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Abstract: Heisenberg’s uncertainty principle has recently led to general measurement uncertainty
relations for quantum systems: incompatible observables can be measured jointly or in sequence only
with some unavoidable approximation, which can be quantified in various ways. The relative entropy
is the natural theoretical quantifier of the information loss when a ‘true’ probability distribution
is replaced by an approximating one. In this paper, we provide a lower bound for the amount
of information that is lost by replacing the distributions of the sharp position and momentum
observables, as they could be obtained with two separate experiments, by the marginals of any
smeared joint measurement. The bound is obtained by introducing an entropic error function,
and optimizing it over a suitable class of covariant approximate joint measurements. We fully exploit two
cases of target observables: (1) n-dimensional position and momentum vectors; (2) two components
of position and momentum along different directions. In (1), we connect the quantum bound to the
dimension n; in (2), going from parallel to orthogonal directions, we show the transition from highly
incompatible observables to compatible ones. For simplicity, we develop the theory only for Gaussian
states and measurements.
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1. Introduction

Uncertainty relations for position and momentum [1] have always been deeply related to the
foundations of Quantum Mechanics. For several decades, their axiomatization has been of ‘preparation’
type: an inviolable lower bound for the widths of the position and momentum distributions, holding in
any quantum state. Such kinds of uncertainty relations, which are now known as preparation uncertainty
relations (PURs) have been later extended to arbitrary sets of n ≥ 2 observables [2–5]. All PURs
trace back to the celebrated Robertson’s formulation [6] of Heisenberg’s uncertainty principle:
for any two observables, represented by self-adjoint operators A and B, the product of the variances
of A and B is bounded from below by the expectation value of their commutator; in formulae,
Varρ(A)Varρ(B) ≥ 1

4 |Tr{ρ[A, B]}|2, where Varρ is the variance of an observable measured in any
system state ρ. In the case of position Q and momentum P, this inequality gives Heisenberg’s relation
Varρ(Q)Varρ(P) ≥ h̄2

4 . About 30 years after Heisenberg and Robertson’s formulation, Hirschman
attempted a first statement of position and momentum uncertainties in terms of informational
quantities. This led him to a formulation of PURs based on Shannon entropy [7]; his bound was
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later refined [8,9], and extended to discrete observables [10]. Also other entropic quantities have been
used [11]. We refer to [12,13] for an extensive review on entropic PURs.

However, Heisenberg’s original intent [1] was more focused on the unavoidable disturbance that
a measurement of position produces on a subsequent measurement of momentum [14–21]. Trying to
give a better understanding of his idea, more recently new formulations were introduced, based
on a ‘measurement’ interpretation of uncertainty, rather than giving bounds on the probability
distributions of the target observables. Indeed, with the modern development of the quantum theory
of measurement and the introduction of positive operator valued measures and instruments [3,22–26],
it became possible to deal with approximate measurements of incompatible observables and to
formulate measurement uncertainty relations (MURs) for position and momentum, as well as for more
general observables. The MURs quantify the degree of approximation (or inaccuracy and disturbance)
made by replacing the original incompatible observables with a joint approximate measurement of them.
A very rich literature on this topic flourished in the last 20 years, and various kinds of MURs have been
proposed, based on distances between probability distributions, noise quantifications, conditional
entropy, etc. [12,14–21,27–32].

In this paper, we develop a new information-theoretical formulation of MURs for position and
momentum, using the notion of the relative entropy (or Kullback-Leibler divergence) of two probabilities.
The relative entropy S(p‖q) is an informational quantity which is precisely tailored to quantify the
amount of information that is lost by using an approximating probability q in place of the target
one p. Although classical and quantum relative entropies have already been used in the evaluation of
the performances of quantum measurements [24,27,30,33–40], their first application to MURs is very
recent [41].

In [41], only MURs for discrete observables were considered. The present work is a first attempt
to extend that information-theoretical approach to the continuous setting. This extension is not trivial
and reveals peculiar problems, that are not present in the discrete case. However, the nice properties of
the relative entropy, such as its scale invariance, allow for a satisfactory formulation of the entropic
MURs also for position and momentum.

We deal with position and momentum in two possible scenarios. Firstly, we consider the case
of n-dimensional position and momentum, since it allows to treat either scalar particles, or vector
ones, or even the case of multi-particle systems. This is the natural level of generality, and our
treatment extends without difficulty to it. Then, we consider a couple made up of one position and
one momentum component along two different directions of the n-space. In this case, we can see
how our theory behaves when one moves with continuity from a highly incompatible case (parallel
components) to a compatible case (orthogonal ones).

The continuous case needs much care when dealing with arbitrary quantum states and
approximating observables. Indeed, it is difficult to evaluate or even bound the relative entropy
if some assumption is not made on probability distributions. In order to overcome these technicalities
and focus on the quantum content of MURs, in this paper we consider only the case of Gaussian
preparation states and Gaussian measurement apparatuses [2,4,5,42–45]. Moreover, we identify the
class of the approximate joint measurements with the class of the joint POVMs satisfying the same
symmetry properties of their target position and momentum observables [3,23]. We are supported in
this assumption by the fact that, in the discrete case [41], simmetry covariant measurements turn out to
be the best approximations without any hypothesis (see also [17,19,20,29,32] for a similar appearance
of covariance within MURs for different uncertainty measures).

We now sketch the main results of the paper. In the vector case, we consider approximate joint
measurements M of the position Q ≡ (Q1, . . . , Qn) and the momentum P ≡ (P1, . . . , Pn). We find
the following entropic MUR (Theorem 5, Remark 14): for every choice of two positive thresholds
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ε1, ε2, with ε1ε2 ≥ h̄2/4, there exists a Gaussian state ρ with position variance matrix Aρ ≥ ε11 and
momentum variance matrix Bρ ≥ ε21 such that

S(Qρ‖M1,ρ) + S(Pρ‖M2,ρ) ≥ n (log e)
{

ln
(

1 +
h̄

2
√

ε1ε2

)
− h̄

h̄ + 2
√

ε1ε2

}
(1)

for all Gaussian approximate joint measurements M of Q and P. Here Qρ and Pρ are the distributions
of position and momentum in the state ρ, and Mρ is the distribution of M in the state ρ, with marginals
M1,ρ and M2,ρ; the two marginals turn out to be noisy versions of Qρ and Pρ. The lower bound is
strictly positive and it linearly increases with the dimension n. The thresholds ε1 and ε2 are peculiar of
the continuous case and they have a classical explanation: the relative entropy S(p‖q)→ +∞ if the
variance of p vanishes faster than the variance of q, so that, given M, it is trivial to find a state ρ enjoying
(1) if arbtrarily small variances are allowed. What is relevant in our result is that the total loss of
information S(Qρ‖M1,ρ) + S(Pρ‖M2,ρ) exceeds the lower bound even if we forbid target distributions
with small variances.

The MUR (1) shows that there is no Gaussian joint measurement which can approximate arbitrarily
well both Q and P. The lower bound (1) is a consequence of the incompatibility between Q and P and,
indeed, it vanishes in the classical limit h̄→ 0. Both the relative entropies and the lower bound in (1)
are scale invariant. Moreover, for fixed ε1 and ε2, we prove the existence and uniqueness of an optimal
approximate joint measurement, and we fully characterize it.

In the scalar case, we consider approximate joint measurements M of the position Qu = u ·Q
along the direction u and the momentum Pv = v · P along the direction v, where u · v = cos α. We find
two different entropic MURs. The first entropic MUR in the scalar case is similar to the vector case
(Theorem 3, Remark 11). The second one is (Theorem 1):

S(Qu,ρ‖M1,ρ) + S(Pv,ρ‖M2,ρ) ≥ cρ(α), (2)

cρ(α) = (log e)

ln

1 +
h̄| cos α|

2
√

Var
(
Qu,ρ

)
Var

(
Pv,ρ

)
− h̄| cos α|

h̄| cos α|+ 2
√

Var
(
Qu,ρ

)
Var

(
Pv,ρ

)
 ,

for all Gaussian states ρ and all Gaussian joint approximate measurements M of Qu and Pv. This lower
bound holds for every Gaussian state ρ without constraints on the position and momentum variances
Var

(
Qu,ρ

)
and Var

(
Pv,ρ

)
, it is strictly positive unless u and v are orthogonal, but it is state dependent.

Again, the relative entropies and the lower bound are scale invariant.
The paper is organized as follows. In Section 2, we introduce our target position and momentum

observables, we discuss their general properties and define some related quantities (spectral measures,
mean vectors and variance matrices, PURs for second order quantum moments, Weyl operators,
Gaussian states). Section 3 is devoted to the definitions and main properties of the relative and
differential (Shannon) entropies. Section 4 is a review on the entropic PURs in the continuous
case [7–9,46], with a particular focus on their lack of scale invariance. This is a flaw due to the
very definition of differential entropy, and one of the reasons that lead us to introduce relative entropy
based MURs. In Section 5 we construct the covariant observables which will be used as approximate
joint measurements of the position and momentum target observables. Finally, in Section 6 the main
results on MURs that we sketched above are presented in detail. Some conclusions are discussed in
Section 7.

2. Target Observables and States

Let us start with the usual position and momentum operators, which satisfy the canonical
commutation rules:

Q ≡ (Q1, . . . , Qn), P ≡ (P1, . . . , Pn),
[
Qi, Pj

]
= ih̄δij. (3)
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Each of the vector operators has n components; it could be the case of a single particle in one or
more dimensions (n = 1, 2, 3), or several scalar or vector particles, or the quadratures of n modes of the
electromagnetic field. We assume the Hilbert space H to be irreducible for the algebra generated by
the canonical operators Q and P. An observable of the quantum system H is identified with a positive
operator valued measure (POVM); in the paper, we shall consider observables with outcomes in Rk

endowed with its Borel σ-algebra B(Rk). The use of POVMs to represent observables in quantum
theory is standard and the definition can be found in many textbooks [22,23,26,47]; the alternative
name “non-orthogonal resolutions of the identity” is also used [3–5]. Following [5,23,26,31], a sharp
observable is an observable represented by a projection valued measure (pvm); it is standard to identify
a sharp observable on the outcome space Rk with the k self-adjoint operators corresponding to it by
spectral theorem. Two observables are jointly measurable or compatible if there exists a POVM having
them as marginals. Because of the non-vanishing commutators, each couple Qi, Pi, as well as the
vectors Q, P, are not jointly measurable.

We denote by T(H) the trace class operators on H, by S ⊂ T(H) the subset of the statistical
operators (or states, preparations), and by L(H) the space of the linear bounded operators.

2.1. Position and Momentum

Our target observables will be either n-dimensional position and momentum (vector case) or
position and momentum along two different directions of Rn (scalar case). The second case allows to
give an example ranging with continuity from maximally incompatible observables to compatible ones.

2.1.1. Vector Observables

As target observables we take Q and P as in (3) and we denote by Q(A),P(B), A, B ∈ B(Rn),
their pvm’s, that is

Qi =
∫
Rn

xiQ(dx), Pi =
∫
Rn

piP(dp). (4)

Then, the distributions in the state ρ ∈ S of a sharp position and a sharp momentum measurements
(denoted by Qρ and Pρ) are absolutely continuous with respect to the Lebesgue measure; we denote by
f (•|ρ) and g(•|ρ) their probability densities: ∀A, B ∈ B(Rn),

Qρ(A) = Tr {ρQ(A)} =
∫

A
f (x|ρ)dx, Pρ(B) = Tr {ρP(B)} =

∫
B

g(p|ρ)dp. (5)

In the Dirac notation, if |x〉 and |p〉 are the improper position and momentum eigenvectors,
these densities take the expressions f (x|ρ) = 〈x|ρ|x〉 and g(p|ρ) = 〈p|ρ|p〉, respectively. The mean
vectors and the variance matrices of these distributions will be given in (7) and (8).

2.1.2. Scalar Observables

As target observables we take the position along a given direction u and the momentum along
another given direction v:

Qu = u ·Q, Pv = v · P, with u, v ∈ Rn, |u| = |v| = 1, u · v = cos α. (6)

In this case we have [Qu, Pv] = ih̄ cos α, so that Qu and Pv are not jointly measurable, unless the
directions u and v are orthogonal.

Their pvm’s are denoted by Qu and Pv, their distributions in a state ρ by Qu,ρ and Pv,ρ, and their
corresponding probability densities by fu(•|ρ) and gv(•|ρ): ∀A, B ∈ B(R),

Qu,ρ(A) = Tr{Qu(A)ρ} =
∫

A
fu(x|ρ)dx, Pv,ρ(B) = Tr{Pv(A)ρ} =

∫
B

gv(p|ρ)dp.
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Of course, the densities in the scalar case are marginals of the densities in the vector case.
Means and variances will be given in (11).

2.2. Quantum Moments

Let S2 be the set of states for which the second moments of position and momentum are finite:

S2 :=
{

ρ ∈ S :
∫
Rn
|x|2 f (x|ρ)dx < +∞,

∫
Rn
|p|2 g(p|ρ)dp < +∞

}
.

Then, the mean vector and the variance matrix of the position Q in the state ρ ∈ S2 are

aρ
i :=

∫
Rn

xi f (x|ρ)dx ≡ Tr {ρQi} ,

Aρ
ij :=

∫
Rn

(
xi − aρ

i

) (
xj − aρ

j

)
f (x|ρ)dx ≡ Tr

{
ρ
(

Qi − aρ
i

) (
Qj − aρ

j

)}
,

(7)

while for the momentum P we have

bρ
i :=

∫
Rn

pig(p|ρ)dp ≡ Tr {ρPi} ,

Bρ
ij :=

∫
Rn

(
pi − bρ

i

) (
pj − bρ

j

)
g(p|ρ)dp ≡ Tr

{
ρ
(

Pi − bρ
i

) (
Pj − bρ

j

)}
.

(8)

For ρ ∈ S2 it is possible to introduce also the mixed ‘quantum covariances’

Cρ
ij := Tr

{
ρ
(Qi − aρ

i )(Pj − bρ
j ) + (Pj − bρ

j )(Qi − aρ
i )

2

}
. (9)

Since there is no joint measurement for the position Q and momentum P, the quantum covariances
Cρ

ij are not covariances of a joint distribution, and thus they do not have a classical probabilistic
interpretation.

By means of the moments above, we construct the three real n × n matrices Aρ, Bρ, Cρ,
the 2n-dimensional vector µρ and the symmetric 2n× 2n matrix Vρ, with

µρ :=

(
aρ

bρ

)
, Vρ :=

(
Aρ Cρ

(Cρ)T Bρ

)
. (10)

We say Vρ is the quantum variance matrix of position and momentum in the state ρ. In [2]
dimensionless canonical operators are considered, but apart from this, our matrix Vρ corresponds to
their “noise matrix in real form”; the name “variance matrix” is also used [44,48].

In a similar way, we can introduce all the moments related to the position Qu and momentum Pv

introduced in (6). For ρ ∈ S2, the means and variances are respectively

u · aρ, Var(Qu,ρ) = u · Aρu, v · bρ, Var(Pv,ρ) = v · Bρv. (11)

Similarly to (9), we have also the ‘quantum covariance’ u · Cρv ≡ v · (Cρ)Tu. Then, we collect the
two means in a single vector and we introduce the variance matrix:

µ
ρ
u,v :=

(
u · aρ

v · bρ

)
, Vρ

u,v :=

(
u · Aρu u · Cρv
u · Cρv v · Bρv

)
. (12)
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Proposition 1. Let V =

(
A C

CT B

)
be a real symmetric 2n× 2n block matrix with the same dimensions of

a quantum variance matrix. Define

V± :=

(
A C± i h̄

2 1

CT ∓ i h̄
2 1 B

)
≡ V ± i

2
Ω, with Ω :=

(
0 h̄1
−h̄1 0

)
. (13)

Then
V = Vρ for some state ρ ∈ S2 ⇐⇒ V+ ≥ 0 ⇐⇒ V− ≥ 0. (14)

In this case we have: V ≥ 0, A > 0, B > 0, and

(u′ · Au′)(v′ · Bv′) ≥
(
v′ · Cu′

)2
+

h̄2

4
(
v′ · u′

)2 , ∀u′ ∈ Rn, ∀v′ ∈ Rn. (15)

The inequalities (14) for V± tell us exactly when a (positive semi-definite) real matrix V is the quantum
variance matrix of position and momentum in a state ρ. Moreover, they are the multidimensional
version of the usual uncertainty principle expressed through the variances [2,3,5], hence they represent
a form of PURs. The block matrix Ω in the definition of V± is useful to compress formulae involving
position and momentum; moreover, it makes simpler to compare our equations with their frequent
dimensionless versions (with h̄ = 1) in the literature [43,44].

Proof. Equivalences (14) are well known, see e.g., [3] (Section 1.1.5), [5] (Equation (2.20)), and [2]
(Theorem 2). Then V = 1

2 V+ + 1
2 V− ≥ 0.

By using the real block vector

(
αu′

βv′

)
, with arbitrary α, β ∈ R and given u′, v′ ∈ Rn,

the semi-positivity (14) implies(
u′ · Au′ u′ · Cv′ ± i h̄

2 u′ · v′
v′ · CTu′ ∓ i h̄

2 v′ · u′ v′ · Bv′

)
≥ 0, ∀u′ ∈ Rn, ∀v′ ∈ Rn,

which in turn implies A ≥ 0, B ≥ 0 and (15). Then, by choosing u′ = v′ = ui, where u1, . . . , un are the
eigenvectors of A (since A is a real symmetric matrix, ui ∈ Rn for all i), one gets the strict positivity of
all the eigenvalues of A; analogously, one gets B > 0.

Inequality (15) for u′ = u and v′ = v becomes the uncertainty rule à la Robertson [6] for the
observables in (6) (a position component and a momentum component spanning an arbitrary angle α):

Var(Qu,ρ) Var(Pv,ρ) ≥ (v · Cρu)2 +
h̄2

4
(cos α)2 . (16)

Inequality (16) is equivalent to

Vρ
u,v ±

ih̄
2

cos α

(
0 1
−1 0

)
≥ 0. (17)

Since V± are block matrices, their positive semi-definiteness can be studied by means of the Schur
complements [49–51]. However, as V± are complex block matrices with a very peculiar structure,
special results hold for them. Before summarizing the properties of V± in the next proposition, we need
a simple auxiliary algebraic lemma.

Lemma 1. Let A and B be complex self-adjoint matrices such that A ≥ B ≥ 0. Then det A ≥ det B ≥ 0,
and the equality det A = det B holds iff A = B.
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Proof. Let λ↓i (A) and λ↓i (B) be the ordered decreasing sequences of the eigenvalues of A and B,
respectively. Then, by Weyl’s inequality, A ≥ B ≥ 0 implies λ↓i (A) ≥ λ↓i (B) ≥ 0 for every i [52]
(Section III.2). This gives the first statement. Moreover, if A ≥ B ≥ 0 and det A = det B, we get
λ↓i (A) = λ↓i (B) for every i. Then A = B because A− B ≥ 0 and Tr{A− B} = 0.

Proposition 2. Let V =

(
A C

CT B

)
be a real symmetric 2n × 2n matrix with the same dimensions of

a quantum variance matrix. Then V+ ≥ 0 (or, equivalently, V− ≥ 0) if and only if A > 0 and

B ≥
(

CT ∓ ih̄
2
1

)
A−1

(
C± ih̄

2
1

)
≡ CT A−1C +

h̄2

4
A−1 ∓ ih̄

2

(
A−1C− CT A−1

)
. (18)

In this case we have

B ≥ CT A−1C +
h̄2

4
A−1 ≥ h̄2

4
A−1 > 0. (19)

Moreover, we have also the following properties for the various determinants:

(det A)(det B) ≥ det V = (det A)det
(

B− CT A−1C
)
≥
(

h̄
2

)2n
, (20)

det V =

(
h̄
2

)2n
⇔ B = CT A−1C +

h̄2

4
A−1 ⇒ CA = ACT , (21)

(det A)(det B) =
(

h̄
2

)2n
⇔ B =

h̄2

4
A−1, C = 0. (22)

By interchanging A with B and C with CT in (18)–(22) equivalent results are obtained.

Proof. Since we already know that V+ ≥ 0 implies the invertibility of A, the equivalence between (14)
and (18) with A > 0 follows from [49] (Theorem 1.12 p. 34) (see also [50] (Theorem 11.6) or [51] (Lemma 3.2)).

In (19), the first inequality follows by summing up the two inequalities in (18). The last two ones
are immediate by the positivity of A−1.

The equality in (20) is Schur’s formula for the determinant of block matrices ([49], Theorem 1.1 p. 19).
Then, the first inequality is immediate by the lemma above and the trivial relation B ≥ B− CT A−1C;
the second one follows from (19):

B− CT A−1C ≥ h̄2

4
A−1 ⇒ det

(
B− CT A−1C

)
≥ det

(
h̄2

4
A−1

)
=

(h̄/2)2n

det A
.

The equality det V =
(

h̄
2

)2n
is equivalent to det

(
B− CT A−1C

)
= det

(
h̄2

4 A−1
)

; since the latter
two determinants are evaluated on ordered positive matrices by (19), they coincide if and only if
the respective arguments are equal (Lemma 1); this shows the equivalence in (21). Then, by (18),
the self-adjoint matrix ih̄

2
(

A−1C− CT A−1) is both positive semi-definite and negative semi-definite;
hence it is null, that is, CA = ACT .

Finally, B = h̄2

4 A−1 gives (det A)(det B) =
(

h̄
2

)2n
trivially. Conversely, (det A)(det B) =

(
h̄
2

)2n

implies det B = det
(

B−CT A−1C
)

by (20); since B ≥ B−CT A−1C ≥ 0 by (19), Lemma 1 then implies

CT A−1C = 0 and so C = 0.

By (18) and (19), every time three matrices A, B, C define the quantum variance matrix of a state
ρ, the same holds for A, B, C̃ = 0. This fact can be used to characterize when two positive matrices
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A and B are the diagonal blocks of some quantum variance matrix, or two positive numbers cQ and cP
are the position and momentum variances of a quantum state along the two directions u and v.

Proposition 3. Two real matrices A > 0 and B > 0, having the dimension of the square of a length and
momentum, respectively, are the diagonal blocks of a quantum variance matrix Vρ if and only if

B ≥ h̄2

4
A−1.

Two real numbers cQ > 0 and cP > 0, having the dimension of the square of a length and momentum,
respectively, are such that cQ = Var(Qu,ρ) and cP = Var(Pv,ρ) for some state ρ if and only if

cQ cP ≥
(

h̄
2

cos α

)2
.

Proof. For A and B, the necessity follows from (19). The sufficiency comes from (18) by choosing

Vρ =

(
A 0
0 B

)
.

For cQ and cP, the necessity follows from (15). The sufficiency comes from (18) with Vρ =(
A 0
0 B

)
and for example the following choices of A and B:

• if cos α = ±1, we take A = cQ 1 and B = cP 1;
• if cos α = 0, we let

A = cQ uuT +
h̄2

4cP
vvT + A′ B =

h̄2

4cQ
uuT + cP vvT + B′,

where A′ and B′ are any two scalar multiples of the orthogonal projection onto {u, v}⊥ satisfying
B′ ≥ h̄2

4 A′ −1 when restricted to {u, v}⊥;
• if cos α /∈ {0,±1}, we choose

A = cQ

[
uuT − 1

cos α
(uvT + vuT) +

2
(cos α)2 vvT

]
+ A′

B =
cP

(sin α)4

[
(sin α)2 + (cos α)4

(cos α)2 uuT − 1
cos α

(uvT + vuT) + vvT
]
+ B′,

where A′ and B′ are as in the previous item.

In the last two cases, we chose A and B in such a way that B =
cQ cP

(cos α)2 A−1 when restricted to the
linear span of {u, v}.

2.3. Weyl Operators and Gaussian States

In the following, we shall introduce Gaussian states, Gaussian observables and covariant
observables on the phase-space. In all these instances, the Weyl operators are involved; here we recall
their definition and some properties (see e.g., [4] (Section 5.2) or [5] (Section 12.2), where, however, the
definition differs from ours in that the Weyl operators are composed with the map Ω−1 of (13)).

Definition 1. The Weyl operators are the unitary operators defined by

W(x, p) := exp
{

i
h̄
(p ·Q− x · P)

}
=

n

∏
j=1

e
i
h̄ (pjQj−xjPj) =

n

∏
j=1

(
e

i
h̄ pjQj e−

i
h̄ xjPj e−

ixj pj
2h̄

)
. (23)
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The Weyl operators (23) satisfy the composition rule

W(x1, p1)W(x2, p2) = exp
{
− i

2h̄
(x1 · p2 − x2 · p1)

}
W(x1 + x2, p1 + p2);

in particular, this implies the commutation relation

W(x1, p1)W(x2, p2) = exp

{
−i
(

xT
1 pT

1

)
Ω−1

(
x2

p2

)}
W(x2, p2)W(x1, p1). (24)

These commutation relations imply the translation property

W(x, p)∗ QiW(x, p) = Qi + xi, W(x, p)∗ PiW(x, p) = Pi + pi, i = 1, . . . , n; (25)

due to this property, the Weyl operators are also known as displacement operators.
With a slight abuse of notation, we shall sometimes use the identification

W(x, p) ≡W

((
x
p

))
, (26)

where

(
x
p

)
is a block column vector belonging to the phase-space Rn ×Rn ≡ R2n; here, the first block

x is a position and the second block p is a momentum.
By means of the Weyl operators, it is possible to define the characteristic function of any

trace-class operator.

Definition 2. For any operator ρ ∈ T(H), its characteristic function is the complex valued function
ρ̂ : R2n → C defined by

ρ̂(w) := Tr {ρW(−Ωw)} , w ≡
(

k
l

)
. (27)

Note that k is the inverse of a length and l is the inverse of a momentum, so that w is a block
vector living in the space R2n ≡ Rn ×Rn regarded as the dual of the phase-space.

Instead of the characteristic function, sometimes the so called Weyl transform Tr {W(x, p)ρ} is
introduced [4,44].

By [4] (Proposition 5.3.2, Theorem 5.3.3), we have ρ̂(w) ∈ L2(R2n) and the following trace formula
holds: ∀ρ, σ ∈ T(H),

Tr{σ∗ρ} =
(

h̄
2π

)n ∫
R2n

σ̂(w) ρ̂(w)dw. (28)

As a corollary [4] (Corollary 5.3.4), we have that a state ρ ∈ S is pure if and only if(
h̄

2π

)n ∫
R2n
|ρ̂(w)|2 dw = 1.

By [53] (Lemma 3.1) or [26] (Proposition 8.5.(e)), the trace formula also implies

1
(2πh̄)n

∫
R2n

W(x, p)ρW(x, p)∗ dxdp = Tr{ρ}1, ∀ρ ∈ T(H) . (29)
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Moreover, the following inversion formula ensures that the characteristic function ρ̂ completely
characterizes the state ρ [4] (Corollary 5.3.5):

ρ =

(
h̄

2π

)n ∫
R2n

W(Ωw) ρ̂(w)dw, ∀ρ ∈ T(H) .

The last two integrals are defined in the weak operator topology.
Finally, for ρ ∈ S2, the moments (7)–(10) can be expressed as in [4] (Section 5.4):

− i
∂ρ̂(w)

∂wi

∣∣∣
0
= µ

ρ
i , − ∂2ρ̂(w)

∂wi∂wj

∣∣∣
0
= Vρ

ij + µ
ρ
i µ

ρ
j . (30)

Definition 3 ([2–5,44,48]). A state ρ is Gaussian if

ρ̂(w) = exp
{

iwTµρ − 1
2

wTVρw
}

= exp
{

i (k · aρ + l · bρ)− 1
2
(k · Aρk + l · Bρl)− k · Cρl

}
,

(31)

for a vector µρ ∈ R2n and a real 2n× 2n matrix Vρ such that Vρ
+ ≥ 0.

The condition Vρ
+ ≥ 0 is necessary and sufficient in order that the function (31) defines the

characteristic function of a quantum state [4] (Theorem 5.5.1), [5] (Theorem 12.17). Therefore,
Gaussian states are exactly the states whose characteristic function is the exponential of a second order
polynomial [4] (Equation (5.5.49)), [5] (Equation (12.80)).

We shall denote by G the set of the Gaussian states; we have G ⊂ S2 ⊂ S. By (30), the vectors
aρ, bρ and the matrices Aρ, Bρ, Cρ characterizing a Gaussian state ρ are just its first and second order
quantum moments introduced in (7)–(9). By (31), the corresponding distributions of position and
momentum are Gaussian, namely

Qρ = N (aρ; Aρ), Qu,ρ = N (u · aρ; u · Aρu), Pρ = N (bρ; Bρ), Pv,ρ = N (v · bρ; v · Bρv). (32)

Proposition 4 (Pure Gaussian states). For ρ ∈ G, we have det Vρ =
(

h̄
2

)2n
if and only if ρ is pure.

Proof. The trace formula (28) and (31) give Tr{ρ2} = (h̄/2)n
√

det Vρ , and this implies the statement.

Proposition 5 (Minimum uncertainty states). For ρ ∈ S2, we have (det Aρ)(det Bρ) =
(

h̄
2

)2n
if and only if

ρ is a pure Gaussian state and it factorizes into the product of minimum uncertainty states up to a rotation of Rn.

Proof. If (det Aρ)(det Bρ) =
(

h̄
2

)2n
, then the equivalence (22) gives Bρ = h̄2

4 (Aρ)−1, so that the
variance matrices Aρ and Bρ have a common eigenbasis u1, . . . , un. Thus, all the corresponding
couples of position Qui and momentum Pui have minimum uncertainties: Var(Qui ) Var(Pui ) = h̄2

4 .
Therefore, if we consider the factorization of the Hilbert space H = H1 ⊗ · · · ⊗Hn corresponding
to the basis u1, . . . , un, all the partial traces of the state ρ on each factor Hi are minimum uncertainty
states. Since for n = 1 the minimum uncertainty states are pure and Gaussian, the state ρ is a pure
product Gaussian state.

The converse is immediate.
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3. Relative and Differential Entropies

In this paper, we will be concerned with entropic quantities of classical type [54–56]. We express
them in ‘bits’, that is we use the base-2 logarithms: log a ≡ log2 a.

We deal only with probabilities on the measurable space
(
Rn,B(Rn)

)
which admit densities with

respect to the Lebesgue measure. So, we define the relative entropy and differential entropy only for
such probabilities; moreover, we list only the general properties used in the following.

3.1. Relative Entropy or Kullback-Leibler Divergence

The fundamental quantity is the relative entropy, also called information divergence, discrimination
information, Kullback-Leibler divergence or information or distance or discrepancy. The relative entropy of
a probability p with respect to a probability q is defined for any couple of probabilities p, q on the same
probability space.

Given two probabilities p and q on (Rn,B(Rn)) with densities f and g, respectively, the relative
entropy of p with respect to q is

S(p‖q) =
∫
Rn

f (x) log
f (x)
g(x)

dx. (33)

The value +∞ is allowed for S(p‖q); the usual convention 0 log(0/0) = 0 is understood.
The relative entropy (33) is the amount of information that is lost when q is used to approximate
p [54] (p. 51). Of course, if x is dimensioned, then the densities f and g have the same dimension
(that is, the inverse of x), and the argument of the logarithm is dimensionless, as it must be.

Proposition 6 ([56], Theorem 8.6.1). The following properties hold.

(i) S(p‖q) ≥ 0.
(ii) S(p‖q) = 0 ⇐⇒ p = q ⇐⇒ f = g a.e..

(iii) S(p‖q) is invariant under a change of the unit of measurement.
(iv) If p = N (a; A) and q = N (b; B) with invertible variance matrices A and B, then

2 S(p‖q) = (log e)

{
(a− b) · B−1 (a− b) + Tr

{
B−1 A− 1

}}
+ log

det B
det A

. (34)

As S(p‖q) is scale invariant, it quantifies a relative error for the use of q as an approximation of p,
not an absolute one.

Let us employ the relative entropy to evaluate the effect of an additive Gaussian noise ν ∼ N (b; β2)

on an independent Gaussian random variable X. If X ∼ N (a; α2), then X + ν ∼ N (a + b; α2 + β2),
and the relative entropy of the true distribution of X with respect to its disturbed version X + ν is

S(X‖X + ν) =
log e

2
b2 − β2

α2 + β2 +
1
2

log
α2 + β2

α2 .

This expression vanishes if the noise becomes negligible with respect to the true distribution, that
is if β2/α2 → 0 and b2/α2 → 0. On the other hand, S(X‖X + ν) diverges if the noise becomes too
strong with respect to the true distribution, or, in other words, if the true distribution becomes too
peaked with respect to the noise, that is, β2/α2 → +∞ or b2/α2 → +∞.

3.2. Differential Entropy

The differential entropy of an absolutely continuous random vector X with a probability density f is

H(X) := −
∫
Rn

f (x) log f (x)dx.
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This quantity is commonly used in the literature, even if it lacks many of the nice properties of
the Shannon entropy for discrete random variables. For example, H(X) is not scale invariant, and it
can be negative [56] (p. 244).

Since the density f enters in the logarithm argument, the definition of H(X) is meaningful only
when f is dimensionless, which is the same as X being dimensionless. Note that, if X is dimensioned
and c > 0 is a real parameter making X̃ = cX a dimensionless random variable, then

H(X̃) = −
∫
Rn

f (u/c)
cn log

f (u/c)
cn du = −

∫
Rn

f (x) log
f (x)
cn dx .

In the following, we shall consider the differential entropy only for dimensionless random vectors X.

Proposition 7 ([56], Section 8.6). The following properties hold.

(i) If X is an absolutely continuous random vector with variance matrix A, then

H(X) ≤ 1
2

log
(
(2πe)n det A

)
=

n
2

log (2πe) +
1
2

Tr log A.

The equality holds iff X is Gaussian with variance matrix A and arbitrary mean vector a.
(ii) If X = (X1, . . . , Xn) is an absolutely continuous random vector, then

H(X) ≤
n

∑
i=1

H(Xi).

The equality holds iff the components X1, . . . , Xn are independent.

Remark 1. In property (i) we have used the following well-known matrix identity, which follows by diagonalization:

log det A = Tr log A, ∀A > 0.

Remark 2. Property (i) yields that the differential entropy of a Gaussian random variable X ∼ N (a; α2) is

H(X) =
1
2

log
(

2πeα2
)

,

which is an increasing function of the variance α2, and thus it is a measure of the uncertainty of X. Note that
H(X) ≥ 0 iff α2 ≥ 1/(2πe).

4. Entropic PURs for Position and Momentum

The idea of having an entropic formulation of the PURs for position and momentum goes back
to [7–9]. However, we have just seen that, due to the presence of the logarithm, the Shannon differential
entropy needs dimensionless probability densities. So, this leads us to introduce dimensionless versions
of position and momentum.

Let λ > 0 be a dimensionless parameter and κ a second parameter with the dimension of a mass
times a frequency. Then, we introduce the dimensionless versions of position and momentum:

Q̃ :=
√

κ
h̄

Q, P̃ =
λ√
h̄κ

P ⇒
[

Q̃i, P̃j

]
= iλδij. (35)

We use a unique dimensional constant κ, in order to respect rotation symmetry and do not
distinguish different particles. Anyway, there is no natural link between the parameter multiplying Q
and the parameter multiplying P; this is the reason for introducing λ. As we see from the commutation
rules, the constant λ plays the role of a dimensionless version of h̄; in the literature on PURs, often λ = 1
is used [8,9,12,46].



Entropy 2017, 19, 301 13 of 36

4.1. Vector Observables

Let Q̃ and P̃ be the pvm’s of Q̃ and P̃; then, Q̃ρ and P̃ρ are their probability distributions in the
state ρ. The total preparation uncertainty is quantified by the sum of the two differential entropies
H(Q̃ρ) + H(P̃ρ). For ρ ∈ G, by Proposition 7 we get

H(Q̃ρ) + H(P̃ρ) = n log (πeλ) +
1
2

log
[(

4
h̄2

)n
(det Aρ) (det Bρ)

]
. (36)

In the case of product states of minimum uncertainty, we have (det Aρ) (det Bρ) =
(

h̄2/4
)n

;
then, by taking (20) into account, we get

inf
ρ∈G

{
H(Q̃ρ) + H(P̃ρ)

}
= n log (πeλ) . (37)

Thus, the bound (37) arises from quantum relations between Q and P; indeed, there would be no
lower bound for (36) if we could take both det Aρ and det Bρ arbitrarily small.

By item (ii) of Proposition 7, the differential entropy for the distribution of a random vector is
smaller than the sum of the entropies of its marginals; however, the final bound (37) is a tight bound
for both H(Q̃ρ) + H(P̃ρ) and ∑n

i=1 H(Q̃i,ρ) + ∑n
i=1 H(P̃i,ρ).

By the results of [8,9], the same bound (37) is obtained even if the minimization is done over all
the states, not only the Gaussian ones.

The uncertainty result (37) depends on λ, this being a consequence of the lack of scale invariance
of the differential entropy; note that the bound is positive if and only if λ > 1/(πe). Sometimes in
the literature the parameter h̄ appears in the argument of the logarithm [27,30]; this fact has to be
interpreted as the appearance of a parameter with the numerical value of h̄, but without dimensions.
In this sense the formulation (37) is consistent with both the cases with λ = 1 or λ = h̄. Sometimes the
smaller bound ln 2π appears in place of log πe [10]; this is connected to a state dependent formulation
of the entropic PUR [12] (Section V.B).

4.2. Scalar Observables

The dimensionless versions of the scalar observables introduced in (6) are

Q̃u =

√
κ
h̄

Qu, P̃v =
λ√
h̄κ

Pv ⇒
[

Q̃u, P̃v

]
= iλ cos α. (38)

We denote by Q̃u,ρ and P̃v,ρ the associated distributions in the state ρ. For ρ ∈ S2, the respective
means and variances are√

κ
h̄

u · aρ,
λ√
h̄κ

v · bρ, Var(Q̃u,ρ) =
κ
h̄

u · Aρu, Var(P̃v,ρ) =
λ2

h̄κ v · Bρv,

with
√

Var(Q̃u,ρ) Var(P̃v,ρ) ≥ λ |cos α| /2.
As in the vector case, the total preparation uncertainty is quantified by the sum of the two

differential entropies H(Q̃u,ρ) + H(P̃v,ρ). For ρ ∈ G, Proposition 7 gives

H(Q̃u,ρ) + H(P̃v,ρ) = log
(

2πe
√

Var(Q̃u,ρ) Var(P̃v,ρ)

)
. (39)

Then, we have the lower bound

inf
ρ∈G

{
H(Q̃u,ρ) + H(P̃v,ρ)

}
= log (πeλ |cos α|) = 1 + ln (π |λ cos α|)

ln 2
, (40)
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which depends on λ, but not on κ. Of course, because of (39), for Gaussian states a lower bound
for the sum H(Q̃u,ρ) + H(P̃v,ρ) is equivalent to a lower bound for the product Var(Q̃u,ρ) Var(P̃v,ρ).
By the generalization of the results of [8,9] given in [46], the bound (40) is obtained also when the
minimization is done over all the states.

Let us note that the bound in (40) is positive for |λ cos α| > 1/(πe), and it goes to −∞ for
α→ π/2, which is the case of compatible Qu,ρ and Pv,ρ. In the case α = 0, the bound (40) is the same
as (37) for n = 1.

5. Approximate Joint Measurements of Position and Momentum

In order to deal with MURs for position and momentum observables, we have to introduce
the class of approximate joint measurements of position and momentum, whose marginals we will
compare with the respective sharp observables. As done in [3,4,18,57], it is natural to characterize such
a class by requiring suitable properties of covariance under the group of space translations and velocity
boosts: namely, by approximate joint measurement of position and momentum we will mean any POVM on
the product space of the position and momentum outcomes sharing the same covariance properties of
the two target sharp observables. As we have already discussed, two approximation problems will be
of our concern: the approximation of the position and momentum vectors (vector case, with outcomes
in the phase-space Rn ×Rn), and the approximation of one position and one momentum component
along two arbitrary directions (scalar case, with oucomes in R×R). In order to treat the two cases
altogether, we consider POVMs with outcomes in Rm ×Rm ≡ R2m, which we call bi-observables; they
correspond to a measurement of m position components and m momentum components. The specific
covariance requirements will be given in the Definitions 5–7.

In studying the properties of probability measures on Rk, a very useful notion is that of the
characteristic function, that is, the Fourier cotransform of the measure at hand; the analogous
quantity for POVMs turns out to have the same relevance. Different names have been used in
the literature to refer to the characteristic function of POVMs, or, more generally, quantum instruments,
such as characteristic operator or operator characteristic function [3,24,34,44,58–62]. As a variant,
also the symplectic Fourier transform quite often appears [5] (Section 12.4.3). The characteristic
function has been used, for instance, to study the quantum analogues of the infinite-divisible
distributions [3,34,58–60,62] and measurements of Gaussian type [5,44,61]. Here, we are interested
only in the latter application, as our approximating bi-observables will typically be Gaussian. Since
we deal with bi-observables, we limit our definition of the characteristic function only to POVMs on
Rm ×Rm, which have the same number of variables of position and momentum type.

Being measures, POVMs can be used to construct integrals, whose theory is presented e.g., in [26]
(Section 4.8) and [4] (Section 2.9, Proposition 2.9.1).

Definition 4. Given a bi-observable M : B(R2m)→ L(H), the characteristic function of M is the operator
valued function M̂ : R2m → L(H), with

M̂(k, l) =
∫
R2m

ei(k·x+l·p)M(dxdp). (41)

In this definition the dimensions of the vector variables k and l are the inverses of a length and
momentum, respectively, as in the definition of the characteristic function of a state (27). This definition
is given so that Tr

{
M̂(k, l)ρ

}
is the usual characteristic function of the probability distribution Mρ

on R2m.

5.1. Covariant Vector Observables

In terms of the pvm’s (4), the translation property (25) is equivalent to the symmetry properties

W(x, p)Q(A)W(x, p)∗ = Q(A + x), W(x, p)P(B)W(x, p)∗ = P(B + p), ∀A, B ∈ B(Rn),
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and they are taken as the transformation property defining the following class of POVMs on
R2n [23,26,44,53,57].

Definition 5. A covariant phase-space observable is a bi-observable M : B(R2n)→ L(H) satisfying the
covariance relation

W(x, p)M(Z)W(x, p)∗ = M

(
Z +

(
x
p

))
, ∀Z ∈ B(R2n), ∀x, p ∈ Rn.

We denote by C the set of all the covariant phase-space observables.

The interpretation of covariant phase-space observables as approximate joint measurements of
position and momentum is based on the fact that their marginal POVMs

M1(A) = M(A×Rn), M2(B) = M(Rn × B), A, B ∈ B(Rn),

have the same symmetry properties of Q and P, respectively. Although Q and P are not jointly
measurable, the following well-known result says that there are plenty of covariant phase-space
observables [4] (Theorem 4.8.3), [63,64]. In (43) below, we use the parity operator Π on H, which is
such that

Π W(x, p)Π = W(−x,−p) = W(x, p)∗. (42)

Proposition 8. The covariant phase-space observables are in one-to-one correspondence with the states on H,
so that we have the identification S ∼ C; such a correspondence σ↔ Mσ is given by

Mσ(B) =
∫

B
Mσ(x, p)dxdp, ∀B ∈ B(R2n),

Mσ(x, p) =
1

(2πh̄)n W(x, p)ΠσΠW(x, p)∗.
(43)

The characteristic function (41) of a measurement Mσ ∈ C has a very simple structure in terms of
the characteristic function (27) of the corresponding state σ ∈ S.

Proposition 9. The characteristic function of Mσ ∈ C is given by

M̂σ(k, l) = W (−Ωw) σ̂(w), w ≡
(

k
l

)
∈ R2n, (44)

and the characteristic function of the probability Mσ
ρ is

Tr
{
M̂σ(k, l)ρ

}
= ρ̂(w)σ̂(w). (45)

In (44) we have used the identification (26). The characteristic function of a state is introduced in (27).

Proof. By the commutation relations (24) we have

W(−h̄l, h̄k)W(x, p)W(−h̄l, h̄k)∗ = ei(k·x+l·p)W(x, p).
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Then, we get

M̂σ(k, l) =
1

(2πh̄)n

∫
R2n

ei(k·x+l·p)W(x, p)ΠσΠW(x, p)∗ dxdp

=
1

(2πh̄)n

∫
R2n

W(−h̄l, h̄k)W(x, p)W(−h̄l, h̄k)∗ΠσΠW(x, p)∗ dxdp

= W(−h̄l, h̄k)Tr{W(−h̄l, h̄k)∗ΠσΠ},

where we used the formula (29). By (42) and the definition (27), we get (44). Again by (27), we get (45).

In terms of probability densities, measuring Mσ on the state ρ yields the density function
hσ(x, p|ρ) = Tr{Mσ(x, p)ρ}. Then, by (45), the densities of the marginals Mσ

1,ρ and Mσ
2 ρ are the convolutions

hσ
1 (•|ρ) = f (•|ρ) ∗ f (•|σ), hσ

2 (•|ρ) = g(•|ρ) ∗ g(•|σ), (46)

where f and g are the sharp densities introduced in (5). By the arbitrariness of the state ρ, the marginal
POVMs of Mσ turn out to be the convolutions (or ‘smearings’)

Mσ
1 (A)

∫
A

dx
∫
Rn

f (x− x′|σ)Q(dx′), Mσ
2 (B)

∫
B

dp
∫
Rn

g(p− p′|σ)P(dp′)

(see e.g., [23] (Section III, Equations (2.48) and (2.49))).
Let us remark that the distribution of the approximate position observable Mσ

1 in a state ρ is the
distribution of the sum of two independent random vectors: the first one is distributed as the sharp
position Q in the state ρ, the second one is distributed as the sharp position Q in the state σ. In this
sense, the approximate position Mσ

1 looks like a sharp position plus an independent noise given by σ.
Of course, a similar fact holds for the momentum. However, this statement about the distributions
can not be extended to a statement involving the observables. Indeed, since Q and P are incompatible,
nobody can jointly observe Mσ, Q and P, so that the convolutions (46) do not correspond to sums of
random vectors that actually exist when measuring Mσ.

5.2. Covariant Scalar Observables

Now we focus on the class of approximate joint measurements of the observables Qu and Pv

representing position and momentum along two possibly different directions u and v (see Section 2.1.2).
As in the case of covariant phase-space observables, this class is defined in terms of the symmetries of
its elements: we require them to transform as if they were joint measurements of Qu and Pv. Recall
that Qu and Pv denote the spectral measures of Qu, Pv.

Due to the commutation relation (24), the following covariance relations hold

W(x, p)Qu(A)W(x, p)∗ = Qu(A + u · x), W(x, p)Pv(B)W(x, p)∗ = Pv(B + v · p),

for all A, B ∈ B(R) and x, p ∈ Rn. We employ covariance to define our class of approximate joint
measurements of Qu and Pv.

Definition 6. A (u, v)-covariant bi-observable is a POVM M : B(R2)→ L(H) such that

W(x, p)M(Z)W(x, p)∗ = M

(
Z +

(
u · x
v · p

))
, ∀Z ∈ B(R2), ∀x, p ∈ Rn.

We denote by Cu,v the class of such bi-observables.

So, our approximate joint measurements of Qu and Pv will be all the bi-observables in the class Cu,v.
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Example 1. The marginal of a covariant phase-space observable Mσ along the directions u and v is
a (u, v)-covariant bi-observable. Actually, it can be proved that, if cos α 6= 0, all (u, v)-covariant bi-observables
can be obtained in this way.

It is useful to work with a little more generality, and merge Definitions 5 and 6 into a single notion
of covariance.

Definition 7. Suppose J is a k× 2n real matrix. A POVM M : B(Rk)→ L(H) is a J-covariant observable
on Rk if

W(x, p)M(Z)W(x, p)∗ = M

(
Z + J

(
x
p

))
, ∀Z ∈ B(Rk), ∀x, p ∈ Rn.

Thus, approximate joint observables of Qu and Pv are just J-covariant observables on R2 for the
choice of the 2× 2n matrix

J =

(
uT 0T

0T vT

)
. (47)

On the other hand, covariant phase-space observables constitute the class of 12n-covariant
observables on R2n, where 12n is the identity map of R2n.

5.3. Gaussian Measurements

When dealing with Gaussian states, the following class of bi-observables quite naturally arises.

Definition 8. A POVM M : B(R2m)→ L(H) is a Gaussian bi-observable if

M̂(k, l) = W

(
−Ω(JM)T

(
k
l

))
exp

{
i
(

kT lT
)(aM

bM

)
− 1

2

(
kT lT

)
VM

(
k
l

)}
(48)

for two vectors aM, bM ∈ Rm, a real 2m× 2n matrix JM and a real symmetric 2m× 2m matrix VM satisfying
the condition

VM ± i
2

JMΩ(JM)T ≥ 0. (49)

We set µM =

(
aM

bM

)
. The triple (µM, VM, JM) is the set of the parameters of the Gaussian observable M.

In this definition, the vector aM has the dimension of a length, and bM of a momentum; similarly,
the matrices JM, VM decompose into blocks of different dimensions. The condition (49) is necessary
and sufficient in order that the function (48) defines the characteristic function of a POVM.

For unbiased Gaussian measurements, i.e., Gaussian bi-observables with aM = bM = 0,
the previous definition coincides with the one of [5] (Section 12.4.3). It is also a particular case of the
more general definition of Gaussian observables on arbitrary (not necessarily symplectic) linear spaces
that is given in [43,44]. We refer to [5,44] for the proof that Equation (48) is actually the characteristic
function of a POVM.
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Measuring the Gaussian observable M on the Gaussian state ρ yields the probability distribution
Mρ whose characteristic function is

Tr{M̂(k, l)ρ} = ρ̂

(
(JM)T

(
k
l

))
exp

{
i
(

kT lT
)(aM

bM

)
− 1

2

(
kT lT

)
VM

(
k
l

)}

= exp

{
i
(

kT lT
) [(aM

bM

)
+ JM

(
aρ

bρ

)]
− 1

2

(
kT lT

) [
VM + JMVρ(JM)T

] (k
l

)}
;

hence the output distribution is Gaussian,

Mρ = N
(

JMµρ + µM; JMVρ(JM)T + VM
)

. (50)

5.3.1. Covariant Gaussian Observables

For Gaussian bi-observables, J-covariance has a very easy characterization.

Proposition 10. Suppose M is a Gaussian bi-observable on R2m with parameters (µM, VM, JM). Let J be any
2m× 2n real matrix. Then, the POVM M is a J-covariant observable if and only if JM = J.

Proof. For x, p ∈ Rn, we let M′ and M′′ be the two POVMs on R2m given by

M′(Z) = W(x, p)M(Z)W(x, p)∗, M′′(Z) = M

(
Z + J

(
x
p

))
, ∀Z ∈ B(R2m).

By the commutation relations (24) for the Weyl operators, we immediately get

M̂′(k, l) = W(x, p)M̂(k, l)W(x, p)∗ = exp

{
−i
(

xT pT
)

Ω−1

[
−Ω(JM)T

(
k
l

)]}
M̂(k, l)

= exp

{
−i
(

kT lT
)

JM
(

x
p

)}
M̂(k, l);

we have also

M̂′′(k, l) =
∫
R2m

exp

{
i
(

kT lT
) [(x′

p′

)
− J

(
x
p

)]}
M(dx′dp′)

= exp

{
−i
(

kT lT
)

J

(
x
p

)}
M̂(k, l).

Since M̂(k, l) 6= 0 for all k, l, by comparing the last two expressions we see that M′ = M′′ if and
only if

exp

{
−i
(

kT lT
)

JM
(

x
p

)}
= exp

{
−i
(

kT lT
)

J

(
x
p

)}
, ∀x, p ∈ Rn, ∀k, l ∈ Rm,

which in turn is equivalent to JM = J.

Vector Observables

Let us point out the structure of the Gaussian approximate joint measurements of Q and P.
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Proposition 11. A bi-observable Mσ ∈ C is Gaussian if and only if the state σ is Gaussian. In this case,
the covariant bi-observable Mσ is Gaussian with parameters

µMσ
= µσ, VMσ

= Vσ, JM
σ
= 12n.

Proof. By comparing (31), (44) and (48), and using the fact that W(x1, p1) ∝ W(x2, p2) if and only if
x1 = x2 and p1 = p2, we have the first statement. Then, for σ ∈ G, we see immediately that Mσ is
a Gaussian observable with the above parameters.

We call CG the class of the Gaussian covariant phase-space observables. By (50), observing Mσ

on a Gaussian state ρ ∈ G yields the normal probability distribution Mσ
ρ = N (µρ + µσ; Vρ + Vσ),

with marginals

Mσ
1,ρ = N (aρ + aσ; Aρ + Aσ), Mσ

2,ρ = N (bρ + bσ; Bρ + Bσ). (51)

When aσ = 0 and bσ = 0, we have an unbiased measurement.

Scalar Observables

We now study the Gaussian approximate joint measurements of the target observables Qu and Pu

defined in (6).

Proposition 12. A Gaussian bi-observable M with parameters (µM, VM, JM) is in Cu,v if and only if JM = J,
where J is given by (47). In this case, the condition (49) is equivalent to

VM
11 ≥ 0, VM

22 ≥ 0, VM
11 VM

22 ≥
h̄2

4
(cos α)2 + (VM

12 )
2. (52)

Proof. The first statement follows from Proposition 10. Then, the matrix inequality (49) reads

VM ± ih̄
2

(
0 cos α

− cos α 0

)
≥ 0,

which is equivalent to (52).

We write CG
u,v for the class of the Gaussian (u, v)-covariant phase-space observables. An observable

M ∈ CG
u,v is thus characterized by the couple (µM, VM). From (50) with JM = J given by (47),

we get that measuring M ∈ CG
u,v on a Gaussian state ρ yields the probability distribution

Mρ = N
(

µ
ρ
u,v + µM; Vρ

u,v + VM
)

with µ
ρ
u,v and Vρ

u,v given by (12). Its marginals with respect to the first
and second entry are, respectively,

M1,ρ = N
(

u · aρ + aM; Var(Qu,ρ) + VM
11

)
, M2,ρ = N

(
v · bρ + bM; Var(Pv,ρ) + VM

22

)
. (53)

Example 2. Let us construct an example of an approximate joint measurement of Qu and Pv, by using a noisy
measurement of position along u followed by a sharp measurement of momentum along v. Let ∆ be a positive
real number yielding the precision of the position measurement, and consider the POVM M on R2 given by

M(A× B) =
1√

2π∆

∫
A

exp
{
− (x−Qu)2

4∆

}
Pv(B) exp

{
− (x−Qu)2

4∆

}
dx, ∀A, B ∈ B(R).
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The characteristic function of M is

M̂(k, l) =
1√

2π∆

∫
R

eikx exp
{
− (x−Qu)2

4∆

} [∫
R

eilpPv(dp)
]

exp
{
− (x−Qu)2

4∆

}
dx

=
1√

2π∆

∫
R

exp
{

ikx− (x−Qu)2

4∆

}
eilPv exp

{
− (x−Qu)2

4∆

}
dx

=
eilPv
√

2π∆

∫
R

exp
{

ikx− (x−Qu + h̄lu · v)2

4∆

}
exp

{
− (x−Qu)2

4∆

}
dx

=
1√

2π∆
exp

{
ilPv −

(h̄l cos α)2

8∆

} ∫
R

exp
{

ikx− (x−Qu + h̄l cos α/2)2

2∆

}
dx

= exp
{

ilPv + ik
(

Qu +
h̄l cos α

2

)
− ∆

2
k2 − (h̄ cos α)2

8∆
l2
}

= W(−h̄lv, h̄ku) exp
{
−∆

2
k2 − (h̄ cos α)2

8∆
l2
}

.

Therefore, M is a Gaussian bi-observable with parameters aM = 0, bM = 0 and JM = J, where J is given

by (47) and VM
11 = ∆, VM

22 = (h̄ cos α)2

4∆ and VM
12 = 0. This implies M ∈ CG

u,v; in particular, the set CG
u,v is

non-empty. Moreover, the lower bound VM
11 VM

22 = h̄2

4 (cos α)2 is attained, cf. (52).

Example 3. Let us consider the case α = ±π/2; now the target observables Qu and Pv are compatible and
we can define a pvm M on R2 by setting M(A× B) = Qu(A)Pv(B) for all A, B ∈ B(R). Its characteristic
function is

M̂(k, l) =
∫
R

eikxQu(dx)
∫
R

eilpPv(dp) = ei(kQu+lPv) = W(−h̄lv, h̄ku).

Then, M ∈ CG
u,v with parameters aM = 0, bM = 0, VM = 0 and JM = J given by (47). Note that M can be

regarded as the limit case of the observables of the previous example when cos α = 0 and ∆ ↓ 0.

6. Entropic MURs for Position and Momentum

In the case of two discrete target observables, in [41] we found an entropic bound for the precision of
their approximate joint measurements, which we named entropic incompatibility degree. Its definition
followed a three steps procedure. Firstly, we introduced an error function: when the system is in a given
state ρ, such a function quantifies the total amount of information that is lost by approximating the
target observables by means of the marginals of a bi-observable; the error function is nothing else
than the sum of the two relative entropies of the respective distributions. Then, we considered the
worst possible case by maximizing the error function over ρ, thus obtaining an entropic divergence
quantifying the approximation error in a state independent way. Finally, we got our index of
the incompatibility of the two target observables by minimizing the entropic divergence over all
bi-observables. In particular, when symmetries are present, we showed that the minimum is attained
at some covariant bi-observables. So, the covariance followed as a byproduct of the optimization
procedure, and was not a priori imposed upon the class of approximating bi-observables.

As we shall see, the extension of the previous procedure to position and momentum target
observables is not straightforward, and peculiar problems of the continuous case arise. In order to
overcome them, in this paper we shall fully analyse only a case in which explicit computations can be
done: Gaussian preparations, and Gaussian bi-observables, which we a priori assume to be covariant.
We conjecture that the final result should be independent of these simplifications, as we shall discuss
in Section 7.

As we said in Section 5, by “approximate joint measurement” we mean “a bi-observable with the
‘right’ covariance properties”.
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6.1. Scalar Observables

Given the directions u and v, the target observables are Qu and Pv in (6) with pvm’s Qu and Pv.
For ρ ∈ G with parameters (µρ, Vρ) given in (10), the target distributions Qu,ρ and Pv,ρ are normal with
means and variances (11).

An approximate joint measurements of Qu and Pv is given by a covariant bi-observable M ∈ Cu,v;
then, we denote its marginals with respect to the first and second entry by M1 and M2, respectively.
For a Gaussian covariant bi-observable M ∈ CG

u,v with parameters (µM, VM), the distribution of M in
a Gaussian state ρ is normal,

Mρ = N
(

µ
ρ
u,v + µM; Vρ

u,v + VM
)

,

so that its marginal distributions M1,ρ and M2,ρ are normal with means u · aρ + aM and v · bρ + bM

and variances

Var
(
M1,ρ

)
= Var

(
Qu,ρ

)
+ VM

11 , Var
(
M2,ρ

)
= Var

(
Pv,ρ

)
+ VM

22 . (54)

Let us recall that |u| = 1, |v| = 1, u · v = cos α, and that by (16) and (52), we have

Var
(
Qu,ρ

)
Var

(
Pv,ρ

)
≥ h̄2

4
(cos α)2 , VM

11 VM
22 ≥

h̄2

4
(cos α)2 . (55)

6.1.1. Error Function

The relative entropy is the amount of information that is lost when an approximating distribution
is used in place of a target one. For this reason, we use it to give an informational quantification of
the error made in approximating the distributions of sharp position and momentum by means of the
marginals of a joint covariant observable.

Definition 9. Given the preparation ρ ∈ S and the covariant bi-observable M ∈ Cu,v, the error function for
the scalar case is the sum of the two relative entropies:

S(ρ,M) := S(Qu,ρ‖M1,ρ) + S(Pv,ρ‖M2,ρ). (56)

The relative entropy is invariant under a change of the unit of measurement, so that the error
function is scale invariant, too; indeed, it quantifies a relative error, not an absolute one. In the Gaussian
case the error function can be explicitly computed.

Proposition 13 (Error function for the scalar Gaussian case). For ρ ∈ G and M ∈ CG
u,v, the error function is

S(ρ,M) =
log e

2
[s(x) + s(y) + ∆(ρ,M)] , (57)

where

x :=
VM

11
Var

(
Qu,ρ

) , y :=
VM

22
Var

(
Pv,ρ

) , ∆(ρ,M) :=
(aM)2

Var
(
M1,ρ

) + (bM)2

Var
(
M2,ρ

) ,

and s : [0,+∞)→ [0,+∞) is the following C∞ strictly increasing function with s(0) = 0:

s(x) := ln (1 + x)− x
1 + x

. (58)

Proof. The statement follows by a straightforward combination of (32), (34), (53) and (56).

Note that the error function does not depend on the mixed covariances u · Cρv and VM
12 . Note also

that, if we select a possible approximation M, then the error function S(ρ,M) decreases for states ρ
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with increasing sharp variances Var
(
Qu,ρ

)
and Var

(
Pv,ρ

)
: the loss of information decreases when the

sharp distributions make the approximation error negligible. Finally, note that

s(x) + s(y) = ln[(1 + x)(1 + y)] + (1 + x)−1 + (1 + y)−1 − 2,

1 + x =
Var

(
M1,ρ

)
Var

(
Qu,ρ

) , 1 + y =
Var

(
M2,ρ

)
Var

(
Pv,ρ

) .

This means that, apart from the term ∆(ρ,M) due to the bias, our error function S(ρ,M) only
depends on the two ratios “variance of the approximating distribution over variance of the target
distribution”. Thus, in order to optimize the error function, one has to optimize these two ratios.

We use formula (57) to firstly give a state dependent MUR, and then, following the scheme of [41],
a state independent MUR.

A lower bound for the error function can be found by minimizing it over all possible approximate
joint measurements of Qu and Pv. First of all, let us remark that this minimization makes sense because
we consider only (u, v)-covariant bi-observables: if we minimized over all possible bi-observables,
then the minimum would be trivially zero for every given preparation ρ. Indeed, the trivial bi-observable
M(A× B) = Qu,ρ(A)Pv,ρ(B)1 yields S(ρ,M) = 0.

When minimizing the error function over all (u, v)-covariant bi-observables, both the minimum
and the best measurement attaining it are state dependent. When α = ±π/2, the two target
observables are compatible, so that their joint measurement trivially exists (see Example 3) and
we get infM∈Cu,v S(ρ,M) = 0. In order to have explicit results for any angle α, we consider only the
Gaussian case.

Theorem 1 (State dependent MUR, scalar observables). For every ρ ∈ G and M ∈ CG
u,v,

S(Qu,ρ‖M1,ρ) + S(Pv,ρ‖M2,ρ) ≥ cρ(α), (59)

where the lower bound is

cρ(α) = s
(
zρ

)
log e

= (log e)

ln

1 +
h̄| cos α|

2
√

Var
(
Qu,ρ

)
Var

(
Pv,ρ

)
− h̄| cos α|

h̄| cos α|+ 2
√

Var
(
Qu,ρ

)
Var

(
Pv,ρ

)
 ,

(60)

with
zρ :=

h̄ |cos α|

2
√

Var
(
Qu,ρ

)
Var

(
Pv,ρ

) ∈ [0, 1]. (61)

The lower bound is tight and the optimal measurement is unique: cρ(α) = S(ρ,M∗), for a unique
M∗ ∈ CG

u,v; such a Gaussian (u, v)-covariant bi-observable is characterized by

µM∗ = 0, VM∗
12 = 0, VM∗

11 =
h̄
2

√
Var

(
Qu,ρ

)
Var

(
Pv,ρ

) |cos α| , VM∗
22 =

h̄
2

√
Var

(
Pv,ρ

)
Var

(
Qu,ρ

) |cos α| . (62)

Proof. As already discussed, the case cos α = 0 is trivial. If cos α 6= 0, we have to minimize the error
function (57) over M. First of all we can eliminate the positive term ∆(ρ,M) by taking an unbiased
measurement. Then, since s is an increasing function, by the second condition in (55) we can also take
VM∗

11 VM∗
22 = h̄2

4 (cos α)2. This implies VM∗
12 = 0 by (52). In this case the error function (57) reduces to

S(ρ,M∗) =
log e

2

(
s(x) + s(z 2

ρ /x)
)

, x =
VM∗

11
Var

(
Qu,ρ

) ,
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with zρ given by (61); by the first of (55), we have zρ ∈ (0, 1].
Now, we can minimize the error function with respect to x by studying its first derivative:

d
dx

(
s(x) + s(z 2

ρ /x)
)
=

x
(1 + x)2 −

z 4
ρ

x(z 2
ρ + x)2 =

(
x2 − z 2

ρ

) (
x2 + 2z 2

ρ x + z 2
ρ

)
x
(

z 2
ρ + x

)2
(1 + x)2

.

Having x > 0, we immediately get that x = zρ gives the unique minimum. Thus

S(ρ,M) ≥ S(ρ,M∗) = s(zρ) log e = log(1 + zρ)−
zρ

1 + zρ
log e,

and

VM∗
11 = zρ Var

(
Qu,ρ

)
≡ h̄

2

√
Var

(
Qu,ρ

)
Var

(
Pv,ρ

) |cos α| , VM∗
22 = zρ Var

(
Pv,ρ

)
≡ h̄

2

√
Var

(
Pv,ρ

)
Var

(
Qu,ρ

) |cos α| ,

which conclude the proof.

Remark 3. The minimum information loss cρ(α) depends on both the preparation ρ and the angle α. When
α 6= ±π/2, that is when the target observables are not compatible, cρ(α) is strictly grater than zero. This is
a peculiar quantum effect: given ρ, u and v, there is no Gaussian approximate joint measurement of Qu and Pv

that can approximate them arbitrarily well. On the other side, in the limit α→ ±π/2, the lower bound cρ(α)

goes to zero; so, the case of commuting target observables is approached with continuity.

Remark 4. The lower bound cρ(α) goes to zero also in the classical limit h̄ → 0. This holds for every angle
α and every Gaussian state ρ.

Remark 5. Another case in which cρ(α)→ 0 is the limit of large uncertainty states, that is, if we let the product
Var

(
Qu,ρ

)
Var

(
Pv,ρ

)
→ +∞: our entropic MUR disappears because, roughly speaking, the variance of (at

least) one of the two target observables goes to infinity, its relative entropy vanishes by itself, and an optimal
covariant bi-observable M∗ has to take care of (at most) only the other target observable.

Remark 6. Actually, something similar to the previous remark happens also at the macroscopic limit,
and does not require the measuring instrument to be an optimal one; indeed, unbiasedness is enough in
this case. This happens because the error function S(ρ,M) quantifies a relative error; even if the measurement
approximation M is fixed, such an error can be reduced by suitably changing the preparation ρ. Indeed, if we
consider the position and momentum of a macroscopic particle, for instance the center of mass of many particles,
it is natural that its state has much larger position and momentum uncertainties than the intrinsic uncertainties

of the measuring instrument; that is, VM
11

Var(Qu,ρ)
� 1 and VM

22
Var(Pv,ρ)

� 1, implying that the error function (57) is

negligible. In practice, this is a classical case: the preparation has large position and momentum uncertainties
and the measuring instrument is relatively good. In this situation we do not see the difference between the joint
measurement of position and momentum and their separate sharp observations.

Remark 7. The optimal approximating joint measurement M∗ ∈ CG
u,v is unique; by (62) it depends on the

preparation ρ one is considering, as well as on the directions u and v. A realization of M∗ is the measuring
procedure of Example 2.

Remark 8. The MUR (59) is scale invariant, as both the error function S(ρ,M) and the lower bound cρ(α) are such.
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Remark 9. For cos α 6= 0, we get infM∈CG
u,v

S(ρ,M) = s(zρ) log e, where zρ is defined by (61). As zρ ranges

in the interval (0, 1], the quantity infM∈CG
u,v

S(ρ,M) takes all the values in the interval
(

0, 1− log e
2

]
, so that

sup
ρ∈G

inf
M∈CG

u,v

S(ρ,M) = 1− log e
2

. (63)

In order to get this result, we needed cos α 6= 0; however, the final result does not depend on α. Therefore,
in the supρ infM-approach of (63), the continuity from quantum to classical is lost.

6.1.2. Entropic Divergence of Qu, Pv from M

Now we want to find an entropic quantification of the error made in observing M ∈ Cu,v as
an approximation of Qu and Pv in an arbitrary state ρ. The procedure of [41], already suggested
in [19] (Section VI.C) for a different error function, is to consider the worst case by maximizing the
error function over all the states. However, in the continuous framework this is not possible for the
error function (56); indeed, from (57) we get supρ∈G S(ρ,M) = +∞ even if we restrict to unbiased
covariant bi-observables.

Anyway, the reason for S(ρ,M) to diverge is classical: it depends only on the continuous nature of
Qu and Pv, without any relation to their (quantum) incompatibility. Indeed, as we noted in Section 3.1,
if an instrument measuring a random variable X ∼ N (a; α2) adds an independent noise ν ∼ N (b; β2),
thus producing an output X + ν ∼ N (a + b; α2 + β2), then the relative entropy S(X‖X + ν) diverges
for α2 → 0; this is what happens if we fix the noise and we allow for arbitrarily peaked preparations.
Thus, the sum S(Qu,ρ‖M1,ρ) + S(Pv,ρ‖M2,ρ) diverges if, fixed M, we let Var(Qu,ρ) or Var(Pv,ρ) go to 0.

The difference between the classical and quantum frameworks emerges if we bound from below
the variances of the sharp position and momentum observables. Indeed, in the classical framework
we have infb,β2 supα2≥ε S(X‖X + ν) = 0 for every ε > 0; the same holds for the sum of two relative
entropies if no relation exists between the two noises. On the contrary, in the quantum framework the
entropic MURs appear due to the relation between the position and momentum errors occurring in
any approximate joint measurement.

In order to avoid that S(ρ,M) → +∞ due to merely classical effects, we thus introduce the
following subset of the Gaussian states:

Gu,v
ε :=

{
ρ ∈ G : Var

(
Qu,ρ

)
≥ ε1, Var

(
Pv,ρ

)
≥ ε2

}
, εi > 0, (64)

and we evaluate the error made in approximating Qu and Pv with the marginals of a (u, v)-covariant
bi-observable by maximizing the error function over all these states.

Definition 10. The Gaussian ε-entropic divergence of Qu,Pv from M ∈ Cu,v is

DG
ε (Qu,Pv‖M) := sup

ρ∈Gu,v
ε

S(ρ,M). (65)

For Gaussian M, depending on the choice of the thresholds ε1 and ε2, the divergence
DG

ε (Qu,Pv‖M) can be easily computed or at least bounded.

Theorem 2. Let the bi-observable M ∈ CG
u,v be fixed.

(i) For ε1ε2 ≥
h̄2

4
(cos α)2, the divergence DG

ε (Qu,Pv‖M) is given by

DG
ε (Qu,Pv‖M) = S(ρε(u, v),M) =

log e
2

[s(xε) + s(yε) + ∆(ε;M)] , (66)
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where ρε(u, v) is any Gaussian state with Var
(
Qu,ρε(u,v)

)
= ε1 and Var

(
Pv,ρε(u,v)

)
= ε2, and

xε :=
VM

11
ε1

, yε :=
VM

22
ε2

, ∆(ε; σ) :=
(aM)2

VM
11 + ε1

+
(bM)2

VM
22 + ε2

.

(ii) For ε1ε2 <
h̄2

4
(cos α)2, the divergence DG

ε (Qu,Pv‖M) is bounded from below by

DG
ε (Qu,Pv‖M) ≥ S(ρε(u, v),M) =

log e
2

[s(xε) + s(yε) + ∆(ε;M)] , (67)

where ρε(u, v) is any Gaussian state with Var
(
Qu,ρε(u,v)

)
= ε1 and Var

(
Pv,ρε(u,v)

)
=

h̄2

4ε1
(cos α)2, and

xε :=
VM

11
ε1

, yε :=
4ε1 VM

22

h̄2 (cos α)2 , ∆(ε; σ) :=
(aM)2

VM
11 + ε1

+
(bM)2

VM
22 + h̄2

4ε1
(cos α)2

.

The existence of the above states ρε(u, v) is guaranteed by Proposition 3.

Proof. By Proposition 3, maximizing the error function over the states in Gu,v
ε is the same as

maximizing (57) over the parameters Var
(
Qu,ρ

)
and Var

(
Pv,ρ

)
satisfying (55) and (64) (note that

in the bias ∆(ρ,M), the variances VarM1,ρ and VarM2,ρ depend on Var
(
Qu,ρ

)
and Var

(
Pv,ρ

)
by (54)).

(i) In the case ε1ε2 ≥
h̄2

4
(cos α)2, the thresholds themselves satisfy Heisenberg uncertainty relation,

and so equality (66) follows from the expression (57) and the fact the functions s(x), s(y), ∆(ρ,M)

are decreasing in Var
(
Qu,ρ

)
and Var

(
Pv,ρ

)
.

(ii) In the case ε1ε2 <
h̄2

4
(cos α)2, we have to take into account the relation (55) for Var

(
Qu,ρ

)
and Var

(
Pv,ρ

)
: the supremum of S(ρ,M) is achieved when Var

(
Qu,ρ

)
Var

(
Pv,ρ

)
= h̄2

4 (cos α)2,
with Var

(
Qu,ρ

)
≥ ε1 and Var

(
Pv,ρ

)
≥ ε2. Then inequality (67) follows by choosing Var

(
Qu,ρ

)
=

ε1 and Var
(
Pv,ρ

)
=

h̄2

4ε1
(cos α)2.

Remark 10. The conditions on the states ρε(u, v) do not depend on M, but only on the parameters defining
Gu,v

ε . Thus, in the case ε1ε2 ≥ h̄2

4 (cos α)2, any choice of ρε(u, v) yields a state which is the worst one for every
Gaussian approximate joint measurement M.

6.1.3. Entropic Incompatibility Degree of Qu and Pv

The last step is to optimize the state independent ε-entropic divergence (65) over all the approximate
joint measurements of Qu and Pv. This is done in the next definition.

Definition 11. The Gaussian ε-entropic incompatibility degree of Qu, Pv is

cG
inc(Qu,Pv; ε) := inf

M∈CG
u,v

DG
ε (Qu,Pv‖M) ≡ inf

M∈CG
u,v

sup
ρ∈Gu,v

ε

S(ρ,M). (68)

Again, depending on the choice of the thresholds ε1 and ε2, the entropic incompatibility degree
cG

inc(Qu,Pv; ε) can be easily computed or at least bounded.
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Theorem 3. (i) For ε1ε2 ≥
h̄2

4
(cos α)2, the incompatibility degree cG

inc(Qu,Pv; ε) is given by

cG
inc(Qu,Pv; ε) = (log e)

{
ln
(

1 +
h̄ |cos α|
2
√

ε1ε2

)
− h̄ |cos α|

2
√

ε1ε2 + h̄ |cos α|

}
. (69)

The infimum in (68) is attained and the optimal measurement is unique, in the sense that

cG
inc(Qu,Pv; ε) = DG

ε (Qu,Pv‖Mε) (70)

for a unique Mε ∈ CG
u,v; such a bi-observable is characterized by

aMε = 0, bMε = 0, VMε
11 =

h̄
2

√
ε1

ε2
|cos α| , VMε

22 =
h̄
2

√
ε2

ε1
|cos α| , VMε

12 = 0. (71)

(ii) For ε1ε2 <
h̄2

4
(cos α)2, the incompatibility degree cG

inc(Qu,Pv; ε) is bounded from below by

cG
inc(Qu,Pv; ε) ≥ (log e)

{
ln (2)− 1

2

}
. (72)

The latter bound is

(log e)
{

ln (2)− 1
2

}
= S

(
ρε(u, v),Mε

)
= inf

M∈CG
u,v

S
(
ρε(u, v),M

)
, (73)

where the state ρε(u, v) is defined in item (ii) of Theorem 2 and Mε is the bi-observable in CG
u,v such that

aMε = 0, bMε = 0, VMε
11 = ε1, VMε

22 =
h̄2

4ε1
(cos α)2 , VMε

12 = 0. (74)

Proof. (i) In the case ε1ε2 ≥
h̄2

4
(cos α)2, due to (66), the proof is the same as that of Theorem 1 with

the replacements Var
(
Qu,ρ

)
7→ ε1 and Var

(
Pv,ρ

)
7→ ε2.

(ii) In the case ε1ε2 <
h̄2

4
(cos α)2, starting from (67), the proof is the same as that of Theorem 1 with

the replacements Var
(
Qu,ρ

)
7→ ε1 and Var

(
Pv,ρ

)
7→ h̄2

4ε1
(cos α)2.

Remark 11 (State independent MUR, scalar observables). By means of the above results, we can formulate
a state independent entropic MUR for the position Qu and the momentum Pv in the following way. Chosen two
positive thresholds ε1 and ε2, there exists a preparation ρε(u, v) ∈ Gu,v

ε (introduced in Theorem 2) such that,
for all Gaussian approximate joint measurements M of Qu and Pv, we have

S(Qu,ρε(u,v)‖M1,ρε(u,v)) + S(Pv,ρε(u,v)‖M2,ρε(u,v))

≥


(log e)

{
ln
(

1 +
h̄ |cos α|
2
√

ε1ε2

)
− h̄ |cos α|

2
√

ε1ε2 + h̄ |cos α|

}
, if ε1ε2 ≥

h̄2

4
(cos α)2 ,

(log e)
{

ln (2)− 1
2

}
, if ε1ε2 <

h̄2

4
(cos α)2 .

(75)

The inequality follows by (66) and (69) in the case ε1ε2 ≥ h̄2

4 (cos α)2, and (73) in the case

ε1ε2 < h̄2

4 (cos α)2.
What is relevant is that, for every approximate joint measurement M, the total information loss S(ρ,M)

does exceed the lower bound (75) even if the set of states Gu,v
ε forbids preparations ρ with too peaked target
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distributions. Indeed, without the thresholds ε1, ε2, it would be trivial to exceed the lower bound (75), as we
noted in Section 6.1.2.

We also remark that, chosen ε1 and ε2, we found a single state ρε(u, v) in Gu,v
ε that satisfies (75) for every

M, so that ρε(u, v) is a ‘bad’ state for all Gaussian approximate joint measurements of position and momentum.
When ε1ε2 ≥ h̄2

4 (cos α)2, the optimal approximate joint measurement Mε is unique in the class of
Gaussian (u, v)-covariant bi-observables; it depends only on the class of preparations Gu,v

ε : it is the best
measurement for the worst choice of the preparation in the class Gu,v

ε .

Remark 12. The entropic incompatibility degree cG
inc(Qu,Pv; ε) is strictly positive for cos α 6= 0 (incompatible

target observables) and it goes to zero in the limits α→ ±π/2 (compatible observables), h̄→ 0 (classical limit),
and ε1ε2 → ∞ (large uncertainty states).

Remark 13. The scale invariance of the relative entropy extends to the error function S(ρ,M), hence to the
divergence DG

ε (Qu,Pv‖M) and the entropic incompatibility degree cG
inc(Qu,Pv; ε), as well as the entropic MUR (75).

6.2. Vector Observables

Now the target observables are Q and P given in (3), with pvm’s Q and P; the approximating
bi-observables are the covariant phase-space observables C of Definition 5. Each bi-observable M ∈ C

is of the form M = Mσ for some σ ∈ S, where Mσ is given by (43). CG is the subset of the Gaussian
bi-observables in C, and Mσ ∈ CG if and only if σ is a Gaussian state.

We proceed to define the analogues of the scalar quantities introduced in Sections 6.1.1–6.1.3.
In order to do it, in the next proposition we recall some known results on matrices.

Proposition 14 ([50–52,65]). Let M1 and M2 be n× n complex matrices such that M1 > M2 > 0. Then,
we have 0 < M−1

1 < M−1
2 . Moreover, if s : R+ → R is a strictly increasing continuous function, we have

Tr{s(M1)} > Tr{s(M2)}.

6.2.1. Error Function

Definition 12. Given the preparation ρ ∈ S and the covariant phase-space observable Mσ, with σ ∈ S, the error
function for the vector case is the sum of the two relative entropies:

S(ρ,Mσ) := S(Qρ‖Mσ
1,ρ) + S(Pρ‖Mσ

2,ρ). (76)

As in the scalar case, the error function is scale invariant, it quantifies a relative error, and we
always have S(ρ,Mσ) > 0 because position and momentum are incompatible. Indeed, since the marginals
of a bi-observable Mσ ∈ C turn out to be convolutions of the respective sharp observables Q and P with
some probability densities on Rn, Qρ 6= Mσ

1,ρ and Pρ 6= Mσ
2,ρ for all states ρ; this is an easy consequence,

for instance, of Problem 26.1, p. 362, in [66].
In the Gaussian case the error function can be explicitly computed.

Proposition 15 (Error function for the vector Gaussian case). For ρ, σ ∈ G, the error function has the two
equivalent expressions:

S(ρ,Mσ) =
log e

2

[
Tr
{

s(Eρ,σ) + s(Fρ,σ)
}
+ aσ · (Aρ + Aσ)−1aσ + bσ · (Bρ + Bσ)−1bσ

]
(77a)

=
log e

2

[
Tr
{

s(N−1
ρ,σ ) + s(R−1

ρ,σ)
]
+ aσ · (Aρ + Aσ)−1aσ + bσ · (Bρ + Bσ)−1bσ

]
, (77b)

where the function s is defined in (58), and

Eρ,σ := (Aρ)−1/2 Aσ(Aρ)−1/2, Fρ,σ := (Bρ)−1/2Bσ(Bρ)−1/2, (78a)
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Nρ,σ := (Aσ)−1/2 Aρ(Aσ)−1/2, Rρ,σ := (Bσ)−1/2Bρ(Bσ)−1/2. (78b)

Proof. First of all, recall that

Qρ = N (aρ; Aρ), Mσ
1,ρ = N (aρ + aσ; Aρ + Aσ)

Pρ = N (bρ; Bρ), Mσ
2,ρ = N (bρ + bσ; Bρ + Bσ).

A direct application of (34) yields

S(Qρ‖Mσ
1,ρ) =

1
2

log
det(Aρ + Aσ)

det Aρ +
log e

2

[
Tr
{
(Aρ + Aσ)−1 Aρ − 1

}
+ aσ · (Aρ + Aσ)−1aσ

]
.

We can transform this equation by using

det (Aσ + Aρ)

det Aρ = det
[
(Aρ)−1/2 (Aσ + Aρ) (Aρ)−1/2

]
= det

(
1+ Eρ,σ

)
,

ln det
(
1+ Eρ,σ

)
= Tr

{
ln
(
1+ Eρ,σ

)}
,

Tr
{
(Aρ + Aσ)−1 Aρ − 1

}
= Tr

{
(Aρ)1/2(Aρ + Aσ)−1(Aρ)1/2 − 1

}
= −Tr

{
(1+ Eρ,σ)

−1Eρ,σ

}
.

This gives

S(Qρ‖Mσ
1,ρ) =

log e
2

[
Tr{s(Eρ,σ)}+ aσ · (Aρ + Aσ)−1aσ

]
.

In the same way a similar expression is obtained for S(Pρ‖Mσ
2,ρ) and (77a) is proved.

On the other hand, by using

ln
det (Aσ + Aρ)

det Aρ = ln
det

(
1+ Nρ,σ

)
det Nρ,σ

= ln det
(
1+ N−1

ρ,σ

)
= Tr

{
ln
(
1+ N−1

ρ,σ

)}
,

Tr
{
(Aρ + Aσ)−1 Aρ − 1

}
= −Tr

{
(Aρ + Aσ)−1 Aσ

}
= −Tr

{(
1+ N−1

ρ,σ

)−1
N−1

ρ,σ

}
,

and the analogous expressions involving Bρ and Rρ,σ, one gets (77b).

State Dependent Lower Bound

In principle, a state dependent lower bound for the error function could be found by analogy with
Theorem 1, by taking again the infimum over all joint covariant measurements, that is infσ S(ρ,Mσ).
By considering only Gaussian states ρ and measurements Mσ, from (18), (77a) and (78a), the infimum
over σ ∈ G can be reduced to an infimum over the matrices Aσ:

inf
σ∈G

S(ρ,Mσ) =
log e

2
inf
Aσ

Tr

{
s
(
(Aρ)−1/2 Aσ(Aρ)−1/2

)
+ s

(
h̄2

4
(Bρ)−1/2(Aσ)−1(Bρ)−1/2

)}
.

The above equality follows since the monotonicity of s (Proposition 14) implies that the trace term
in (77a) attains its minimum when Bσ = h̄2

4 (Aρ)−1. However, it remains an open problem to explicitly
compute the infimum over the matrices Aσ when the preparation ρ is arbitrary.

Nevertheless, the computations can be done at least for a preparation ρ∗ of minimum uncertainty
(Proposition 5). Indeed, by (22) we get

inf
σ∈G

S(ρ∗,Mσ) =
log e

2
inf
Aσ

Tr
{

s
(
Eρ,σ

)
+ s

(
E −1

ρ,σ

)}
.
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Now we can diagonalize Eρ,σ and minimize over its eigenvalues; since s(x) + s(x−1) attains its
minimum value at x = 1, this procedure gives Eρ,σ = 1. So, by denoting by σ∗ the state giving the
minimum, we have

Aσ∗ = Aρ∗ , Bσ∗ = Bρ∗ =
h̄2

4
(Aρ∗)−1 , (79)

inf
σ∈G

S(ρ∗,Mσ) = S(ρ∗,Mσ∗) = ns(1) log e. (80)

For an arbitrary ρ ∈ G, we can use the last formula to deduce an upper bound for infσ∈G S(ρ,Mσ).
Indeed, if ρ∗ is a minimum uncertainty state with Aρ∗ = Aρ, then Bρ ≥ h̄2

4 (Aρ)−1 = Bρ∗ by (19),
and, using again the state σ∗ of (79), we find

inf
σ∈G

S(ρ,Mσ) ≤ S(ρ,Mσ∗) ≤ S(ρ∗,Mσ∗) = ns(1) log e.

The second inequality in the last formula follows from (77b), (78b) and the monotonicity of s
(Proposition 14).

6.2.2. Entropic Divergence of Q,P from Mσ

In order to define a state independent measure of the error made in regarding the marginals of
Mσ as approximations of Q and P, we can proceed along the lines of the scalar case in Section 6.1.2.
To this end, we introduce the following vector analogue of the Gaussian states defined in (64):

Gε := {ρ ∈ G : Aρ ≥ ε11, Bρ ≥ ε21} , ε ≡ (ε1, ε2), εi > 0. (81)

In the vector case, Definition 10 then reads as follows.

Definition 13. The Gaussian ε-entropic divergence of Q,P from Mσ ∈ C is

DG
ε (Q,P‖Mσ) := sup

ρ∈Gε

S(ρ,Mσ). (82)

As in the scalar case, when Mσ is Gaussian, depending on the choice of the product ε1ε2, we can
compute the divergence DG

ε (Q,P‖Mσ) or at least bound it from below.

Theorem 4. Let the bi-observable Mσ ∈ CG be fixed.

(i) For ε1ε2 ≥
h̄2

4
, the divergence DG

ε (Q,P‖Mσ) is given by

DG
ε (Q,P‖Mσ) = S(ρε,Mσ) =

log e
2

[
Tr {s (Aσ/ε1) + s (Bσ/ε2)}

+ aσ · (Aσ + ε11)
−1aσ + bσ · (Bσ + ε21)

−1bσ
]
, (83)

where ρε is any Gaussian state with Aρε = ε11 and Bρε = ε21.

(ii) For ε1ε2 <
h̄2

4
, the divergence DG

ε (Q,P‖Mσ) is bounded from below by

DG
ε (Q,P‖Mσ) ≥ S(ρε,Mσ) =

log e
2

[
Tr
{

s (Aσ/ε1) + s
(

4ε1Bσ/h̄2
)}

+ aσ · (Aσ + ε11)
−1aσ + bσ ·

(
Bσ +

h̄2

4ε1
1

)−1

bσ

]
, (84)
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where ρε is any Gaussian state with Aρε = ε11 and Bρε =
h̄2

4ε1
1.

Proof. (i) In the case ε1ε2 ≥
h̄2

4
, for ρ ∈ Gε we have Nρ,σ ≥ ε1(Aσ)−1 and Rρ,σ ≥ ε2(Bσ)−1;

by Proposition 14 we get

Tr{s(N−1
ρ,σ )} ≤ Tr {s (Aσ/ε1)} , Tr{s(R−1

ρ,σ)} ≤ Tr {s (Bσ/ε2)} ,

(Aρ + Aσ)−1 ≤ (ε11+ Aσ)−1, (Bρ + Bσ)−1 ≤ (ε21+ Bσ)−1.

By using these inequalities in the expression (77b), we get (83).

(ii) In the case ε1ε2 <
h̄2

4
, the lower bound (84) follows by evaluating S(ρ,Mσ) at the state ρ = ρε ∈ Gε

with Aρε = ε11 and Bρε =
h̄2

4ε1
1.

Note that ρε does not depend on σ, but only on the parameters defining Gε: again, in the

case ε1ε2 ≥
h̄2

4
, the error attains its maximum at a state which is independent of the approximate

measurement.

6.2.3. Entropic Incompatibility Degree of Q and P

By analogy with Section 6.1.3, we can optimize the ε-entropic divergence over all the approximate
joint measurements of Q and P.

Definition 14. The Gaussian ε-entropic incompatibility degree of Q and P is

cG
inc(Q,P; ε) := inf

σ∈G
DG

ε (Q,P‖Mσ) ≡ inf
σ∈G

sup
ρ∈Gε

S(ρ,Mσ). (85)

Again, depending on the product ε1ε2, we can compute or at least bound cG
inc(Q,P; ε) from below.

Theorem 5. (i) For ε1ε2 ≥
h̄2

4
, the incompatibility degree cG

inc(Q,P; ε) is given by

cG
inc(Q,P; ε) = n (log e)

{
ln
(

1 +
h̄

2
√

ε1ε2

)
− h̄

2
√

ε1ε2 + h̄

}
. (86)

The infimum in (85) is attained and the optimal measurement is unique, in the sense that

cG
inc(Q,P; ε) = DG

ε (Q,P‖Mσε) (87)

for a unique σε ∈ G; such a state is the minimal uncertainty state characterized by

aσε = 0, bσε = 0, Aσε =
h̄
2

√
ε1

ε2
1, Bσε =

h̄
2

√
ε2

ε1
1, Cσε = 0. (88)

(ii) For ε1ε2 <
h̄2

4
(cos α)2, the incompatibility degree cG

inc(Q,P; ε) is bounded from below by

cG
inc(Q,P; ε) ≥ n(log e)

{
ln (2)− 1

2

}
. (89)
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The latter bound is

n(log e)
{

ln (2)− 1
2

}
= S(ρε,Mσε) = inf

σ∈G
S(ρε,Mσ), (90)

where the preparation ρε is defined in item (ii) of Theorem 4 and σε is the state in G such that

aσε = 0, bσε = 0, Aσε = ε1 1, Bσε =
h̄2

4ε1
1, Cσε = 0. (91)

Proof. (i) In the case ε1ε2 ≥
h̄2

4
, from the expression (83) we get immediately aσε = 0, bσε = 0 and

by (19) we have Bσ ≥ h̄2

4 (Aσ)−1. So, by (83) and Propositions 3 and 14, we get Bσ = h̄2

4 (Aσ)−1,
and

inf
σ∈G

sup
ρ∈Gε

S(ρ,Mσ) =
log e

2
inf
Aσ

Tr

{
s (Aσ/ε1) + s

(
h̄2

4ε2
(Aσ)−1

)}
.

By minimizing over all the eigenvalues of Aσ, we get the minimum (86), which is attained if and
only if Aσ is as in (88). Hence, Aσε and Bσε are as in (88). This implies that any optimal state σε is
a minimum uncertainty state; so, Cσε = 0 and the state σε is unique.

(ii) In the case ε1ε2 <
h̄2

4
, by (19) and Proposition 14, inequality (84) implies

inf
σ∈G

sup
ρ∈Gε

S(ρ,Mσ) ≥ log e
2

inf
Aσ

Tr
{

s (Aσ/ε1) + s
(

ε1(Aσ)−1
)}

.

By minimizing over all the eigenvalues of Aσ, we get (89). Then (89) holds for ρε as in item (ii) of
Theorem 4 and σε in (91).

Remark 14 (State independent MUR, vector observables). By means of the above results, we can formulate
the following state independent entropic MUR for the position Q and momentum P. Chosen two positive
thresholds ε1 and ε2, there exists a preparation ρε ∈ Gε (introduced in Theorem 4) such that, for all Gaussian
approximate joint measurements Mσ of Q and P, we have

S(Qρε‖Mσ
1,ρε

) + S(Pρε‖Mσ
2,ρε

)

≥


n (log e)

{
ln
(

1 +
h̄

2
√

ε1ε2

)
− h̄

2
√

ε1ε2 + h̄

}
, if ε1ε2 ≥

h̄2

4
,

n(log e)
{

ln (2)− 1
2

}
, if ε1ε2 <

h̄2

4
.

(92)

The inequality follows by (83) and (86) for ε1ε2 ≥ h̄2

4 , and (90) for ε1ε2 < h̄2

4 .
Thus, also in the vector case, for every approximate joint measurement Mσ, the total information loss

S(ρ,Mσ) does exceed the lower bound (92) even if Gε forbids preparations ρ with too peaked target distributions.
Moreover, chosen ε1 and ε2, one can fix again a single ‘bad’ state ρε in Gε that satisfies (92) for all Gaussian
approximate joint measurements Mσ of Q and P.

Whenever ε1ε2 ≥ h̄2

4 , the optimal approximating joint measurement Mσε is unique in the class of Gaussian
covariant bi-observables; it corresponds to a minimum uncertainty state σε which depends only on the chosen
class of preparations Gε, that is, on the thresholds ε1 and ε2: Mσε is the best measurement for the worst choice of
the preparation in that class.

Remark 15. For n = 1, the vector lower bound in (92) reduces to the scalar lower bound found in (75) for two
parallel directions u and v; for n ≥ 1, the bound linearly increases with n.
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Remark 16. The entropic incompatibility degree cG
inc(Qu,Pv; ε) is strictly positive for cos α 6= 0 (incompatible

target observables) and it goes to zero in the limit α→ ±π/2 (compatible observables), h̄→ 0 (classical limit),
and ε1ε2 → ∞ (large uncertainty states).

Remark 17. Similarly to Remark 6 for scalar target observables, also the MUR (92) is actually ineffective for
macroscopic systems. Indeed, suppose we are concerned with position and momentum of a macroscopic particle,
say the center of mass of a multi-particle system (in this case n = 3). The states ρ which can be prepared in
practice have macroscopic widths, say ρ ∈ Gε with ‘large’ thresholds ε and ε1ε2 � h̄2/4. Then, we consider
a measuring instrument Mσ∗ having a high precision with respect to this class of states, but not necessarily
attaining a precision near the quantum limits. For instance, let us take Mσ∗ ∈ CG with Aσ∗ = δ11, Bσ∗ = δ21,
and 0 < δ1 � ε1, 0 < δ2 � ε2; we assume Mσ∗ is also unbiased: aσ∗ = 0, bσ∗ = 0. Obviously, δ1δ2 ≥ h̄2/4
must hold. Then, ∀ρ ∈ Gε by (77a) and (78a) we have

Eρ,σ∗ =
δ1

Aρ ≤
δ1

ε1
1, Fρ,σ∗ =

δ2

Bρ ≤
δ2

ε2
1,

0 < S(ρ,Mσ∗) =
log e

2
Tr
{

s(Eρ,σ∗) + s(Fρ,σ∗)
}
≤ n log e

2
[s(δ1/ε1) + s(δ2/ε2)] .

By (58) the function s is increasing and it behaves as s(x) ' x2/2 in a neighborhood of zero; in the present
case δ1/ε1 � 1 and δ2/ε2 � 1, thus implying that the error function is negligible. This is practically a
‘classical’ case: the preparation has ‘large’ position and momentum uncertainties and the measuring instrument
is ‘relatively good’. In this situation we do not see the difference between the joint measurement of position and
momentum and their separate sharp distributions. Of course the bound (92) continues to hold, but it is also
negligible since ε1ε2 � h̄2/4.

Remark 18. Also in the vector case, the scale invariance of the relative entropy extends to the error function
S(ρ,Mσ), the divergence DG

ε (Q,P‖Mσ) and the entropic incompatibility degree cG
inc(Q,P; ε), as well as the

entropic MUR (92). Indeed, let us consider the dimensionless versions of position and momentum (35) and
their associated projection valued measures Q̃, P̃ introduced in Section 4. Accordingly, we rescale the joint
measurement Mσ of (43) in the same way, obtaining the POVM

M̃σ(B) =
∫

B
M̃σ(x̃, p̃)dx̃dp̃,

M̃σ(x̃, p̃) =
1

(2πλ)n exp
{

i
λ

(
p̃ · Q̃− x̃ · P̃

)}
ΠσΠ exp

{
− i

λ

(
p̃ · Q̃− x̃ · P̃

)}
.

Here, both the vector variables x̃ and p̃, as well as the components of the Borel set B, are dimensionless. By the
scale invariance of the relative entropy, the error function takes the same value as in the dimensioned case:

S(Q̃ρ‖M̃σ
1,ρ) + S(P̃ρ‖M̃σ

2,ρ) = S(Qρ‖Mσ
1,ρ) + S(Pρ‖Mσ

2,ρ). (93)

Then, the scale invariance holds for the entropic divergence and incompatibility degree, too:

DG
ε̃ (Q̃, P̃‖M̃σ) = DG

ε (Q,P‖Mσ), cG
inc(Q̃, P̃; ε̃) = cG

inc(Q,P; ε),

where ε̃1 :=
κε1

h̄
and ε̃2 :=

λ2ε2

κh̄
. In particular ε̃1ε̃2 ≥

λ2

4
⇐⇒ ε1ε2 ≥

h̄2

4
and, in this case, we have

n (log e) s
( λ

2
√

ε̃1ε̃2

)
= cG

inc(Q̃, P̃; ε̃) = cG
inc(Q,P; ε) = n (log e) s

( h̄
2
√

ε1ε2

)
.
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7. Conclusions

We have extended the relative entropy formulation of MURs given in [41] from the case of discrete
incompatible observables to a particular instance of continuous target observables, namely the position
and momentum vectors, or two components of them along two possibly non parallel directions.
The entropic MURs we found share the nice property of being scale invariant and well-behaved in the
classical and macroscopic limits. Moreover, in the scalar case, when the angle spanned by the position
and momentum components goes to ±π/2, the entropic bound correctly reflects their increasing
compatibility by approaching zero with continuity.

Although our results are limited to the case of Gaussian preparation states and covariant Gaussian
approximate joint measurements, we conjecture that the bounds we found still hold for arbitrary states
and general (not necessarily covariant or Gaussian) bi-observables. Let us see with some more detail
how this should work in the case when the target observables are the vectors Q and P.

The most general procedure should be to consider the error function S(Qρ‖M1,ρ) + S(Pρ‖M2,ρ) for
an arbitrary POVM M on Rn ×Rn and any state ρ ∈ S. First of all, we need states for which neither the
position nor the momentum dispersion are too small; the obvious generalization of the test states (81) is

Sε := {ρ ∈ S2 : Aρ ≥ ε11, Bρ ≥ ε21} , εi > 0.

Then, the most general definitions of the entropic divergence and incompatibility degree are:

Dε(Q,P‖M) := sup
ρ∈Sε

[
S(Qρ‖M1,ρ) + S(Pρ‖M2,ρ)

]
, (94)

cinc(Q,P; ε) := inf
M

Dε(Q,P‖M). (95)

It may happen that Qρ is not absolutely continuous with respect to M1,ρ, or Pρ with respect to
M2,ρ; in this case, the error function and the entropic divergence take the value +∞ by definition.
So, we can restrict to bi-observables that are (weakly) absolutely continuous with respect to the
Lebesgue measure. However, the true difficulty is that, even with this assumption, here we are not
able to estimate (94), hence (95). It could be that the symmetrization techniques used in [17,19] can be
extended to the present setting, and one can reduce the evaluation of the entropic incompatibility index
to optimizing over all covariant bi-observables. Indeed, in the present paper we a priori selected only
covariant approximating measurements; we would like to understand if, among all approximating
measurements, the relative entropy approach selects covariant bi-observables by itself. However, even
if M is covariant, there remains the problem that we do not know how to evaluate (94) if ρ and M

are not Gaussian. It is reasonable to expect that some continuity and convexity arguments should
apply, and the bounds in Theorem 5 might be extended to the general case by taking dense convex
combinations. Also the techniques used for the PURs in [8,9] could be of help in order to extend what
we did with Gaussian states to arbitrary states. This leads us to conjecture:

cinc(Q,P; ε) = cG
inc(Q,P; ε). (96)

Conjecture (96) is also supported since the uniqueness of the optimal approximating bi-observable
in Theorem 5(i) is reminiscent of what happens in the discrete case of two Fourier conjugated mutually
unbiased bases (MUBs); indeed, in the latter case, the optimal bi-observable is actually unique among
all the bi-observables, not only the covariant ones (see [41] (Theorem 5)).

Similar considerations obviously apply also to the case of scalar target observables. We leave
a more deep investigation of equality (96) to future work.

As a final consideration, one could be interested in finding error/disturbance bounds involving
sequential measurements of position and momentum, rather than considering all their possible
approximate joint measurements. As sequential measurements are a proper subset of the set of
all the bi-observables, optimizing only over them should lead to bounds that are greater than cinc.
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This is the reason for which in [41] an error/disturbance entropic bound, denoted by ced and dinstinct
from cinc, was introduced. However, it was also proved that the equality cinc = ced holds when
one of the target observables is discrete and sharp. Now, in the present paper, only sharp target
observables are involved; although the argument of [41] can not be extended to the continuous setting,
the optimal approximating joint observables we found in Theorems 3(i) and 5(i) actually are sequential
measurements. Indeed, the optimal bi-observable in Theorem 3(i) is one of the POVMs described in
Examples 2 and 3 (see (74)); all these bi-observables have a (trivial) sequential implementation in terms
of an unsharp measurement of Qu followed by sharp Pv. On the other hand, in the vector case, it was
shown in ([67], Corollary 1) that all covariant phase-space observables can be obtained as a sequential
measurement of an unsharp version of the position Q followed by the sharp measurement of the
momentum P. Therefore, cinc = ced also for target position and momentum observables, in both the
scalar and vector case.
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