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Abstract: Overfitting is an important problem in machine learning. Several algorithms, such as the
extreme learning machine (ELM), suffer from this issue when facing high-dimensional sparse data,
e.g., in text classification. One common issue is that the extent of overfitting is not well quantified. In
this paper, we propose a quantitative measure of overfitting referred to as the rate of overfitting (RO)
and a novel model, named AdaBELM, to reduce the overfitting. With RO, the overfitting problem can
be quantitatively measured and identified. The newly proposed model can achieve high performance
on multi-class text classification. To evaluate the generalizability of the new model, we designed
experiments based on three datasets, i.e., the 20 Newsgroups, Reuters-21578, and BioMed corpora,
which represent balanced, unbalanced, and real application data, respectively. Experiment results
demonstrate that AdaBELM can reduce overfitting and outperform classical ELM, decision tree,
random forests, and AdaBoost on all three text-classification datasets; for example, it can achieve
62.2% higher accuracy than ELM. Therefore, the proposed model has a good generalizability.

Keywords: machine learning; overfitting; AdaBoost; feedforward neural network; extreme
learning machine

1. Introduction

The majority of text-classification frameworks employ the vector-space model (VSM), which
treats a document as a bag of words and uses plain language words as features [1]. However, this
approach uses many redundant features and has a high-dimensional sparse matrix, which potentially
leads to overfitting in training and low accuracy in testing [2]. It is obvious that if a learning model
excessively pursues the maximization of training accuracy, it can learn a very complex model but fall
into overfitting. In this case, rather than “learning” to generalize from a trend, an overfitting model
may “memorize” non-predictive features of the training data. For example, Srivastava et al., point out
that deep neural networks (DNN) with a large number of parameters are powerful machine learning
models but seriously suffer from overfitting [3]. To solve the overfitting problem and pursue better
classification performance, several ensemble approaches have been proposed, such as BoosTexter and
Bonzaiboost [4,5]. However, the accuracies of these methods are far from being satisfactory and large
networks, like DNN, are slow to use, making it difficult to deal with overfitting by combining many
different large neural nets [3]. A more successful classification model demands that classification
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algorithms can more efficiently resolve overfitting and achieve higher accuracy, especially in the era of
big data.

Recently, the artificial neural network has garnered much attention, especially in relation to
deep learning. Many applications of these deep learning models use feedforward neural network
architectures [6]. Feedforward neural networks with random weights can get good performance when
the output layer is trained by a single-hidden-layer learning rule or a pseudo-inverse technique [7,8].
The extreme learning machine (ELM) is a single-hidden-layer feedforward network (SLFN), which was
proposed by Huang et al. in 2004 [9]. ELM can be considered as a simple framework of random vector
functional link networks (RVFL). RVFL is a randomized version of the functional link neural network,
where the actual values of the weights from the input layer to the hidden layer can be randomly
generated in a suitable domain and kept fixed in the learning stage [10]. However, ELM does not have
direct links between the input layer and the output layer and adopts the Moore-Penrose pseudoinverse
to obtain the output weights. Compared with traditional computational intelligence techniques and
deep learning models, ELM provides a good generalization performance at a faster learning speed
with the least amount of human interference [11]. Therefore, it was applied in related fields shortly
after it was developed [12–16]. However, for text classification with a high-dimensional sparse matrix,
ELM potentially suffers from overfitting because its output weights are solved by the Moore-Penrose
generalized inverse, which applies a least-squares minimization [17]. Recently, this drawback of
ELM has been analyzed in regression, with models such as the ridge-regression-based ELM and delta
test-extreme learning machine (DT-ELM) [17–20]. Rong et al. and Luo et al. have been noted for their
efforts to prune the redundant hidden neurons of ELM for multi-class classification [17,21]. However,
in general, pruning methods are rather inefficient because they are used to address larger network
structures than necessary in most cases [20].

As an ensemble algorithm, AdaBoost is a fast, simple, and easy-to-use program. It has no
parameters to tune (except for the number of iterations) and has been applied to diverse domains
with great success, such as in face detection [22], optical character recognition (OCR) problems [23],
and vehicle classification [24]. More importantly, it is often empirically resistant to overfitting and
achieves excellent performance on both benchmark datasets and real applications [25–27]. Meanwhile,
AdaBoost is equipped with a set of theoretical guarantees. In 2003, Schapire and Freund won the Gödel
Prize, which is the most prestigious award in theoretical computer science, based on their theoretical
contribution [28] to AdaBoost. Attempts to solve the interesting mystery about why boosting methods
do not overfit has generated debates between margin theory and the statistical perspective, which
have continued for the past 20 years [27,29–32]. Recently, Zhou et al. proved sharper bounds and
provided an answer to Breiman’s doubt about the margin theory [26,27].

In this paper, we first analyze the overfitting problem in classification, especially in text mining.
Different from the hidden-neuron pruning strategy, we propose a novel text classification algorithm,
which introduces AdaBoost to reduce overfitting without modifying the framework of ELM. In
addition, to validate the performance of the proposed algorithm, the classical ELM [11], decision
tree [5], random forests (RF) [33,34], oblique random forests (oRF) [35,36], and the AdaBoost [5]
algorithm are compared on balanced, unbalanced, and real-application datasets. There are three main
contributions in our approach: (1) the new AdaBELM model is proposed, which reduces overfitting
of ELM and achieves higher classification accuracy, (2) a novel rate of overfitting (RO) is proposed,
which can be used to analyze overfitting quantitatively, and (3) the proposed algorithm is shown to
have good generalizability against balanced, unbalanced and real datasets.
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The remainder of this paper is organized as follows. A brief analysis of AdaBoost and the extreme
learning machine algorithm is given in Section 2. Section 3 describes the overfitting problem, and
Section 4 proposes the AdaBELM model in detail. Section 5 presents the experimental framework and
results. Finally, Section 6 draws a conclusion from our work.

2. Related Work

2.1. Extreme Learning Machine

The extreme learning machine offers advantages such as fast learning speed, ease of
implementation, and minimal human intervention [13]. Different from the traditional artificial neural
networks trained with slow, gradient-based learning algorithms and deep neural networks with many
parameters that require tuning, ELM can provide good performance at an extremely fast learning
speed [11]. In theory, this algorithm is derived from single-hidden-layer feedforward neural networks
(SLFN), which randomly choose hidden nodes and determine the output weights of SLFN. In other
words, the parameters related to the hidden nodes are randomly assigned but not tuned in training
steps. Therefore, in the procedure of determining network parameters, iteration is not needed and the
time for adjusting parameters evidently decreases. Optimization of the weights in the output layer is
carried out using a Moore–Penrose generalized inverse [37].

After Huang et al. proposed the ELM algorithm, it was applied widely in computational
intelligence and machine learning [11–16]. However, ELM may cause overfitting when it computes
an output for high-dimensional data. In other words, a network that is too large could overfit the
training data, thus producing poor generalization performance on unseen cases. Moreover, a larger
network also leads to a longer prediction-response time and more requirements for memory, as well as
hardware implementation [21].

2.2. AdaBoost

The origin of the AdaBoost algorithm can be traced back to a well-known question proposed by
Kearns and Valiant concerning probably approximately correct (PAC) learning and machine learning.
In 1988, Kearns and Valiant (Turing Award Winners for their work on PAC learning) proposed that a
weak learning algorithm could be “boosted” into an arbitrarily accurate strong learning algorithm [38].
Two years later, Schapire worked out a constructive proof, which was the first boosting algorithm [39].
As an iterative algorithm, it needs no prior knowledge about the accuracy of the hypotheses of the
weak learning algorithm.

The main procedure of AdaBoost is described as follows. Initially, the training samples are all
given the same weight; this set of equal weights is denoted as D1. Second, the distribution of the
weights is denoted at the t-th iteration as Dt, and weak classifiers ht: X→ Y are generated from the
training set and Dt. The error rate of ht can be calculated. Then, the weights of the samples that are
not correctly classified will be increased, and the weights of those that are correctly classified will
be decreased. The new weights of the samples Dt+1 will be adopted in the next iteration. From the
training set and Dt+1, another base learner will be generated. Such a process is repeated for T iterations.
The final model is achieved by weighted majority voting of the T weak learners, where the weights
of the learners are computed during the training process [23,38]. The algorithm is named AdaBoost
because it adaptively adjusts to the errors of the weak hypotheses returned by weak classifiers. The
framework of AdaBoost’s training process is shown in Algorithm 1.
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Algorithm 1. AdaBoost Algorithm.

Input:
Training data set D = {(x1,y1), . . . ,(xm, ym)};
Ensemble size T;
Output:
H(x) = argmax

k
∑T

t=1 β(t) I(h(t)(x) = k)

Procedure:

1. wi
(1) = 1/m, i = 1, . . . ,m %Initialize the weights for samples

2. for t = 1,2, . . . ,T:
3. h(t) = L (D, wi

(t)) %Train a base learner ht with learning algorithm L with weights wi
(t)

4. e(t) = ∑m
i=1 w(t)

i I(h(t)(xi) 6= yi)/∑m
i=1 w(t)

i %Calculate the error of ht

5. β(t) = 1
2 ln( 1−e(t)

e(t) ) %Compute the weight of ht

6. w(t+1)
i = w(t)

i exp(β(t) I(h(t)(xi) 6= yi)), i = 1, ..., m %Update the weights for samples

7. w(t+1)
i = w(t+1)

i /∑m
i=1 w(t+1)

i , i = 1, ..., m %Normalize the weights for samples
8. End for

3. A Quantitative Measurement for Overfitting

Overfitting (i.e., high variance) is an important issue in machine learning, especially for supervised
learning algorithms. To rigorously describe the overfitting problem for classification, we proposed a
quantitative measurement, rate of overfitting, denoted as RO:

RO = − dy
du
· e−

dz
du , (1)

where y and z indicate the testing error and the training error, respectively. Parameter u could be the
training size or iteration time. In this paper, the former is used in our experiments. The sign of RO is
decided by the testing error. When RO is less than 0, it means that with the training set increasing,
the testing error also goes up.And the smaller the value of RO, the worse the overfitting. To keep the
testing error y going down and avoid overfitting, some algorithms may enlarge the training error z
by adding penalty into the objective function. When RO equals to 0, it means that with the training
set increases, testing error does not change any more. When RO is larger than 0, it means the testing
error y is decreasing. If the value of RO remains positive, it means that the model has not fallen into
overfitting. Using this measurement, we can consider the training and testing error simultaneously
and comprehensively.

To clearly explain the overfitting problem, we list the results of ELM, Gini Tree, and Bonzaiboost (a
new and powerful AdaBoost algorithm for text classification [5]), random forests, and oblique random
forests in Tables 1 and 2. The random forests method is similar with the ensemble learning. It is a
combination of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest [34]. Fernández-Delgado
et al. compared 179 classifiers arising from 17 families and determined that the random forests
method achieves the best performance for any dataset [33]. Oblique random forests, as an ensemble
method transforms the data at each node to another space when computing the best split at this
node [35,36]. We use classification and regression tree (CART) as the base classifier, and choose two
kinds of transformation methods for comparison, namely that linear discriminate analysis (LDA)
and the multisurface proximal support vector machine (MPSVM). They are denoted as LDA-RF and
MPSVM-RF in the text below. From Tables 1 and 2, we can see the following two results: (1) When an
ELM training error rate of zero has already been achieved in Table 1, the testing error is still changing.
As the size of the training data set increases, the error rate of the testing rises, from 0.64 against 20% of
the 20 Newsgroups training data (11,314 samples in total) to 0.66 on 40% of the training data. Then,
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after a decrease to 0.50 against 60% of the training data, it increases again to 0.57 and 0.58 for 80%
and 100% of the training data, respectively. (2) In Table 2, the overfitting phenomenon is much easier
to recognize. According to our explanation of the RO, when its value is less than 0, the model falls
into overfitting. With the RO measurement, i.e., Equation (1), we find that the RO values of ELM are
−0.09, −0.37, and −0.06 against 40%, 80%, and 100% of the training data, respectively. Therefore, ELM
exhibits high variance. The Gini Tree also falls into overfitting on 80% of the training data, as indicated
by the −0.03 RO value.

Table 1. Error rate comparison of Gini Tree, ELM, random forests, oblique random forests (MPSVM-RF,
LDA-RF), and Bozaiboost on 20 Newsgroups.

Data Scale
20% 40% 60% 80% 100%

Training Testing Training Testing Training Testing Training Testing Training Testing

Gini Tree 0.00 0.53 0.00 0.47 0.00 0.45 0.00 0.45 0.00 0.43
ELM 0.00 0.64 0.00 0.66 0.00 0.50 0.00 0.57 0.00 0.58

Random Forests 0.00 0.26 0.00 0.24 0.00 0.22 0.00 0.21 0.00 0.21
MPSVM-RF 0.02 0.33 0.02 0.29 0.02 0.27 0.02 0.25 0.02 0.25

LDA-RF 0.02 0.35 0.02 0.29 0.02 0.71 0.02 027 0.02 0.26
Bonzaiboost 0.00 0.41 0.02 0.34 0.05 0.31 0.07 0.28 0.08 0.27

Table 2. RO Comparisons of Gini Tree, ELM, random forests, oblique random forests (MPSVM-RF,
LDA-RF), and Bonzaiboost on 20 Newsgroups; negative ROs are in bold.

Data Scale 40% 60% 80% 100%

Gini Tree 0.28 0.15 −0.03 0.12
ELM −0.09 0.80 −0.37 −0.06

Random Forests 0.13 0.07 0.06 0.02
MPSVM-RF 0.23 0.09 0.06 0.05

LDA-RF 0.24 0.03 0.08 0.05
Bonzaiboost 0.28 0.15 0.12 0.04

Comparing RO with the error rate, we can find that RO is easier to use than the error rate to
assess the overfitting problem. Moreover, the RO value can further describe the level of overfitting
quantitatively. For example, the RO value of ELM is −0.37 on 80% of the training data, which indicates
that its overfitting problem is more serious than on 40% of the training data, with an RO value of −0.09.

To overcome the problem associated with overfitting, Deng et al. proposed a regularized ELM to
relieve the overfitting problem by penalizing the training error [40]. However, to maintain comparable
accuracy, it usually requires a much larger number of hidden neurons and hence a very complicated
network is generated [16,40]. A kernel ELM with better generalizability was also proposed, in which
the single hidden layer does not need to be neuron-like [41]. However, the computational cost and
the required memory needed to calculate the inverse of the regularized square matrix make it a great
challenge to address large-scale data. Luo et al. proposed a sparse Bayesian ELM for multi-classification.
However, since it was originally derived from binary classification, it has to use the pairwise coupling
in the multi-classification extension [17]. When facing many classes (for example, more than 50), its
classification effectiveness and efficiency will go down quickly. Thus, improvement is needed for
conventional ELM to efficiently solve the overfitting problem in text multi-classification.



Entropy 2017, 19, 330 6 of 13

4. AdaBoost ELM Model

Let X be a set of N samples (text in our case) and Y serve as the set of class labels. A training set D
= {(x1, y1), (x2, y2) , . . . , (xm, ym)} is given, where xi ∈ X, yi ∈ Y = {1,2, . . . ,C} (i = 1, . . . ,m) and C is the
number of classes. Standard SLFN with K nodes are mathematically modeled by:

oj(xi) =
K

∑
k=1

hk f (wk, xi) (2)

where wk represents the parameters of the k-th element of the hidden layer, such as weights and biases
of the multilayer perceptron; hk is the weight that connects the k-th hidden element with the output
layer; and f is the activation function of the hidden layer. In matrix notation, Equation (2) can be
expressed as O = Fh, where h is the vector of the output-layer weights, and F is represented as

F =

 f (w1, x1) · · · f (wK, x1)
...

. . .
...

f (w1, xm) · · · f (wK, xm)

 (3)

where K is the number of hidden nodes. ELM uses a random initialization of the parameters of
the hidden layer, and the weights of the output layer in h are calculated using the Moore-Penrose
generalized inverse as follows:

h = F†O, F† = (FT F)−1 FT (4)

where F† is the pseudo-inverse matrix of F, and the superscript T indicates transposition [17,37]. Finally,
the predicted class label of sample xi is:

yi = argmax
j∈{1,...,C}

oj(xi) (5)

and j is the j-th node of the output layer.
In the context of experiments, the generalization error of the ensemble learners continues to

decrease as the training data size increases, even after the training error has reached zero. Therefore, to
reduce the overfitting problem and achieve high performance on multi-class text classification, we
designed a novel model based on AdaBoost, which is called AdaBELM. The flowchart of the AdaBELM
model is shown in Figure 1. It introduces the AdaBoost framework used to boost ELM. A damping
factor λ (0 < λ ≤ 1) is defined to control the ensemble scale. Hence, when 0 < λ < 1, AdaBELM selects
a subset of the training samples for each ELM; thus, when λ = 1, it uses the whole set of training
data. This idea is borrowed from the stochastic gradient-descent algorithm, which is used to solve
large-scale linear prediction problems [42]. For the selection of a training subset, we employ roulette
sampling. Using this method, AdaBELM can handle the big-data problem accordingly.

With the highly efficient base learner ELM, AdaBELM can quickly achieve a good classifier.
Moreover, AdaBoost can continue to decrease the testing error as its training data size increases, even
after the training error has reached zero (see Table 1), which means our AdaBELM model can reduce
the overfitting problem under the AdaBELM framework as shown in Algorithm 2.
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Algorithm 2. AdaBELM Algorithm.

Input:
Training data set D = {(x1,y1), . . . ,(xm, ym)};
Ensemble size T;
Output:
H(x) = argmax

k
∑T

t=1 β(t) I(h(t)(x) = k)

Procedure:

1. wi
(1) = 1/m, i = 1, . . . ,m %Initialize the weights for samples

2. for t = 1, 2, . . . ,T:
3. D′ = Roulette (D, λ), 0 < λ ≤ 1 %Sample a subset from D with Roulette function and damping factor;

D′ contains λm samples
4. h(t) = L (D′, wi

(t)) %Train a base/weak learner ht with base learning algorithm L from

D′ with weights wi
(t)

5. e(t) = ∑m
i=1 w(t)

i I(h(t)(xi) 6= yi||h(t)(xi) = ϕ)/∑m
i=1 w(t)

i %Calculate the error of ht

6. β(t) = 1
2 ln( 1−e(t)

e(t) ) %Compute the weight of ht

7. w(t+1)
i = w(t)

i exp(β(t) I(h(t)(xi) 6= yi||h(t)(xi) = ϕ)) %Update the weights for samples

8. w(t+1)
i = w(t+1)

i /∑m
i=1 w(t+1)

i , i = 1, ..., m %Normalize the weights for samples
9. End for

Compared with classical AdaBoost, which uses the whole training set D, AdaBELM uses the
subset D′ to train the base classifier with a sampling strategy (see step 3 in Algorithm 2). Some of the
training data that have not been sampled will be calculated in step 5 in the diagram. Consequently,
when updating the weights for samples (see step 7 in Algorithm 2), the unsampled and error data are
going to be assigned higher weights in the next round of learning.
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5. Experiments and Discussion

To evaluate the performance of the proposed model, AdaBELM, three datasets and classical
algorithms, including Gini Tree (C4.5), random forests [33], oblique random forests [35,36], Bonzaiboost
(AdaBoost.MH) [5], and extreme learning machine [11], were employed for comparison. Hereinto,
random forests, oblique random forests, Bonzaiboost, and AdaBELM are ensemble models, which
employ CART, CART, Gini Tree, and ELM as base learners, respectively.

5.1. Datasets

We selected three benchmark text data sets, namely 20 Newsgroups, Reuters-21578, and BioMed.
The first has a uniform distribution and the second has an unbalanced distribution. The third dataset,
the BioMed corpora, is a collection of BioMed scientific publications. BioMed consists of a full text of
scientific papers, while Reuters and 20 Newsgroups contain only short documents. The details of these
data are as follows.

• 20 Newsgroups is a widely used benchmark dataset. It was first collected by Ken Lang and
partitioned evenly in 20 different newsgroups [43]; some of the classes are very closely related
to one another (e.g., comp.sys.ibm.pc.hardware and comp.sys.mac.hardware) and others are
highly unrelated (e.g., misc.forsale and soc.religion.christian). There are three versions, i.e.,
“20news-19997,” “20news-bydate”, and “20news-18828”; however, we used the “20news-bydate”
version. It is recommended by the data provider since the label information has been removed,
and the training and testing sets are separated in time, which makes it more realistic.

• Reuters-21578 (Reuters) is a publicly available benchmark text data set, which has been manually
pre-classified [37]. The original Reuters data consist of 22 files (a total of 21,578 documents) and
contain special tags such as “<TOPICS>” and “<DATE>”, among others. The pre-processing
phase on the dataset cuts the files into single texts and strips the document of the special tags. We
selected the public available ModApte version from http://www.cad.zju.edu.cn/home/dengcai/
Data/TextData.html in our experiment [44]. Compared with 20 Newsgroups, Reuters is more
difficult to classify [45]. Each class has a wider variety of documents, and these classes are
much more unbalanced. For example, the largest category (“earn”) contains 3713 documents,
while some small categories, such as “naphtha”, contains only one document. To determine the
robustness of the unbalanced data sets, we used 65 categories, and the number of documents in
each category ranges from 2 to 3713.

• BioMed corpora is a BioMed central open-access corpora dataset. From the BioMed corpora,
110,369 articles from January 2012 to June 2012 were downloaded. During the pre-processing
phase, small files contain only XML tags (such as <title> and <body>) and those less than 4 KB
were removed. Then, the data was divided into different “topics” based on journal names and
the top 10 topics (each included in from 1966 to 5022 articles) were selected as the experimental
corpora. Stop words and journal-name information were eliminated from the text. Then, each
document is represented by a superset of two-tuples as follows:

D = {d1, d2, · · · , dN} =


{
< f 1

1 , n1
1 >,< f 2

1 , n2
1 >, · · · ,< f M1

1 , nM1

1 >
}

, · · · ,{
< f 1

N , n1
N >,< f 2

N , n2
N >, · · · ,< f MN

N , nMN

N >
} , (6)

where N is the number of documents in the data set; Mj is the number of term features (unique
words or phrases) in the j-th document; di = {<fi1, ni

1>, <fi2, ni
2>, . . . , <fiMi, ni

Mi>} refers
to the i-th document, and fik and ni

k represent the k-th term in the i-th document and its
frequency, respectively.

From Table 3, we can see the following: (1) The sparsity rates of all three datasets are high (>98%),
which indicates that all of them will lead to a high-dimensional sparse problem. (2) Compared with the

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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discrete uniform distributions of 20 Newsgroups and BioMed, Reuters has a much more non-uniform
distribution of data according to the “max and min class sizes” in Table 3; hence, it is more difficult to
classify than the other two.

Table 3. Basic information of the three datasets.

Data Sets Reuters-21578 20 Newsgroups Biomed

No. text 8293 18,846 1000
No. classes 65 20 10

Max. class size 3713 600 100
Min. class size 2 377 100
Avg. class size 127.58 942.30 100

Number of features 18,933 61,188 69,601
Sparsity rate (“0”/all) 99.77% 99.73% 98.85%

5.2. Experimental Results

First, the overfitting problem should be discussed according to the comparisons between Tables 1
and 4 (see Section 3). From these comparisons, we can safely draw the following conclusions. First, the
error rate of ELM increases as the size of the training set increases. As previously mentioned, ELM
suffers from an overfitting problem. Because this is a high-dimensional sparse problem, ELM must
learn a large and complex network. By introducing the AdaBoost framework, the proposed AdaBELM
algorithm overcomes this problem. The gap between the testing and training errors of AdaBELM
narrows, while the training set margin of error widens.

Table 4. Error rate comparison of Gini Tree, ELM, random forests, oblique random forests (MPSVM-RF,
LDA-RF), Bozaiboost and AdaBELM on 20 Newsgroups.

Data Scale
20% 40% 60% 80% 100%

Training Testing Training Testing Training Testing Training Testing Training Testing

Gini Tree 0.00 0.53 0.00 0.47 0.00 0.45 0.00 0.45 0.00 0.43
ELM 0.00 0.64 0.00 0.66 0.00 0.50 0.02 0.57 0.02 0.58

Random Forests 0.00 0.26 0.00 0.24 0.00 0.22 0.00 0.21 0.00 0.21
MPSVM-RF 0.02 0.33 0.02 0.29 0.02 0.27 0.02 0.25 0.02 0.25

LDA-RF 0.02 0.35 0.02 0.29 0.02 0.71 0.02 027 0.02 0.26
Bonzaiboost 0.00 0.41 0.02 0.34 0.05 0.31 0.07 0.28 0.08 0.27
AdaBELM 0.00 0.27 0.00 0.26 0.00 0.25 0.00 0.23 0.00 0.18

Moreover, from Table 5, we can see that all the RO values (computed according to Equation (1))
of AdaBELM are above zero. Benefiting from AdaBoost, AdaBELM easily avoids two decreases that
would certainly be induced from ELM overfitting. In addition, the training errors of AdaBELM are
similar with those of ELM, all of which are close to zero. In contrast, the training error of Bonzaiboost
(AdaBoost) increases to 0.08 with an increasing size of the set of training data. AdaBELM obtains the
lowest error rates while its training error is close to zero. In other words, AdaBELM not only reduces
the overfitting problem but also achieves the highest accuracy.



Entropy 2017, 19, 330 10 of 13

Table 5. RO Comparisons of Gini Tree, ELM, random forests, oblique random forests (MPSVM-RF,
LDA-RF), Bonzaiboost and AdaBELM on 20 Newsgroups, negative ROs are in bold.

Data Scale 40% 60% 80% 100%

Gini Tree 0.28 0.15 −0.03 0.12
ELM −0.09 0.80 −0.37 −0.06

Random Forests 0.13 0.07 0.06 0.02
MPSVM-RF 0.23 0.09 0.06 0.05

LDA-RF 0.24 0.03 0.08 0.05
Bonzaiboost 0.28 0.15 0.12 0.04
AdaBELM 0.03 0.08 0.06 0.27

From the trends of these learning curves in Figure 2, it is evident that the new hybrid model
AdaBELM achieves the highest accuracy among the seven algorithms. Bonzaiboost (AdaBoost)
continually improves its accuracies with the increase of the number of training samples, and ELM falls
behind due to overfitting. In addition, from Figure 2, ELM performs worse than Gini Tree; however,
our newly proposed model, AdaBELM, using ELM as the base learner, is superior to Bozaiboost based
on Gini Tree.
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Moreover, to examine the performance and robustness of the proposed algorithms, the seven
algorithms’ results on the three benchmark corpora are compared, as shown in Table 6. AdaBELM
achieves the highest accuracy among the seven algorithms on all three datasets. For example, on
Reuters-21578, the accuracy of AdaBELM reaches 0.88 and is 2.74%, 7.3%, 11.2%, 23.7%, 9.10%, and
5.26% higher than Bonzaiboost (AdaBoost), random forests, MPSVM-RF, LDA-RF, Gini tree, and
ELM, respectively. On the BioMed corpora, its accuracy reaches 0.88, which is 2.13%, 24.63% and
62.20% higher than Bonzaiboost (AdaBoost), Gini tree and ELM, respectively. The next-best models
on the three different datasets are Bonzaiboost and three random forests. For instance, the classical
random forests can achieve 0.88 accuracy which is the same as AdaBELM. As a result of employing
ensemble strategies, four boosts base classifiers (decision trees) improved the classification accuracy
and achieved the second position. The performance rankings of the remaining two algorithms were
inconsistent on the three datasets. For example, ELM obtained an accuracy of 0.84, which is 3.76%
higher than the Gini Tree on Reuters. However, the Gini Tree obtained a better result than ELM on 20
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Newsgroups. In addition, to guarantee generalizability for those random initiation algorithms, we ran
each program 10 times for each algorithm and all the accuracies were averages of these results.

Table 6. Accuracy Comparisons of Gini Tree, ELM, Bonzaiboost, random forests, oblique random
forests (MPSVM-RF, LDA-RF), and AdaBELM on Reuters-21578, 20 Newsgroup, and Biomed; best
results are in bold.

Data Sets Reuters-21578 20 Newsgroups Biomed

Gini Tree 0.81 0.57 0.71
ELM 0.84 0.42 0.61

Random Forests 0.82 0.79 0.88
MPSVM-RF 0.80 0.76 0.85

LDA-RF 0.71 0.74 0.83
Bonzaiboost 0.86 0.73 0.86
AdaBELM 0.88 0.82 0.88

There are two parameters in the proposed model: One is the number of hidden-layer neurons
N, and the other is the number of base learners T (ELM in our case and Gini Tree for Bonzaiboost).
Because the number of hidden-layer neurons is important for feedforward neural networks, many
experiments were conducted to select the numbers of hidden-layer neurons for ELM and AdaBELM.
We chose the number of hidden-layer neurons with which the highest value of the training accuracy
was attained. For ELM, we chose 3200, 6300, and 500 for the Reuters-21578, 20 Newsgroups and
BioMed corpora, respectively. For the sake of fairness, AdaBELM used the same selection method,
with which 1900, 3500, and 290 were selected.

After determining the number of hidden-layer neurons for each dataset, the number of base
learners (ELM in our case, Gini Tree for Bonzaiboost) should be selected. Considering time and space
complexities, which are of great importance for the AdaBoost algorithm, both algorithms adopted 200
base learners on the three data sets. Random Forests chose 500 as the tree number. MPSVM-RF and
LDA-RF chose 100 as the tree number. We set the damping factor λ of AdaBELM (0 < λ ≤ 1) as 0.8,
which can be selected according to different data, applications and computing resources. When facing
big data with limited memory, a smaller value of λ should be selected, and a larger value should be
specified for small data with sufficient memory.

6. Conclusions

In this paper, to clearly quantify the overfitting problem, we defined a new measurement called
the rate of overfitting (RO). To reduce the overfitting problem and pursue high performance on
text classification, we proposed a novel algorithm, AdaBELM. Using the proposed quantitative
measurement, we found that the RO of ELM decreased to below zero three times. This means that ELM
suffers from a significant overfitting problem, which is due to the output weights being computed by
the Moore-Penrose generalized inverse, which is a least-squares minimization issue. However, the
proposed model AdaBELM not only reduced this drawback, but also achieved the highest accuracy
when compared (and tested) with random forests, oblique random forests, Bonzaiboost (AdaBoost
MH), Gini Tree, and traditional ELM using the same parameters. Moreover, the comparisons among
Reuters-21578, 20 Newsgroups, and BioMed revealed that the results of the new model are also superior
to those of the other four algorithms. In other words, the proposed model has good generalizability, as
revealed by its high performance on balanced, unbalanced, and real application data.
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