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Abstract: In this paper, new upper limits on the parameters of the Continuous Spontaneous
Localization (CSL) collapse model are extracted. To this end, the X-ray emission data collected by
the IGEX collaboration are analyzed and compared with the spectrum of the spontaneous photon
emission process predicted by collapse models. This study allows the obtainment of the most
stringent limits within a relevant range of the CSL model parameters, with respect to any other
method. The collapse rate λ and the correlation length rC are mapped, thus allowing the exclusion of
a broad range of the parameter space.
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1. The CSL Collapse Model

Collapse models are phenomenological models introduced to solve the measurement problem of
quantum mechanics and explain the quantum-to-classical transition [1–6]. According to these models,
the linear and unitary evolution given by the Schrödinger equation is modified by adding a non-linear
term and the interaction with a stochastic noise field. These modifications have two very important
consequences: (i) they lead to the collapse of the wave function of the system in space (localization
mechanism) and (ii) the collapse effects get amplified with the mass of the system (amplification
mechanism). The combination of these two properties guarantees that macroscopic objects always
have well defined positions, explaining why we do not observe quantum behaviour at the macroscopic
level. On the other hand, for microscopic systems, the effect of the non-linear interaction with the noise
field is very small and their dynamics is dominated by the Schrödinger evolution. Due to the presence
of the non-linear interaction with the noise field, collapse models predict slight deviations from the
standard quantum mechanics predictions [7].

The analysis discussed in this work sets limits on the characteristic parameters of the Continuous
Spontaneous Localization (CSL) model [8–10], which is one of the most relevant and well-studied
collapse models in the literature. In the CSL model, the state vector evolution is described by a modified
Schrödinger equation which contains, besides the standard Hamiltonian, non-linear and stochastic
terms, characterized by the interaction with a continuous set of independent noises w(x, t) (one for
each point of the space, which is why this set is often referred to as “noise field”) having zero average
and white correlation in time, i.e., E[w(x, t)] = 0 and E[w(x, t)w(y, s)] = δ(x− y)δ(t− s) where E[...]
denotes the average over the noises. Two phenomenological parameters (λ and rC) are introduced in
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the model. The parameter λ has the dimensions of a rate and sets the strength of the collapse, while rC is
a correlation length which determines the spatial resolution of the collapse: for superposition with size
much smaller than rC, the collapse is much weaker compared to the case when the superposition has a
delocalization much larger than rC. The originally proposed values for λ and rC are [8] λ = 10−16 s−1,
rC = 10−7 m. Higher values for λ were however put forward [11], up to λ = 10−8±2 s−1.

The interaction with the noise field causes an extra emission of electromagnetic radiation for
charged particles [7], which is not predicted by standard quantum mechanics. Such an effect is known
as spontaneous radiation emission. We show that the measurement of the radiation allows for a mapping
of the two relevant parameters λ and rC (see also Ref. [12]) into a two-dimensional parameter space,
i.e., we can present an exclusion plot. This gives a considerable reduction of the possible values in the
parameter space of collapse models.

2. The Collapse Rate Parameter λ

The energy distribution of the spontaneous radiation, emitted as a consequence of the interaction
of free electrons with the collapsing stochastic field, was first calculated by Fu [7] and later on studied
in more detail in [13–15], in the framework of the non-relativistic CSL model. If the stochastic field
is assumed to be a white noise, coupled to the particle mass density (mass proportional CSL model),
the spontaneous emission rate is given by:

dΓ(E)
dE

=
e2λ

4π2r2
Cm2

N E
, (1)

where e is the charge of the proton, mN represents the nucleon mass and E is the energy of the emitted
photon. In the non-mass proportional case, the rate takes the expression:

dΓ(E)
dE

=
e2λ

4π2r2
Cm2

e E
, (2)

with me the electron mass.
Using the measured radiation emitted in an isolated slab of Germanium [16] corresponding to an

energy of 11 keV, and comparing it with the predicted rate in Equations (1) and (2), Fu extracted the
following upper limits on λ for the two cases:

λ ≤ 2.20 · 10−10 s−1 mass prop., (3)

λ ≤ 0.55 · 10−16 s−1 non-mass prop., (4)

assuming that the correlation length value is rC = 10−7 m. In his estimate, Fu considered the
contribution to the spontaneous X-ray emission of the four valence electrons in the Germanium atoms.
Such electrons can be considered as quasi-free, since their binding energy (of the order of ∼10 eV) is
much less than the emitted photons’ energy. In Ref. [11], the author argues that an erroneous value
for the fine structure constant is used in Ref. [7]. This correction is taken into account in the analysis
described in Section 3. Further, the preliminary TWIN data set [16] used by Fu to estimate the upper
limit on λ turned out to be underestimated by a factor of about 50 at 10 keV.

A new analysis was performed in Ref. [17]. Based on the improved data presented in Ref. [18],
the limits corresponding to the footnote [7] in Ref. [17], for the cases of mass proportional and non-mass
proportional CSL models, were:

λ ≤ 8 · 10−10 s−1 mass prop., (5)

λ ≤ 2 · 10−16 s−1 non-mass prop.. (6)
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3. A New Limit on λ

In this work, the X-ray emission spectrum measured by the IGEX experiment [19] is analysed
in order to set a more stringent limit on the collapse rate parameter λ. IGEX is a low-background
experiment based on low-activity Germanium detectors, originally dedicated to the neutrinoless
double beta decay (ββ0ν) research. The published data set [20] refers to 80 kg day exposure, and was
conceived to search for a dark matter WIMPs signal that originated from elastic scattering, producing
Ge nuclear recoil.

For the measurement in Ref. [20], one of the IGEX detectors of 2.2 kg (active mass of about
2 kg) was used. The detector, the cryostat and the shielding were fabricated following ultra-low
background techniques, in order to minimize the radionuclides emission, which represents the main
background source in the measured X-ray spectrum (shown in Figure 1 as a black distribution).
Moreover, a cosmic muon veto covered the top and the sides of the shield. The experiment had
an overburden of 2450 m.w.e., reducing the muon flux to the value of 2 · 10−7 cm−2 s−1. The two
main sources of inefficiency are represented by the muon veto anti-coincidence and the pulse shape
analysis. The probability of rejecting non-coincident events with the muon veto was found to be less
than 0.01. The loss of efficiency introduced by the pulse shape analysis resulted to be negligible for
events above 4 keV.

Figure 1. Fit of the X-ray emission spectrum measured by the IGEX experiment [19,20], using the
theoretical fit function Equation (7). The black line corresponds to the experimental distribution; the red
dashed line represents the fit. See the text for more details.

The X-ray spectrum (Figure 1) ranges in the interval (4.5÷ 48.5) keV, which is compatible with
the non-relativistic assumption for electrons, used to derive Equations (1) and (2).

3.1. The Data Analysis: Procedure and Results

The X-ray experimental spectrum published in [20] is compared with the predicted rate
Equations (1) and (2), by taking into account the spontaneous emission of the 30 outermost electrons of
the Ge atoms considered as quasi-free. We restricted our analysis to the energy range ∆E = (14.5÷ 48.5)
keV of the experimental spectrum [20], for which the binding energy of the lower lying electronic orbit
(the 2s orbit) is still one order of magnitude lower than 14.5 keV, justifying the quasi-free hypothesis.
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The X-ray spectrum is fitted in the interval ∆E by minimising a χ2 function. The expected number of
counts for each bin of 1 keV is assumed to be described by the theoretical prediction Equations (1) and (2):

dΓ(E)
dE

=
α(λ)

E
. (7)

The χ2 minimisation presumes that the bin contents yi (number of counts in the energy
bin Ei) follow Gaussian distributions. Strictly speaking, the yis are Poissonian stochastic variables;
nevertheless, the approximation is reasonable for yi ≥ 5; this constraint is then used for the fit.
The result of the fit is shown in Figure 1 (red dashed line). For the free parameter of the fit, the
minimization gives the value α(λ) = 115± 17, corresponding to a reduced χ2/(n.d. f .− n.p.) = 0.9.
n.d. f . represents the number of degrees of freedom, n.p. is the number of free parameters of the fit. α(λ)

is also considered to follow a Gaussian distribution with a good approximation. An upper limit can
then be set as α(λ) ≤ 143 with a probability of 95%. Correspondingly, an upper limit on the parameter
λ can be extracted using Equations (1) and (2):

dΓ(E)
dE

= c
e2λ

4π2r2
Cm2E

≤ 143
E

, (8)

where the factor c is given by:

c =
(

8.29× 1024 atoms
kg

)
· (80 kg day) ·

(
8.64× 104 n. of seconds

day

)
· (30), (9)

the first bracket accounts for the particle density of Germanium, the second represents the amount of
emitting material expressed in kg day, the third term is the number of seconds in one day and 30 represents
the number of spontaneously emitting electrons for each Germanium atom. Applying Equation (8),
the following upper limits for the reduction rate parameter are obtained, with a probability of 95%:

λ ≤ 8.1 · 10−12 s−1 mass prop., (10)

λ ≤ 2.4 · 10−18 s−1 non-mass prop.. (11)

In order to obtain the limits in Equations (10) and (11), two implicit assumptions are made on
the experimental input [20]. First, the measured spectrum is assumed to be background free, that is
to say that the upper limit on λ corresponds to the case in which all the measured X-ray emission
would be produced by spontaneous emission processes. This ansatz is conservative, and is imposed
by our ignorance regarding the contribution from known emission processes to the measured rate.
The second assumption, which is consistent with the analysis presented in Ref. [20], is that the detector
efficiency, in the range ∆E, is one, and that the un-efficiencies which are introduced by the muon
veto anticoincidence and the pulse shape analysis, performed to extract the experimental spectrum in
Ref. [20], are very small for events above 4 keV.

Having in mind these assumptions, the measured X-ray counts in the range ∆E can be re-analysed
in terms of their low-events Poissonian statistics. The number of counts yis in each energy bin Ei can
be considered as independent stochastic variables following the distributions:

G(yi|P, Λi) =
Λyi

i e−Λi

yi!
, (12)

where P denotes the Poisson distribution function. The expected numbers of counts per bin Λi are
indicated with capital letters, not to be confused with the spontaneous collapse rate λ. Let us define:

y =
n

∑
i=1

yi , Λ =
n

∑
i=1

Λi (13)
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where n is the total number of 1 keV bins in the range ∆E, y and Λ are the total number of counts and
the expected number of total counts, respectively. Here, y is distributed according to a Poissonian of
parameter Λ(λ), where the dependence on the collapse rate parameter, which follows the theoretical
input, was explicitly indicated.

According to the Bayes theorem, the probability distribution function of Λ(λ), given the measured
y, assuming a uniform prior, is given by:

G′(Λ|G(y|P, Λ)) ∝ Λ(λ)ye−Λ(λ), (14)

which means that G′(λ) is proportional to a gamma probability distribution. Due to the assumption
that the background is negligible, Λ(λ) also represents the expected number of total signal counts ys,
where ys is a Poissonian variable. Thus, according to Equation (8):

Λ(λ) = ys + 1 =
n

∑
i=1

c
e2λ

4π2r2
Cm2Ei

+ 1 =
n

∑
i=1

α(λ)

Ei
+ 1. (15)

Substituting Equation (15) for Equation (14), the probability distribution function for the collapse
rate parameter can then be obtained:

G′(λ|G(y|P, Λ)) ∝

(
n

∑
i=1

α(λ)

Ei
+ 1

)y

e−
(

∑n
i=1

α(λ)
Ei

+1
)

, (16)

where the measured total number of counts is y = 130. Calculating the cumulative distribution function:

∫ λ0

0
G′(λ|G(y|P, Λ))dλ, (17)

the following upper limits can be obtained on the collapse rate parameter, setting rC to the value
10−7 m, corresponding to a probability level of 95%

λ ≤ 6.8 · 10−12 s−1 mass prop., (18)

λ ≤ 2.0 · 10−18 s−1 non-mass prop.. (19)

4. Mapping CSL Parameters Space

In Figure 2, we present the mapping of the λ − rC parameters of the CSL model, where the
originally proposed theoretical values are shown, together with our results. The region excluded by
theoretical arguments is represented in gray. This theoretical bound (see Ref. [21]) is obtained by
requiring that a single-layered graphene disk of radius ∼0.01 mm is localized within ∼10 ms (these
are the minimum resolution and perception time of the human eye, respectively).

The region excluded by this analysis is shown in cyan for the non-mass proportional case and in
magenta for the mass proportional case. Figure 2 can be compared with Figure 2 in Ref. [22], where
the mapping is obtained using other measurements. It is interesting to note that, for a collapse induced
by a white noise, the allowed parameter space is confined to a drastically reduced region.



Entropy 2017, 19, 319 6 of 7

Figure 2. Mapping of the λ− rC Continuous Spontaneous Localization (CSL) parameters: the originally
proposed theoretical values (GRW, Adler) are shown as black points; the region excluded by theory
(theory) is represented in gray. The excluded region according to our analysis is shown in cyan for the
non-mass proportional case (n-m-p) and in magenta for the mass proportional case (m-p).

5. Conclusions and Perspectives

We have presented an analysis of the spontaneous radiation emitted and measured by the IGEX
Germanium detector, to obtain a mapping of the CSL collapse model parameters. The results shown in
Figure 2 can be summarized as follows:

• the non-mass proportional model for a white noise scenario can be excluded by our analysis,
• the higher value on λ [11] can be excluded for a white noise scenario, in both mass proportional

and non-mass proportional models,
• the measurement of the spontaneous radiation allows the obtainment of the most stringent limits

on the CSL collapse model parameters, with respect to any other method, in a broad range of the
parameter space (see also Ref. [22] for comparison).

We are presently exploring the possibility of performing a new measurement that will allow an
improvement of at least one order of magnitude on the collapse rate parameter λ, exploring new
regions of CSL mapping.
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