference of the coupling strengths, i.e., the gap between two amplitudes affects both the period
and amplitude of the entanglement revival. However, our method is hard to generalize to analytically
give out the relation formula between this gap and entanglement, and this kind of interesting formula
may be found elsewhere by a more effective method.
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10π

GBt
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0.5

1

0

C
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0.90
1.00

δ
1.10

10π

GBt

0
0

0.5

1
C

0.90
1.00

δ
1.10

12π

GBt

0
0

0.5
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Figure 4. Two-qubit concurrence evolves with time under different ratios δ = GA/GB for analytical
results ((a) n̄ = 25 and (b) n̄ = 36) and numerical results ((c) n̄ = 25 and (d) n̄ = 36).
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Figure 5. Characteristics of the first revival envelope versus the ratio δ for different α: (a) peek PC and
(b) period TPC .

3. Conclusions

In conclusion, we have generalized the method of Ref. [72] to the model of two separate
Jaynes–Cummings nodes, where the qubit-field coupling strength for each node is different. We use both
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the numerical and analytical methods to cases with vacuum-state and coherent-state fields, respectively.
The numerical and analytical results have an excellent coincidence in the case of coherent-state fields
for small gaps between two qubit-field coupling strengths. We find that the gap shifts the revival
period and changes the revival amplitude of two-qubit entanglement. For vacuum-state fields, the
maximal entanglement is fully revived after a gap-dependence period, within which the entanglement
nonsmoothly decreases to zero and partly recovers without exhibiting a sudden death phenomenon.
For strong coherent-state fields, the two-qubit entanglement decays exponentially as the evolution
time increases, exhibiting sudden death phenomenon, and the increasing gap accelerates the revival
period and amplitude decay of the entanglement. Our result finally demonstrates that when the
average photon number is large enough, the decay exponent has a quadratic dependence on two
qubit-field coupling strengths, and the non-full revival period is linearly shifted by the cooperative
qubit-field coupling strength. Potential applications of our result, such as control of entanglement
through changing the system parameters, are feasible in many simple experiments based on the
fundamental Jaynes–Cummings Hamiltonian. In the future, we want to study further the large
frequency detuning case and try to find a possible way to recover the full two-qubit entanglement
under separate continuous-variable fields. Up to now, this model does not consider any dissipation,
such as the cavity losses and atomic spontaneous emissions in extreme ultraviolet (XUV) and
X-rays [75,76], which is an unavoidable decoherence problem and open question for keeping long-time
entanglement in real experiments, and this kind of investigation could be done elsewhere by finding
another effective method in the future.
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