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Abstract: Sparse-representation based approaches have been integrated into image fusion methods in
the past few years and show great performance in image fusion. Training an informative and compact
dictionary is a key step for a sparsity-based image fusion method. However, it is difficult to balance
“informative” and “compact”. In order to obtain sufficient information for sparse representation
in dictionary construction, this paper classifies image patches from source images into different
groups based on morphological similarities. Stochastic coordinate coding (SCC) is used to extract
corresponding image-patch information for dictionary construction. According to the constructed
dictionary, image patches of source images are converted to sparse coefficients by the simultaneous
orthogonal matching pursuit (SOMP) algorithm. At last, the sparse coefficients are fused by the
Max-L1 fusion rule and inverted to a fused image. The comparison experimentations are simulated
to evaluate the fused image in image features, information, structure similarity, and visual perception.
The results confirm the feasibility and effectiveness of the proposed image fusion solution.

Keywords: image fusion; sparse representation; dictionary construction; geometric classification

1. Introduction

High-quality images can help increase the accuracy and efficiency of image processing and related
analysis. However, a single sensor cannot capture sufficient information in one scenario. For obtaining
more information, image fusion techniques are used to combine multiple images from the same
scenario. Now image fusion techniques are widely used in different areas, such as computer vision,
medical diagnosis and treatment, and remote sensing. Various image fusion algorithms are proposed
and used in diverse applications.

According to the spatial and transformative features of fusion domain, these methods could be
categorized into two main categories: spatial-domain-based methods and transform-domain-based
methods [1,2]. Spatial-domain-based methods directly choose clear pixels, blocks, or regions from
source images to compose a fused image [3–5]. Some simple methods, such as averaging or max
pixel schemes, are performed on single pixel to generate fused image. However, these methods may
reduce the contrast and edge intensity of the fused result. In order to improve the quality of fused
image, some advanced algorithms, such as block-based and region-based algorithms, were developed.
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Li et al. proposed a scheme by dividing images into blocks and chose the focused one by comparing
spatial frequencies (SF) first; then, the fused results are produced by consistency verification [6,7].
Although block-based methods improve the contrast and sharpness of integrated image, they may
cause a block effect in the integrated image [8,9].

Different from spatial-domain fusion methods, transform-domain methods transform source
images into a few corresponding coefficients and transform bases first [10,11]. Then, the coefficients
are fused and inverted to an integrated image. Multi-scale transform (MST) and wavelet based
algorithms are conventional transform approaches applied to transform-domain-based image
fusion [12–14], such as wavelet transform [15,16], shearlet [17,18], curvelet [19], dual tree complex
wavelet transform [20,21], and nonsubsampled contourlet transform (NSCT) [22]. MST decomposition
methods have attracted great attention in the image processing field, and are widely used in image
fusion fields. However, MST-based methods need priori knowledge to select an optimal transform
basis [23]. As each MST method has its own limitations, one MST method is difficult to fit all kinds of
images [12].

Recently, sparse-representation based methods show great performance in image de-noising [24],
image de-blurring [25], image target tracking [26,27], and image super-resolution [28,29].
Sparse-representation based methods decompose an image patch using a few number of bases or
atoms of a fixed or trained dictionary.

In the image fusion field, a sparse-representation based method was first proposed by Yang and
Li [30]. They applied the Discrete Cosine Transform(DCT) dictionary and orthogonal matching pursuit
(OMP) method to sparse-representation based multi-focus image fusion. Liu et al. [31] presented
a sparse-representation based method using an NSCT filter for image decomposition and the DCT
dictionary for sparse coding of image patches. Yin et al. [32] used a dual-tree complex shearlet
transform dictionary for image fusion, which enhanced the contrast of image details.

Previously mentioned methods used a fixed dictionary for spare representation. However, a fixed
dictionary cannot adaptively change according to input images. As the dictionary is one of the
most crucial parts in sparse representation, a trained dictionary according to input images has better
performance in describing source images. Selecting a good over-complete dictionary is the main issue
of a sparse representation-based image reconstruction and fusion techniques. Mostly, the DCT basis
or wavelet basis are often used for an over-complete dictionary. Since such dictionaries formed with
transform bases do not rely on input image data, they are fixed regardless of type of sensors, context
of images, or applications. While a fixed dictionary can easily be implemented, their performance is
somewhat limited depending on the type of data and application. To make a dictionary adaptive to
input image data, a dictionary learning method has been developed by Aharon et al. [33]. Yin et al. [34]
developed an image fusion method based on K-means generalized singular value decomposition
(K-SVD) [33], which also explored the sparse parameter in image fusion. Wang et al. [35] proposed
an approximate K-SVD-based sparse representation method for image fusion and exposure fusion to
reduce computation costs in dictionary learning. To make the trained dictionary more informative,
Kim et al. [36] proposed a compact dictionary learning method called joint clustering patches dictionary
learning (JCPD). JCPD used image pixel clustering and principal component analysis (PCA) bases to
train sub-dictionaries in dictionary construction. Fusion results showed that the detailed information
from source images was perfectly reserved. Zhu et al. [9,37,38] presented an image patch clustering
method and applied it to corresponding sub-dictionary training process. Their method improved
the detailed features in medical image fusion. All of these sparse-representation based image fusion
methods only used one dictionary for sparse coding of all image patches, which may cause redundancy
in the constructed dictionary.

Geometric information, as one type of the most important image information, including edges,
contours, and textures of image, can remarkably influence the quality of image perception [39,40].
This information can be used in patch classification as a supervised dictionary prior to improving the
performance of the trained dictionary [41,42]. In this paper, a geometric classification based dictionary
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learning method is proposed for sparse-representation based image fusion. Instead of grouping the
pixels of images, the proposed geometric classification method groups image blocks directly by the
geometric similarity of each image block. Since a sparse-representation based fusion method uses
image blocks for sparse coding and coefficient fusion, extracting underlying geometric information
from image-block groups is an efficient way to construct a dictionary. Moreover, the geometric
classification can group image blocks based on edge and sharp line information for dictionary learning,
which can improve the accuracy of sparse representation. This paper has two main contributions.

1. A geometric-information based classification method is proposed and applied to a sub-dictionary
learning of image patches. The proposed classification method can accurately split source image
patches into different groups for sub-dictionary learning based on the corresponding geometry
features. Sub-dictionary bases extracted from each image-patch group contain the key geometry
features of source images. These extracted sub-dictionary bases are trained to form informative
and compact sub-dictionaries for image fusion.

2. A dictionary combination method is developed to construct an informative and compact
sub-dictionary. Each image patch of a fused image is composed of corresponding source image
patches using a constructed-sub-dictionary (CSD). According to the classification of geometry
features, each source image patch is trained and categorized into a group of sub-dictionaries.
Corresponding image patches, that appear at the same place of the two source images, at most
have two groups of sub-dictionary. Redundant geometric information of source image patches
is eliminated.

The remaining sections of this paper are structured as follows: Section 2 proposes the geometric
sub-dictionary learning method and integrated image fusion framework; Section 3 compares and
analyzes experimentation results; and Section 4 concludes this paper.

2. Geometry-Based Image Fusion Framework

This section presents the proposed image fusion method. The proposed method consists of
geometric similarity based sub-dictionary learning and sparse representation based image fusion
processes. In the sub-dictionary learning step, images are split into image patches first. The image
patches are clustered into a few groups based on the geometric similarity. The K-SVD method is
used in sub-dictionary training. In the image fusion step, image patches of source images are sparse
coded using an assembled dictionary. The assembled dictionary consists of sub-dictionaries, which are
corresponding to the groups of input image patches. When image patches are sparse coded, the coded
coefficients are fused by using the Max-L1 fusion rule [30].

2.1. Dictionary Learning

The proposed dictionary learning method is shown in Figure 1, in which source images are split
into 8 × 8 image patches. In the proposed method, source images are split into 8 × 8 image patches by
sliding windows. These image patches are transformed to vectors of 1 × 64 in a linewise direction
and normalized between 0 and 1. Then, these image patches can be clustered into a few groups for
sub-dictionary learning. These sub-dictionaries can preserve key information of each image patch
group. There are six specific groups of sub-dictionaries in this paper.

The geometric image patches clustering method can classify all of the image patches into
three main groups, such as smooth, dominant orientation, and stochastic patch group. In the
proposed method, image patches are classified into smooth and non-smooth first. A variance based
method is proposed for grouping smooth and non-smooth patches. For image patches (p1, p2, ..., pn),
the corresponding variances are (v1, v2, ..., vn). If the variance ci of ith image patch meets ci < δ, the ith
image patch pi is considered as a smooth image patch.
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In this way, image patches can be classified into smooth and non-smooth patches. Non-smooth
patches can be further clustered into dominant orientation and stochastic patch group, by calculating
the dominant orientations of patches. The dominant orientation estimation method is based on the
singular value decomposition (SVD). The gradient of an image pixel gi can be calculated by Equation (1).

gi = [(∂i(x, y)/∂x), (∂i(x, y)/∂y)] , (1)

where gi is the gradient map.

Figure 1. Sub-dictionaries training for different groups of image patches.

The gradient map of an image patch pi = [i1, i2, ..., in], which consists of n pixels, is shown
in Equation (2):

gpi = [g1, g2, ..., gn] , (2)

where gpi is the gradient map of pi.
Performing an SVD on gpi can obtain g = SVDT. Extracting the first column of V can obtain

the dominant orientation of the gradient field v1. The second column v2 in V is the subdominant
orientation of the gradient field. If the corresponding singular values of v1 and v2 are remarkably
different, the dominant measure [43] R can be calculated using Equation (3):

R =
S1,1 − S2,2

S1,1 + S2,2
. (3)

After SVD decomposition, S1,1 and S2,2 are row 1-column 1 and row 2-column 2 values of singular
value matrix V, respectively. If R is smaller than a significance level threshold R∗, the image patch is
considered as a stochastic pattern.

In order to differentiate the geometric information of dominant orientation patches, the dominant
orientation image patches can be further classified to different groups according to the directions of
image patches. The direction d of dominant orientation image patches can be estimated using gradient
field v1, which is shown in Equation (4):
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d = arctan
(

v1(2)
v1(1)

)
. (4)

In the proposed dictionary learning framework, dominant orientation image patches are classified
into four groups, such as horizontal, right-direction, vertical, and left-direction patch group that
correspond to 0, 45, 90, and 135 degree group, respectively. In Equation (4), when d is close to the
horizontal, right-direction, vertical, or left-direction patch group, d is clustered into the corresponding
group. For each group, a sub-dictionary can be trained by the stochastic coordinate coding (SCC)
algorithm shown in Algorithm 1, which is extremely fast. H represents a Hessian matrix of the
objective function. To obtain the learning rate, SCC uses the Hessian matrix of objective function.
According to the second order stochastic gradient descent, it should inverse the Hessian matrix as
the learning rate [44]. z is obtained by using the simultaneous orthogonal matching pursuit (SOMP)
algorithm shown in Algorithm 2 to sparse code image patches based on dictionary D. The trained
sub-dictionaries for different geometric groups are shown at the bottom of Figure 1.

In the SOMP algorithm, K is the sum of image patch x and sparse coefficient z, xk is k-th image
patch, and zk is k-th sparse coefficient. In this paper, it assumes that the source images are all noise free.
Thus, a small global error is set, i.e., ε = 0.01.

Algorithm 1 SCC Algorithm.

Input:

Image patches of Wth cluster Pw = (pw
1 , pw

2 , ..., pw
n ) ∈ R64×n

Output:

Sub-dictionary S = S∂
n ∈ S64×n, and zi = z∂

i for i = 1, 2, ..., n
Initialize S1

1, H = 0, and z0
i = 0 for i = 1, 2, ..., n

for k = 1 to ∂ do

for i = 1 to n do

Get image patch pn
i

Update zk
i via one or a few steps of coordinate descent: zk

i ← CD(Dk
i , zk−1

i , xi)

Update the Hessian matrix and the learning rate: H ← H+zk
i (z

k
i )

T, ηk
i,j = 1/hjj

Update the support of the dictionary via SGD (Stochastic Gradient Descent): dk
i+1 ← dk

i,j −

ηk
i,jzi,j(Sk

i zk
i − xi)

if i = n then

Set Sk+1
1 = Sk

n+1
end if

end for
end for
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Algorithm 2 SOMP Algorithm.

Input:

Dictionary D, image patches {xk}K
k=1, xk ∈ Rn, threshold ε, an empty matrix Φ

Output:

Sparse coefficients {zk}K
k=1, zj ∈ Rw

Initialize the residuals r(0)k = xk, for k = 1, 2, ..., K, set iteration counter l = 1.
Select the index t̂l which indicates the next best coefficient atom to simultaneously provide good

reconstruction for all signals by solving: t̂l = arg max
t=1,2,...,T

K
∑

k=1

∣∣∣〈rl−1
k , dt

〉∣∣∣.
Update sets Φ=

[
Φl−1, dt̂l

]
.

Compute new coefficients (sparse representations), approximations, and residuals as:

α
(l)
k = arg min

α
‖xk −Φlα‖2 =

(
Φl

TΦl

)−1
Φl

Txk, for k = 1, 2, ..., K,

x̂(l)k = Φtα
(l)
k , for k = 1, 2, ..., K,

r(l)k = xk − x̂(l)k , for k = 1, 2, ..., K.
Increase the iteration counter l = l + 1, if

K
∑

k=1

∥∥∥r(l)k

∥∥∥2

2
> ε2, go back to step 2.

2.2. Image Sparse Coding and Fusion

When all image-patch groups are trained, source images can be fused by using the trained
sub-dictionaries. The proposed image sparse-representation and fusion method are shown in Figure 2.
In the proposed solution, the fused image patch can be obtained by corresponding sub-dictionaries.
It is an efficient way to decrease the size of learned dictionaries. All image patches are clustered
into six groups. Any two aligned image patches of source images at most belong to two groups.
Even if two aligned image patches belong to the same group, two corresponding sub-dictionaries are
different. Since one group only has a sub-dictionary, it only needs two sub-dictionaries to represent all
information of two image blocks.

SOMP

z
1

1...n

z
k

1...n

Fused Image

Image 

Patches p
1
1...n

Image 1

Image k

Image 

Patches p
k

1...n

Sparse Coding Coefficient fusion

Sub-dictionaries

Selected

Sub-dictionaries

Constructed-Sub-Dictionary

(CSD)

Figure 2. Fusion process.
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The proposed fusion method uses sliding windows and sets overlap as six, so the splitting overlap
of source images has six image patches. Suppose two source images for fusion have already been split
into image patches. According to the classification method mentioned in the previous section, all of
these image patches are clustered into a few groups. The pair of image patches from the same location
of source images are sparse coded by using a CSD. In accordance with the classified image patch
groups, one CSD of two corresponding source image patches at most consists of two sub-dictionaries.
The CSD construction algorithm shown in Algorithm 3 combines the corresponding sub-dictionaries
of two source image patches to obtain dictionary D.

When all of the CSDs are constructed, any pair of source image patches can be sparse coded by
using the corresponding CSD and SOMP algorithm. Assume that there are K registered source images,
I1, ..., Ij with size of M× N. The Max-L1 fusion rule takes the following steps.

• Step 1: Use the sliding window technique to divide each source image Ij, from left-top to
right-bottom, into patches of size 8× 8, i.e., the size of the atom in the dictionary. These image
patches are vectorized to image pixel vectors in the linewise direction. The obtained image pixel
vectors only have one dimension.

• Step 2: For the ith image patch xji of one source image Ij, it can be sparse coded using the trained
dictionary D.

• Step 3: When all of the image patches are sparse coded, the corresponding image patches of each
image use Equation (5) to do fusion:

z f
i =

k

∑
j=1

zji ×Oji, where

{
Oji = 1, i f max(

∥∥zj1
∥∥

1,
∥∥zj2

∥∥
1...,
∥∥∥zjk

∥∥∥
1
) =

∥∥zji
∥∥

1

Oji = 0, otherwise
, (5)

where zji is a sparse coefficient corresponding to the i-th image patch in j-th image pji.
• Step 4: Fused coefficients are inversely transformed to fused image pixel vectors, using Equation (6),

and transform these vectors back to the fused image patches. Then, it reconstructs the fused image
by using fused image patches. The dictionary D in Equation (6) is the same as dictionary D in
Algorithm 3:

I f = Dz f . (6)

Algorithm 3 CSD Construction Algorithm.

Input:

Sub-dictionaries S = (S1, S2...Sn), image patches for fusion i1 and i2
Output:

CSD D
Figure out sub-dictionaries Sj ∈ S, Sk ∈ S, that correspond to image patch groups of i1 and i2.
if j = k then

Set D = Sj
else

Set D = [Sj, Sk]
end if

3. Experiments and Analyses

To test the efficiency, the proposed image fusion approach is applied to multi-focus, medical,
and visible-infrared images, respectively.

• Twenty pairs of 520× 520 size multi-focus images are obtained from the Lytro-multi-focus data-set
http://mansournejati.ece.iut.ac.ir.

• Thirty pairs of medical images are from www.med.harvard.edu/aanlib/home.html. All of them
are 256× 256 size.

http://mansournejati.ece.iut.ac.ir
www.med.harvard.edu/aanlib/home.html
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• Ten pairs of visible-infrared images are obtained from from www.imagefusion.org consisting of
four 320× 240 and six 256× 256 image pairs.

Figure 3a–f show the selected sample pairs of multi-focus, medical, and visible-infrared
images, respectively.

This paper assumes that the input image pairs are precisely co-aligned. All image pairs are from
the standard library. They have the same size. The proposed solution can also be applied to multiple
images. In this section, one experiment of each image type is chosen and presented respectively in
the following sections. To show the efficiency of the proposed method, the state-of-the-art dictionary
learning based sparse-representation fusion approaches K-SVD and JCPD , which were proposed by
Li et al. in 2012 [45] and Kim et al. in 2016 [36], respectively, are used for comparison. The experiments
are evaluated by both subjective and objective assessments. Five popular image fusion quality
metrics are used in this paper for the quantitative evaluation. The larger the metric value is, the
better the performance is. The patch size of all sparse-representation-based methods including
the proposed method are set to 8× 8. To avoid blocking artifacts, all experiments use the sliding
window scheme [36,45,46]. The overlapping region of the sliding window is set to six pixels in each
vertical and horizontal direction of all experiments. All experiments are performed using a 2.60 GHz
single processor of an Intel(R) Core(TM) i7-4720HQ CPU Laptop with 12.00 GB RAM. To compare
fusion results fairly, all experiments in this paper are programmed by Matlab code in a Matlab
2014a environment.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Selected sample pairs of multi-focus, medical, and visible-infrared images; (a,b) are sample
multi-focus image pairs; (c,d) are sample medical image pairs; (e,f) are sample visible-infrared images.

3.1. Objective Evaluation Methods

Five mainstream objective evaluation metrics are implemented for the quantitative evaluation.
These metrics include edge retention (QAB/F) [47], mutual information (MI) [48], visual information
fidelity (VIF) [49],the Yang proposed fusion metric (QY) [50,51], and the Chen–Blum metric
(QCB) [51,52]. The above five solutions are classical approaches used in multi-focus, multi-modality
medical, and infrared-visible image fusion. QAB/F is the image feature-based metric. MI is the
information theory-based metric. QY is the image structural similarity-based metric. QCB and VIF are
human perception inspired fusion metrics. According to objective assessment [51,53,54], these metrics
can objectively evaluate the fused image in image feature, information, structure similarity, and visual

www.imagefusion.org
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perception. Thus, our paper chooses these metrics. For the fused image, the sizes of QAB/F, MI, VIF,
QY, and QCB become bigger, and the corresponding fusion results are better.

3.1.1. Mutual Information

MI for images can be formalized as Equation (7):

MI =
L

∑
i=1

L

∑
j=1

hA,F(i, j)log2
hA,F(i, j)

hA(i)hF(j)
, (7)

where L is the number of gray-level, hA,F(i, j) is the gray histogram of image A and F. hA(i) and hF(j)
are edge histogram of image A and F. Edge histogram is used to present the edge information of
image [48]. MI of the fused image can be calculated by Equation (8):

MI(A, B, F) = MI(A, F) + MI(B, F) , (8)

where MI(A, F) represents the MI value of input image A and fused image F; MI(B, F) represents the
MI value of input image B and fused image F.

3.1.2. QAB/F

QAB/F metric is a gradient-based quality index to measure how well the edge information of
source images is conducted to the fused image. It is calculated by:

QAB/F =
∑i,j (QAF(i, j)wA(i, j) + QBF(i, j)wB(i, j))

∑i,j (wA(i, j) + wB(i, j))
, (9)

where QAF = QAF
g QAF

0 , QAF
g and QAF

0 are the edge strength and orientation preservation values at
location (i,j). QBF can be computed similarly to QAF . wA(i, j) and wB(i, j) are the weights of QAF and
QBF, respectively.

3.1.3. Visual Information Fidelity

VIF is the novel full reference image quality metric. VIF quantifies the mutual information
between the reference and test images based on the Natural Scene Statistics (NSS) theory and the
Human Visual System (HVS) model. It can be expressed as the ratio between the distorted test image
information and the reference image information, and the calculation equation of VIF is shown in
Equation (10):

VIF =
∑i∈subbands I(

−−→
CN,i;

−−→
FN,i)

∑i∈subbands I(
−−→
CN,i;

−−→
EN,i)

, (10)

where I(
−−→
CN,i;

−−→
FN,i) and I(

−−→
CN,i;

−−→
EN,i) represent the mutual information, which are extracted from a

particular subband in the reference and the test images, respectively. Here, subband means the
frequency of human eye sensory. Thus, this subband is used to evaluate the visual performance

objectively [49,55].
−→
CN denotes N elements from a random field, and

−→
EN and

−→
FN are visual signals at

the output of HVS model from the reference and the test images, respectively.
To evaluate the VIF of fused image, an average of VIF values of each input image and the integrated

image is proposed [49]. The evaluation function of VIF for image fusion is shown in Equation (11):

VIF(A, B, F) =
VIF(A, F) + VIF(B, F)

2
, (11)
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where VIF(A, F) is the VIF value between input image A and fused image F; VIF(B, F) is the VIF
value between input image B and fused image F.

3.1.4. QY

Yang et al. proposed a structural similarity-based way for fusion assessment [50]. Yang’s method
is shown in Equation (12):

QY =


λ(ω)SSIM(A, F |ω ) + (1− λ(ω))SSIM(B, F |ω ),
SSIM(A, B |ω ) ≥ 0.75,

max {SSIM(A, F |ω ), SSIM(A, B |ω )} ,
SSIM(A, B |ω ) < 0.75,

(12)

where λ(ω) is the local weight, and SSIM(A, B) is a structural similarity index measure for images A
and B. The detail of λ(ω) and SSIM(A, B) can be found in [50,51].

3.1.5. QCB

The Chen–Blum metric is a human perception inspired fusion metric. The Chen–Blum metric
consists of five steps:

The first step is filtering image I(i, j) in the frequency domain. I(i, j) is transformed to the
frequency domain and gets I(m, n). Filtering I(m, n) by the contrast sensitive function (CSV) [52,56]
filter S(r), where r =

√
m2 + n2. In this image fusion metric, S(r) is in polar form. Ĩ(m, n) can be

obtained by Ĩ(m, n) = I(m, n)× S(r).
In the second step, local contrast is computed. Considering the band-pass filters of a pyramid

transform, which can be obtained as the difference of two neighboring low-pass filters. For the QCB
metric, Peli’s contrast C is used in this paper, and it can be defined as:

C(i, j) =
φk(i, j)× I(i, j)

φk+1(i, j)× I(i, j)
− 1 . (13)

A common choice for φk(i, j) would be a Gaussian kernel that is shown as follows:

Gk(i, j) =
1√

2πσk
e

i2+j2

2σ2
k , (14)

where k and k + 1 stand for two neighboring low-pass filters σk = 2k.
In the third step, the masked contrast map for input image IA(i, j) is calculated as:

C
′
A =

t(CA)
p

h(CA)
p + Z

. (15)

Here, t, h, p, q and Z are real scalar parameters that determine the shape of the nonlinearity of the
masking function [52].

In the fourth step, the saliency map of IA(i, j) can be calculated by Equation (16):

λA(i, j) =
C
′

A
2
(i, j)

C′A
2
(i, j) + C′B

2
(i, j)

. (16)

The information preservation value is computed as Equation (17):

QAF(i, j) =


C
′
A(i,j)

C′F(i,j)
, i f C

′
A(i, j) < C

′
F(i, j),

C
′
F(i,j)

C′A(i,j)
, otherwise.

(17)
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In the fifth step, the Global quality map can be calculated:

QGQM(i, j) = λA(i, j)QAF(i, j) + λB(i, j)QBF(i, j) . (18)

Then, the value of QCB can be obtained by averaging the global quality map:

QCB = ∑
i,j

QGQM(i, j) . (19)

3.2. Image Quality

To show the efficiency of proposed method, the comparison of fused images is provided.
It compares the quality of the fused image based on visual effects, the accuracy of focused region
detection, and the objective evaluations.

3.2.1. Multi-Focus Comparison

Figure 4a,b are the source multi-focus images. To show the details of the fused image, two
image blocks are highlighted and magnified, which are marked by red and blue frames, respectively.
The image block in the red frame is out of focus in Figure 4a, and the image block in the blue frame is
out of focus in Figure 4b. The corresponding image blocks in blue and red frames are totally focused
in Figure 4a,b, respectively. Figure 4c–e show the fused images of K-SVD, JCPD, and the proposed
method, respectively.

Figure 4. Fusion results of multi-focus image of ’Love Card and Hong-Kong’; (a,b) are source images,
(c–e) are fused image of K-means generalized singular value decomposition, joint clustering patches
dictionary and the proposed method, (f–h) are difference images between (a) and fused image (c–e),
(i–k) are difference images between (b) and fused image (c–e).
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The difference and performance of the algorithms to the fused images by three different methods
are difficult to figure out visually. In order to evaluate of fusion performances objectively, QAB/F, MI,
VIF, QY, and QCB are also used as image fusion quality measures. The fusion results of multi-focus
images using three different methods are shown in Table 1.

Table 1. Fusion performance comparison of multi-focus image pairs.

QAB/F MI V IF QY QCB

K-SVD 0.4753 4.5992 0.7705 0.6897 0.6408
JCPD 0.5331 4.5586 0.7571 0.7403 0.6317
Proposed 0.5374 4.9561 0.7778 0.7420 0.6613

The best results of each evaluation metric are highlighted by bold-face in Table 1. According
to Table 1, the proposed method has the best performance in all five types of evaluation metrics.
Particularly, for the objective evaluation metric QAB/F, the proposed method obtains higher results
than other two comparison image fusion methods. Since QAB/F is a gradient-based quality metric to
measure how well the edge information of source images is conducted to the fused image, it means
that the proposed method can get a better fused image with edge information.

3.2.2. Medical Comparison

The “brain” images are a pair of PET (Positron Emission Tomography) and MRI (Magnetic
Resonance Image) images shown in Figure 5a,b, respectively. PET images show the image of brain slices
that produces a 3D image of functional processes in the human body. MRI images also show the image
of brain slices that contain clear information of soft tissues. K-SVD, JCPD and the proposed method are
employed to merge PET and MRI images into a clear image with soft tissues and functional processes
information. The corresponding fusion results are shown in Figure 5c–e, respectively. Figure 5f–k
show the enlarged details in red and green frames of the fused images in Figure 5c–e, respectively.
Three fused images of different approaches have high quality in details, contrast, sharpness, and
brightness. Table 2 shows the objective evaluations of fusion results. Compared with K-SVD and JCPD,
the proposed method gets the largest values in all five objective evaluations.

3.2.3. Visible-Infrared Comparison

The proposed solution is used to fuse two sample images from the same scenario of the downtown
street scene. One is a visible image and the other one is an infrared image shown in Figure 6a,b,
respectively. In Figure 6a,b, the walking person is marked in the red frame and the letters in the shade
marked in the blue frame are dark, respectively. The fused images of K-SVD, JCPD and proposed
method shown in Figure 6c–e are compared. The enlarged details in the red and blue frames of the
fused images in Figure 6c–e are shown in Figure 6f–k, respectively. The walking person and the letters
in the shade are clear in all three fused images. The objective evaluations of each visible-infrared image
fusion solution are demonstrated in Table 3. Similarly, the proposed solution has the best performances
in all five objective evaluations.

Table 2. Fusion performance comparison of medical image pairs.

QAB/F MI V IF QY QCB

K-SVD 0.2886 1.8554 0.2831 0.3294 0.6700
JCPD 0.2880 1.8575 0.2829 0.3290 0.6680
Proposed 0.3088 1.8869 0.2878 0.3591 0.6854
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5. Fusion results of the medical image of the “Brain”; (a,b) are source images, (c–e) are fused
image of K-SVD, JCPD and proposed method, (f–k) are enlarged details in red and green frame of
fused image (c–e).

Table 3. Fusion performance comparison of visible-infrared image pairs.

QAB/F MI V IF QY QCB

K-SVD 0.4784 1.7713 0.3585 0.5670 0.5370
JCPD 0.5648 1.4563 0.3173 0.6562 0.4653
Proposed 0.6449 1.8398 0.3597 0.7647 0.5437
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 6. Fusion results of visible-infrared images of “Downtown Street Scenes”; (a,b) are source
images, (c–e) are fused images of K-SVD, JCPD and the proposed method, (f–k) are enlarged details in
red and blue frames of fused images (c–e).

4. Conclusions

This paper proposes a novel sparse-representation based image fusion framework, which
integrates geometric dictionary construction. A geometric image patch classification approach is
presented to cluster image patches from different source images based on the similarity of image
geometric structure. A few compact and informative sub-dictionaries are extracted from each image
patch cluster by SCC. The extracted sub-dictionaries are combined into a dictionary for sparse
representation. Then, image patches are sparsely coded into coefficients by the trained dictionary.
To obtain better edge and corner details of fusion results, the proposed solution also chooses image
block size adaptively and selects optimal coefficients during the image fusion process. The sparsely
coded coefficients are fused by the Max-L1 rule and inverted to the fused image. The proposed method
is compared with existing mainstream sparse-representation based methods in three aspects, including
multi-focus, medical, and visible-infrared comparison. The experimentation results prove that the
proposed method has the best performance in all three image scenarios. It means that geometric
information of the source image can not only reduce the size of the learned dictionary efficiently
and effectively, but also obtain a high-quality fused image. In the future, it will explore more details
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in geometric information to enhance fusion performance. Denoising, inpainting, and other image
processing techniques will be integrated into the current solution.
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