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Abstract: Drug-Named Entity Recognition (DNER) for biomedical literature is a fundamental
facilitator of Information Extraction. For this reason, the DDIExtraction2011 (DDI2011) and
DDIExtraction2013 (DDI2013) challenge introduced one task aiming at recognition of drug names.
State-of-the-art DNER approaches heavily rely on hand-engineered features and domain-specific
knowledge which are difficult to collect and define. Therefore, we offer an automatic exploring
words and characters level features approach: a recurrent neural network using bidirectional long
short-term memory (LSTM) with Conditional Random Fields decoding (LSTM-CRF). Two kinds
of word representations are used in this work: word embedding, which is trained from a large
amount of text, and character-based representation, which can capture orthographic feature of words.
Experimental results on the DDI2011 and DDI2013 dataset show the effect of the proposed LSTM-CRF
method. Our method outperforms the best system in the DDI2013 challenge.

Keywords: drug name entity recognition; information extraction; long short-term memory;
conditional random field

1. Introduction

With the rapid development of life science and technology, biomedical literature has increased
exponentially. For example, the biomedical literature repository, MEDLINE, collects over 9.6 billions
records and grows at 30–50 million records a year (https://www.ncbi.nlm.nih.gov/guide/literature/).
This literature contains vast amounts of potential medical information which could be useful to
biomedical research, industrial medicine manufacturing, and so forth.

The first step for extracting potential medical information automatically from the vast amounts of
biomedical literature is developing a named entity recognition system. This is a crucial part of some
therapeutic relation extraction systems or applications, such as drug-drug interactions [1] and adverse
drug reactions [2].

Drug-Named Entity Recognition (DNER) is the job of locating drug entity mentions in
unstructured medical texts and classifying their predefined categories. Our research interest in DNER
mainly comes from two driving reasons: Firstly, new drugs are rapidly and constantly discovered.
Secondly, the naming rule is not strictly followed.

The DNER task is full of challenges due to the following reasons: (1) the limited number
of supervised training data; (2) new drug entity names are increasing constantly; (3) the authors
of biomedical literature do not always follow proposed standardized name rules or formats.
Previous works for DNER usually include two steps: the first is to construct orthographic features
or training word embedding [3] and the second is to employ machine learning methods, such as
Conditional Random Fields [4], support vector machines [5], maximum entropy [6,7] and so forth.
CRF become the best choice for DNER since CRF is one of the most reliable sequence labeling methods,
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which has shown good performances on different kinds of named entity recognition (NER) tasks.
For example, NER application in the newswire domain [8,9]. Researchers also explore biomedical
knowledge resources, such as constructing a new drug dictionary [10,11]. In recent years, people have
been eager to use neural network methods to develop DNER systems [12], which can learn the feature
representation from the raw input automatically and avoid costly feature engineering process.

LSTM [13] is suitable for process variable input, and has a long term memory. The detail can be
viewed in Section 2.1. Recent LSTM methods make a great success in NLP tasks. Such as NER task [14]
and sequence tagging [15]. In our work, we construct a model using a bi-directional LSTMs with a
random sequential conditional layer (LSTM-CRF) beyond it inspired by [15]. Entity names are usually
composed of multiple tokens, so tag decision for each token is necessary. Considering dependencies
across the output label in the DNER task, instead of using softmax function in the output layer of
recurrent neural network, we choose CRF to do classification decisions.

Bi-directional LSTM-CRF is an end-to-end solution. It can learn features from a dataset
automatically during the training process. So it is not necessary to deign hand-crafted features and
biomedical knowledge resources are also not prerequisite. Bi-directional LSTMs learn to how to identify
named entities based on sentence level information and take the combination of word embedding and
character embedding as inputs. The outputs of the bi-directional LSTMs will be fed into the CRF layer.
The CRF layer will output the label sequence with the maximum score calculated by the Equation (14).

We observe that sole dependence on word embedding will ignore explicit character level features
like the prefix and suffix [16]. However, some character sequences in words can show orthographic
construction features that could be useful indicators for DNER, particularly when word embedding is
poorly trained. In order to deal with these issues, we combine word embedding features with character
level information as final word representations in the LSTM-CRF models. Experimental results
in DDIExtraction2011 and DDIExtraction2013 dataset show that the proposed method can achieve
comparable performance with the state-of-the-art performance in original challenge reports without
any constructed drug dictionary or any hand-built features.

The remainder of the paper is organized as follows. Section 2 describes LSTM-CRF model, also
the different embedding for input layer and training. Section 3 reports the experiments results. Finally,
Section 4 draws conclusions.

2. LSTM-CRF Model

2.1. LSTM

Recurrent neural networks (RNNs) [17–19] is a family of neural networks, RNNs has a
high-dimensional hidden state with non-linear dynamics that encourage RNNs to take advantage
of previous information. It is specialized in processing a sequence of values (x1, x2, ... , xn),
then computing a corresponding hidden states sequence (h1, h2, ..., hn) and outputs (o1, o2, ..., xn).
We develop the forward propagation formula beginning with a specification of the initial state h0.
Each step time variable i ranges from 1 to n, and we apply the update equations as follows:

at = Whxxi + Whh−1hi−1 + b (1)

hi = tanh(at) (2)

oi = Wohhi + c (3)

yi = so f tmax(oi) (4)

where the parameters b and c are bias vectors, along with three parameters Whx, Whh−1, Woh

respectively for input-to-hidden weight matrix, hidden-to-hidden (or recurrent) weight matrix,
hidden-to-output weight matrix.

In principle, RNNs is a powerful and simple model, and one can readily compute the gradients
of the RNNs with back-propagation through time (BPTT), and can flow for long durations without
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sequence-based specialization. In fact, they fail to result in an effective effect due to the difficulty
of training with BPTT and the vanishing and exploding gradient problems, refer to the paper [20]
for detail.

So far, gated RNNs are the most effective sequence models in practical applications, including
LSTM [13]. LSTM can address the vanishing and exploding gradient problems by adding extra memory
cell inherent in RNNs. The fundamental idea of proposing self-loops to yield paths where the gradient
can learn long dependencies are a core contribution of the initial LSTM model. There is an internal
recurrence (a self-loop) in the LSTM cell, each cell has a system of gating units that control the flow of
information; the self-loop weight is controlled by forget gate unit f t

i (cell i at time step t), which ranges
from 0 to 1, shown in Equation (5).

f t
i = δ〈b f

i + ∑
j

U f
i,jx

(t)
j + ∑

j
W f

i,jh
(t−1)
j 〉 (5)

where x(t) is the current input vector and h(t) is the hidden state vector, including the outputs of all
past cells, and U f , W f , b f are respectively the biases, input weights and recurrent weights for the
forget gate units. The state unit st

i update in Equation (6)

s(t)i = f t
i s(t−1)

i + g(t)i δ〈bi + ∑
j

Ui,jx
(t)
j + ∑

j
Wi,jh

(t−1)
j 〉 (6)

where the input gate unit g(t)i has the similar equation with different parameters, described in
Equation (7):

g(t)i = δ〈bg
i + ∑

j
Ug

i,jx
(t)
j + ∑

j
Wg

i,jh
(t−1)
j 〉 (7)

Finally, we can get output h(t)i of the cell through the output gate q(t)i , which uses a sigmoid unit
for gating, shown in the following two equations.

h(t)i = tanh(s(t)i )q(t)i (8)

g(t)i = δ〈bo
i + ∑

j
Uo

i,jx
(t)
j + ∑

j
Wo

i,jh
(t−1)
j 〉 (9)

We use the bi-directional LSTM [21] instead of a single forward network. For instance, given
a sentence (x1, x2, ..., xn), for each word xi, we apply LSTM to compute the representation li of left
context for the sentence, and vice versa, then we can get representation ri of the right context by
reversing the sentence. Concatenation of the left and right context representations gives the final
representations [li, ri] of a word, and this representation is very useful for the tagging system.

2.2. CRF Model

We use the final representations [li, ri] as features to make tagging decisions independently, which
is extremely effective for each output yt [15]. However, classification independently is insufficient
because the output has strong dependencies, such as our task: DNER. When we imposed a tag
for each word, the sequences of tags contain their own limitation, for example, logically the tag
“I-BRAND” cannot follow behind the tag “B-DRUG”. So the DNER tasks fail to model by the
independent decisions. CRF is an undirected graphical models, which focus on the sentence level
instead of individual positions.

Consider an input sequence Z = {z1, z2, ..., zn} where zi is the input vector of the i-th word, and
y = {y1, y2, ..., yn} is the corresponding label sequences for sentence Z. We use P as the matrix of scores
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which is outputted from bi-directional LSTM, P is of size n ∗ k, where k is the number of distinct tags,
Pi,j is the core of the j-th tag of the i-th character, its score defined by Equation (10):

s(Z, y) =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=1

Pi,yi (10)

where A is a matrix of transition scores, Ai,j represents the score of a transition from the tag i to tag j.
We use y0 and yn at the start and end tags of a sentence, then we add to the set of possible tags. So A is
a square matrix of size k + 2.

We denoted the Y(z) as the set of possible label sequences for z. The probabilistic model for the
sequence of CRF gives a series of probability p(y|z; W, b) with all possible label sequences y under the
given z as the following equations:

p(y|z; W, b) = ∏n
i=1 ψi(yi−1,yi ,z)

∑y′∈Y(z)∏n
i=1

ψi(y′i−1,y′i ,z)
(11)

ψi(y′i−1, y′i, z) = exp(WT
y′ ,yzi + by′ ,y) (12)

where WT
y′ ,y and by′ ,y respectively are the weight vector or matrix and bias for the label pair (y′, y).

During the CRF training, we optimize the use of log-probability of the correct label sequence.
For a set {zi, yi}, the logarithm of the likelihood showed in Equation (13):

L(W, b) = ∑
i

logp(y|z; W, b) (13)

During the training, CRF would regulate the parameters to maximize the logarithm of the
likelihood L(W, b) and search for label y∗ under the maximum conditional probability shown in
Equation (14):

y∗ = argmaxy′∈Y(z)p(y|z; W, b) (14)

For a sequence CRF model, training and decoding can be solved efficiently by the
Viterbi algorithm.

2.3. LSTM-CRF

The neural network architecture is shown in Figure 1. The top strip-type stands for the observed
variables, the oval represent deterministic functions of their outputs, and the bottom rectangle is the
label. As describes in Section 2.2, the zi denotes the input of word representation at sentence level,
and yi is the corresponding label. The process of producing word representation will be described in
Section 2.4.3. The sequence of word representation is regarded as inputs to a bi-directional LSTM,
and its output results from the right and left context (in Figure 1, Li is the left context and Ri is the
right context for word i; Ci is the concatenation of Li and Ri) for each word in a sentence, as Section 2.1
presented. The output representation from bi-directional LSTM fed onto a CRF layer, the size of
representation and its labels are equivalent. In order to consider the neighboring labels, instead of the
softmax, we chose CRF as a decision function to yield final label sequence.
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  Patients         Taking     Acamprosate   Concomitantly   With      Antidepressants

o o o o B-GROUPB-DRUG
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Figure 1. The architecture of our model. Character level vector concatenated with word embedding as
word representation. Firstly, put them into bi-directional long short-term memory (LSTM), then the
outputs of the bi-directional LSTM network will be fed into the Conditional Random Fields (CRF) layer
to decode the best label sequence. Then, add the dropout training into input and output layer during
the bi-directional LSTM training.

2.4. Embedding and Network Training

In this section, we provide the detail process of our neural network training. We apply the Theano
library [22] to implement our system.

We train our network architecture with the back-propagation algorithm to update the parameters
for each training example with stochastic gradient descent (SGD). Our epoch size is set to 100. In each
epoch, we divide all the training data into batches, then process one batch at a time. The batch size
decides the number of sentences and our batch size is 100. In each batch, we firstly get the output
scores from the bi-directional LSTM for all labels. Then we put the output scores into CRF model, and
we can get the gradient of outputs and the state transition edges. From this, we can back propagate the
error from output to input, which contains the backward propagation for bi-directional states of LSTM.
Finally, we update the parameters including the Ai,j which represents the score of a transition from the
tag i to tag j, and some other parameters such as U f , W f , b f from LSTM.

2.4.1. Parameters Initialization

Word embedding: It is more efficient to use word embeddings than randomly initialized directly [23],
we employed existing word embedding to initialize our lookup table. The word embedding are trained
on entire English Wikipedia [24]. and produced by skip-n-gram [25] and Word2Vec [26], which account
for word order. These embedding are fine-tuned during training.
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Character embedding: character level evidence for a name is derived from orthographic feature.
We apply character level features instead of hand-craft prefix and suffix construction features of
words. It has been found that building character embedding is beneficial to learning representations
in specific domains, and is always useful for morphologically rich languages and dealing with the
out-of-vocabulary problem, such as part-of-speech tagging [25].

We collect all characters forming a character set which contains 26 upper and lower case letters
(in our work, changing all letters to their lowercase), 10 numbers and 33 punctuation. The details are
shown in Table 1.

Table 1. The character set which contains 26 case letters, 10 numbers and 33 punctuations.

Case Letters a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 26
Numbers 0|1|2|3|4|5|6|7|8|9 10

Punctuations $|!|@|#|%||̂&|*|-|=|_|+|(|)|||[|]|;|’|:|"|,|.|/|<|>|?|‘|’| |·|| 33

We initialized a character lookup table randomly with values ranging from low =−1.0 to high = 1.0
for the output of 50 dimensions embedding, which drew by a uniform distribution.

Finally, our word representation is obtained by the architecture, which is shown in Figure 2.
We construct character embedding with supervised training method using NER labels during the
training process. Character level embedding for a word is given by direct and reverse order to the
bi-directional LSTM with dimensions 25 respectively, and the result produces a vector with dimensions
50. Then we concatenated the result with its word embedding. Words out of the lookup table will
be replaced as token “UNK“ and be mapped as UNK embedding, which is initialized by random.
Refer to the paper [27], if a word is less than two letters we replace it with UNK embedding under a
probability (p = 0.5).

a c i d

la lc li ld

ra rc ri rd

lc

rc

Lookup table wacid

Character

embedding

Word

embedding

C
on-final em

bedding

 

Figure 2. Feed character level embedding of the word “acid” into the bi-directional LSTM layer, then
concatenate the outputs with the word embedding from lookup table as the final representation of the
word “acid”.
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2.4.2. Optimization Method

We chose the mini-batch stochastic gradient descent, with a fixed learning rate of 0.01 and a
gradient clipping of 5.0 [28], to optimize our parameters. Some similar methods have been applied to
improve the performance of SGD, like Adadelta [29], Adam [30] and RMSProp [31]. Unfortunately,
among the preliminary experiment [32], none of them could enhance the SGD.

Dropout [33] can mitigate over-fitting. The paper [27] has proved that dropout can be beneficial
to the NER task, which can avoid the over-fitting problem. So we apply dropout on the weight
vectors directly to mask the final embedding layer before the combinational embedding feed into the
bi-directional LSTM. We fix dropout rate at 0.5 as usual, and achieve good performance on our model.

2.4.3. Parameters Adjustment

Our hyper-parameters showed in Table 2. In our experiment, referring to previous work [14,23,34],
we set the state size of character for LSTM to 25 respectively for forward and backward, the dimension
of character-based representation of words has been set at 50. The dimension of word embedding and
word has been set at 100. The dimension of Con-Final Embedding has been set at 150. The dropout
rate is 0.5 and initial learning rate is 0.01.

Table 2. The parameters for our experiments.

Hyper-Parameter Values
initial state 0.0

dropout rate 0.5
initial learning rate 0.01
gradient clipping 5.0

word_dim 100
forward_char_dim 25

backward_char_dim 25
char_dim 50

con-final embedding 150

2.5. IOBES Tagging Scheme

Similar to the task of part-of-speech tagging, DNER also aims to assign a label to each word
among a sentence. Due to there being some entity names containing more than one token in a
sentence, typically, each token is encoded in IOB format (Inside, Outside, Begin), respectively
if the token is inside (but not the first token within an entity name), or outside in entity
name and the beginning of entity name. Take an example from Figure 1, from the part of a
sentence “Patients|Taking|Acamprosate|Concomitantly|With|Antidepressants”, the corresponding label
is “O|O|B–DRUG|O|O|B–GROUP”.

3. Experiments

3.1. Data Sets

In our experiments, we primarily used the DDI2011 challenge corpus from the drug-drug
interactions task (http://labda.inf.uc3m.es/DDIExtraction2011/). Refer to Task 9.1: Recognition
and classification of drug names (http://www.cs.york.ac.uk/semeval-2013/task9/). For the DDI2011
challenge corpus, we use the NLP package Natural Language Toolkit (https://docs.python.org/
2/library/xml.etree.elementtree.html) to parse all the XML format documents, then collect all the
train dataset as the training data, and gather all the test dataset as the testing data. Table 3 shows the
distribution of the documents, sentences and drugs in the train and test set from DDI2011. The train
and test dataset contain 435 and 144 documents, 4267 and 1539 sentences, 11,260 and 3689 drugs
respectively [35]. In this corpus, there is only one type with the entity name: drug, so each word in a
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sentence just be labeled as “B/I-DRUG” or “O”. In our experiment, apart from replacing all digits with
zero, we did not do any additional preprocessing on the challenge dataset.

Table 3. Training and testing set in DDI2011.

Set Documents Sentences Drugs

Training 435 4267 11,260
Final Test 144 1539 3689

Total 579 5806 14,949

In order to further evaluate our model, we use the dataset from the Recognition and
Classification of drug names task of SemEval-2013 (http://www.cs.york.ac.uk/semeval-2013/task9/).
This task concerns the named entity extraction of mentions of pharmacological substances in text
(https://www.cs.york.ac.uk/semeval-2013/task9/data/uploads/semeval_2013-task-9_1-evaluation
metrics.pdf). Tables 4 and 5 show the numbers of the annotated entity in the DDI2013 training set and the
testing set respectively. The corpus derives from two sources: DrugBank (https://www.drugbank.ca/)
and MedLine (https://www.ncbi.nlm.nih.gov/pubmed/?term=meline). There are four general types
of entities: Drug, Brand, Group, Drug_n [36]. Where Drug type is denoted as human medicines known
as a generic name. The Brand type is characterized by a trade or brand name. Group type annotates
groups of drugs. Finally, Drug_n type describes those substances like pesticides or toxins not available
for human use.

Table 4. Numbers of the annotated entities in DDI2013 training set.

Type DrugBank MedLine Total

Drug 9901 (63%) 1745 (63%) 11,646 (63%)
Brand 1824 (12%) 42 (1.5%) 1866 (10%)
Group 3901 (25%) 324 (12%) 4225 (23%)

Drug_n 130 (1%) 635 (23%) 765 (4%)
Total 15,756 2746 18,502

Table 5. Numbers of the annotated entities in DDI2013 testing set.

Type DrugBank MedLine Total

Drug 180 (59%) 171 (44%) 351 (51%)
Brand 53 (18%) 6 (2%) 59 (8%)
Group 65 (21%) 90 (24%) 155 (23%)

Drug_n 6 (2%) 115 (30%) 121 (18%)
Total 304 382 686

3.2. Evaluation Metrics

In our experiment, we use precision recall, F1 to evaluate the performance of our system, and we
use two of the four evaluation criteria provided by the DDI2013 challenge [36], the Type matching
(a tagged drug name is correct only if there is some overlap between it and a gold drug name of
the same class) and Strict matching (a tagged drug name is correct only if its boundary and class
exactly match with a gold drug name). A detailed description of evaluation is in the document
(https://www.cs.york.ac.uk/semeval2013/task9/data/uploads/semeval_2013-task-9_1-evaluation-
metrics.pdf). Finally, we use evaluation scripts (https://www.cs.york.ac.uk/semeval-2013/task9/index.
php%3Fid=evaluation.html) provided by the shared task organizers to evaluate our system.
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3.3. Results

Table 6 displays the results of the experiment, which was performed on the DDI2011 corpus.
We can achieve the precision of 93.26%, recall of 91.11% and F1 of 92.04%. Comparing our result with
previous best results [37], which were obtained by building a man-made dictionary and using CRF
method we find that our precision is lower than the best performance by 1.5%. However, our recall is
higher than the best performance by 0.6%. However, when their system just uses CRF method without
the dictionary assistant, the performance of our system outperforms their evaluation values.

Table 6. Results of experiment in DDI2011.

System Precision Recall F1

Our System 93.26% (−1.5%) 91.11% (+0.6%) 92.04% (−0.5%)
Best without Dic 92.15% 89.73% 90.92%

Best with Dic 94.75% 90.44% 92.54%

Table 7 shows all types of the entities and their detailed evaluation. We can observe that our
method is efficient in correctly classifying the Drug, Brand and Group types, where it achieves an
F1 of over 80% correspondingly. However, our method has a few difficulties in correctly classifying
named entities of the Drug_n type, the F1 of 62.83% was achieved. A previous work [38] showed
that the Drug_n entity type was demonstrated to be a very difficult type to be classified correctly.
According to our analysis, the low percentage of this type in the training dataset (<4%) result in
ignoring the difference between this type and a much larger class of Drug or Group type, which would
lead to the fact that some of the Drug_n type entities had been changed to human use. So the feature
extraction applied to efficient detection of the Drug_n type cannot efficiently reflect the knowledge
about drug conform for human use.

Table 7. Results of experiment in DDI2013.

Type Precision Recall F1

Drug 85.03% 80.03% 81.87%
Brand 88.24% 77.42% 81.83%
Group 86.01% 88.59% 86.86%
Drug_n 78.39% 57.26% 62.83%

Micro-Average 83.62% 77.81% 79.26%

In order to further investigate our achievement, we compared our results with other teams’ work
on the DDI2013 challenge, Table 8 shows the comparison, it can be found the performance of our work
outperforms the WBI which ranks 1st of the original teams in the DDI2013 challenge, improved by the
precision of a 6.92% points (from 76.70% to 83.62%), the recall of a 4.81% points (from 73.00% to 77.81%)
and the F1 of a 4.46% points (from 74.80% to 79.26%). When compared with LIU, the precision falls by
3.84% points and the F1 falls by 1.62% points, but the recall has achieved an increase of approximately
2.59% points (from 75.22% to 77.81%).

Table 8. Comparison in result of our experiment with others work in DDI2013. The best results in each
column are shown in bold type.

System Precision Recall F1

Our System 83.62% 77.81% 79.26%
LIU [39] 87.46% 75.22% 80.88%
WBI [38] 76.70% 73.00% 74.80%

LASIGE [40] 78.00% 56.00% 65.00%
UMCC_DLS [41] 24.00% 57.00% 34.00%
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Finally, we try to do a statistical significance test for the results in Tables 6 and 7. We plan to apply
the McNemar’s significance test to decide whether statistically significant difference exists between
our runs with others. McNemar’s test is grounded on a χ2 goodness-of-fit test, which compares the
distribution of counts expected with the counts observed under null hypothesis. The null hypothesis
H0 defined as the two runs have the same error state. Unfortunately, all the results of other models
are obtained from the corresponding references. Therefore, we cannot obtain the detailed counts for
each entity category in each model which are necessary for a statistical significance test. However,
according to [36], the results between our methods and others in Table 8 should be significant.

4. Conclusions

In this paper, we discuss the recent advanced neural networks methods that are able to achieve the
task of DNER without requiring additional knowledge or hand-crafted features. Inspired by this kind
of work, we construct a bi-directional LSTM and CRF architecture. The input vector of the architecture
is the concatenation of word embedding and character-level embedding from a sentence, the output of
the architecture is a label sequence. Our experiments were conducted on two biomedical literature
datasets: the DDI2011 and the DDI2013. The proposed method achieved comparable performances
with the state-of-the-art results of both of the datasets.
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