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Abstract: In this paper, a sparse set-membership proportionate normalized least mean square
(SM-PNLMS) algorithm integrated with a correntropy induced metric (CIM) penalty is proposed
for acoustic channel estimation and echo cancellation. The CIM is used for constructing a new cost
function within the kernel framework. The proposed CIM penalized SM-PNLMS (CIMSM-PNLMS)
algorithm is derived and analyzed in detail. A desired zero attraction term is put forward in the
updating equation of the proposed CIMSM-PNLMS algorithm to force the inactive coefficients to
zero. The performance of the proposed CIMSM-PNLMS algorithm is investigated for estimating
an underwater communication channel estimation and an echo channel. The obtained results
demonstrate that the proposed CIMSM-PNLMS algorithm converges faster and provides a smaller
estimation error in comparison with the NLMS, PNLMS, IPNLMS, SM-PNLMS and zero-attracting
SM-PNLMS (ZASM-PNLMS) algorithms.

Keywords: set-membership proportionate normalized least mean square; sparse adaptive filtering;
PNLMS algorithm; zero attracting algorithm; correntropy induced metric (CIM)

1. Introduction

The adaptive filter technique has been widely used for echo cancellation, channel equalization,
signal enhancement and active noise control [1]. A great number of adaptive filtering algorithms have
been developed to meet the various requirements in practical engineering applications. From these
algorithms, the least mean square (LMS) algorithm and its normalized form have been extensively
studied because they are easy to implement and have good performance [2,3]. These two algorithms
are the most classical algorithms that have been applied in channel estimation and echo cancellation in
recent decades. Furthermore, set-membership (SM) filtering techniques have been proposed not only
to reduce the computational burden but also to improve the estimation performance [4–15]. The SM
filtering technique utilizes a special bound on the magnitude of the estimation error to split the adaptive
filtering algorithms into two steps: (1) the first step is the information evaluation; (2) the second step is
parameter update. If the second step does not occur frequently, the SM filters have low computations.
Thus, the SM can reduce the complexity due to data-selective methods. Furthermore, the SM filtering
algorithms also achieve lower steady-state misadjustment, such as the SM normalized LMS (NLMS)
algorithm (SM-NLMS) [8,14]. However, the SM-NLMS algorithm cannot use the sparse characteristics
of the multi-path channels. Then, the adaptive filtering algorithms for sparse channel estimation and
sparse system identification applications have been proposed, including the proportionate NLMS
(PNLMS) and the zero attracting adaptive filtering algorithms [16–29].
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The PNLMS algorithm is realized by assigning different gains to each coefficients, which is
implemented according to the magnitudes of each coefficient. In fact, the PNLMS algorithm is a
variable step-size NLMS algorithm, which is implemented by using the gain assignment scheme to
control the step-size. As a result, the PNLMS algorithm can enhance the convergence at the initial
iterations in comparison with the classical NLMS algorithm. However, the performance of the PNLMS
algorithm may be worse than that of the NLMS algorithm when it reaches its steady-state status.
Then, an improved PNLMS (IPNLMS) has been presented to enhance the performance of the PNLMS
algorithm [30]. However, they still need to be improved. After that, the SM technique has been
integrated into the PNLMS algorithm to develop a SM-PNLMS algorithm [31]. The results showed that
the SM-PNLMS performs better than the PNLMS in terms of the convergence and the estimation bias.

With the development of the signal processing, the sparse signal processing has attracted much
more attention in recent decades. In particular, the compressed sensing (CS) [32] promotes the sparse
signal processing since it can achieve high recovery accuracy for dealing with sparse signals. Then,
the CS concepts have been incorporated into the adaptive filter algorithms to help to exploit sparseness
characteristics of existing sparse channels or systems. On the basis of the motivation of the CS,
the l1-norm penalty has been integrated into the LMS’s cost function to create the zero attracting
LMS (ZA-LMS) algorithm. The ZA-LMS gives an attraction term to force the inactive coefficients
to zero compared to the traditional LMS algorithm. However, the ZA-LMS exerts a penalty on all
the coefficients uniformly, which may degrade the estimation performance for handling the less
sparse signals. Then, a reweighted ZA-LMS (RZA-LMS) algorithm is proposed by Chen et al. [33]
The RZA-LMS selects different penalties to each coefficient. However, these LMS algorithms have
drawbacks for dealing with colored inputs and are sensitive to the scaling of the inputs. To overcome
the drawbacks of the zero attracting LMS algorithms, the zero attracting techniques have been
expanded into the affine projection algorithms [20,21,34–38], combined LMS [32], high-order error
criterion algorithms [28,29] and PNLMS algorithms [24]. However, some of these expanded zero
attracting adaptive algorithms are high in computational complexity.

In this paper, a correntropy induced metric (CIM) penalized SM-PNLMS algorithm is proposed
to fully utilize the sparsity property of the acoustic channel and echo channel. The proposed CIM
scheme is developed within the kernel framework. Then, the CIM penalty is integrated into the cost
function of the SM-PNLMS algorithm to create an approximation l0-norm constrained zero attraction.
The proposed CIM constraint SM-PNLMS (CIMSM-PNLMS) algorithm is derived in detail and its
estimation behaviors are investigated through a underwater acoustic channel and an echo channel.
The simulated numerical results illustrated that the proposed CIMSM-PNLMS algorithm converges
faster and provides a smaller estimation error in comparison with the NLMS, PNLMS, IPNLMS,
SM-PNLMS and zero-attracting SM-PNLMS (ZASM-PNLMS) algorithms.

The structure of the paper is summarized as follows. In Section 2, the SM filtering theory and the
SM-PNLMS algorithm are reviewed. Section 3 gives the proposed CIMSM-PNLMS algorithm within
the framework of the SM theory and ZA theory. Section 4 presents the estimation performance of the
proposed CIMSM-PNLMS algorithm. Section 5 draws a short conclusion of this paper.

2. Review of Related Algorithms

2.1. The Review of the SM Filtering Theory

Assuming that the channel input signal is x(n) = [x(n), x(n− 1), x(n− 2), · · · , x(n− N + 1)]T ,
the unknown channel impulse response of a finite impulse response (FIR) channel denotes
h = [h0, h1, · · · , hN−1]

T , where N represents the number of the total channel coefficients. The output
of the adaptive estimator is

y(n) = xT(n)ĥ(n), (1)
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where ĥ(n) denotes the estimation channel vector at instant n. According to the adaptive estimation,
the desired signal is

d(n) = xT(n)h + v(n), (2)

where v(n) is a noise signal which is assumed to be independent with the input signal x(n). In this
case, the estimated error is

e(n) = d(n)− y(n). (3)

The SM technique defines a special model space Θ that contains input and output vector pairs.
A specified bound is set to effectively select the updating criterion for these data pairs within Θ.
The goal of SM filtering criterion is to solve the optimization subjected to

|e(n)|2 ≤ γ2, (4)

where γ represents the specified bound [2]. For ∀ĥ(n + 1) /∈ Θ, the optimization problem of the
SM-NLMS will turn to be [2,6,8–11]

min
∥∥∥ĥ(n + 1)− ĥ(n)

∥∥∥2

2
s.t. d(n)− xT(n)ĥ(n + 1) = γ. (5)

A Lagrange multiplier method is considered to determine the minimization of Equation (5). Then,
the updating equation of the SM-NLMS [8] is

ĥ(n + 1) = ĥ(n) +
µSM(n)x(n)e(n)
xT(n)x(n) + εSM

, (6)

where

µSM(n) =

{
1− γ

|e(n)| , if |e(n)| > γ

0, otherwise
, (7)

and εSM is a small positive constant used to prevent the denominator from zero. The updates of
Equation (6) occurs when d(n)− xT(n)ĥ(n + 1) > γ or d(n)− xT(n)ĥ(n + 1) < −γ [9,37].

2.2. The Review of the SM-PNLMS Algorithm

Similar to the PNLMS algorithm [22], a gain assignment matrix is incorporated into the SM-NLMS
algorithm for constructing the expected SM-PNLMS algorithm whose updating equation is

ĥ(n + 1) = ĥ(n) +
µSMx(n)G(n)e(n)

xT(n)G(n)x(n) + εSM
, (8)

where µSM is a overall step size. G(n) is a diagonal matrix that assigns different step sizes for different
coefficients, which is defined as

G(n) = diag{ g0(n), g1(n), . . . , gN−1(n)} , (9)

where each element in G(n) can be calculated by using

gi(n) =
αi(n)
N−1
∑

i=0
αi

, 0 ≤ i ≤ N − 1, (10)

αi(n) =max
{

ρmax
{

δ,
∣∣∣ĥ0(n)

∣∣∣ ,
∣∣∣ĥ1(n)

∣∣∣ , · · · ,
∣∣∣ĥN−1(n)

∣∣∣} ,
∣∣∣ĥi(n)

∣∣∣} . (11)

Here, ρ is a positive parameter whose value range is usually 1
N ∼

5
N , and it prevents ĥi(n)

from stopping when its value is much smaller than the largest coefficient. Herein, we set ρ = 5
N .
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The parameter δ is a regularization parameter that prevents the updating from stalling when all the
coefficients are zeros at the initial iterations. In this paper, we set δ = 0.5.

3. The Proposed CIMSM-PNLMS Algorithm

Although the PNLMS algorithm can exploit the sparse channel characteristics and the SM-PNLMS
algorithm simplifies the computational complexity of the PNLMS by using the SM technique,
these algorithms may perform worse than the NLMS and SM-NLMS, respectively. The PNLMS
just improves the convergence at the initial iterations. It may cause a worse steady-state estimation
behavior or a slower convergence when the PNLMS converges [22,23]. To further improve the
convergence and the estimation performance of the SM-PNLMS and to exploit the sparsity of the
acoustic channels, a CIM penalized SM-PNLMS (CIMSM-PNLMS) is proposed by introducing a CIM
penalty into the cost function of the SM-PNLMS algorithm. The CIM constraint is used for further
exploiting the sparsity property of the sparse systems or channels, and improving the convergence and
steady-state performance at the later iterations. Furthermore, a l1-norm and a reweighting l1-norm
are also used for constructing zero attracting SM-PNLMS (ZASM-PNLMS) algorithm and reweighted
ZASM-PNLMS (RZASM-PNLMS) algorithm for the sake of comparison. Herein, the CIM is discussed
within the kernel framework [39–41]. The correntropy of two arbitrary vectors can be described as

V(X, Y) =
1
N

N

∑
i=1

k(xi, yi), (12)

where N denotes the number of elements in the vectors, and k(.) represents kernel function. A Gaussian
kernel is used to develop the CIM, and k(.) is written as

k(x, y) =
1

σ
√

2π
exp(− (x− y)2

2σ2 ), (13)

where σ denotes the kernel width. The nonlinear metric CIM is defined as

CIM(X, Y) = (k(0)−V(X, Y))
1
2 . (14)

Taking the square on both sides of Equation (14), we obtain

CIM2(X, 0) =
k(0)

N

N

∑
i=1

(1− exp(− (xi)
2

2σ2 )). (15)

Then, the CIM is incorporated into the cost function of the SM-PNLMS algorithm to develop
the CIMSM-PNLMS algorithm. For ∀ĥ(n + 1) /∈ Θ, the purpose of our proposed CIMSM-PNLMS
algorithm is to solve the optimization problem

min
∥∥∥ĥ(n + 1)− ĥ(n)

∥∥∥2

G−1(n)
+ ρCIMG−1(n)CIM2(ĥ(n + 1), 0)

s.t.d(n)− xT(n)ĥ(n + 1) = γ
. (16)

Then, a new cost function of the CIMSM-PNLMS is achieved

J(n) =
(

ĥ(n + 1)− ĥ(n)
)T

G−1(n)
(

ĥ(n + 1)− ĥ(n)
)

+ ρCIMG−1(n)CIM
2
(

ĥ(n + 1), 0
)

+ λ
(

d(n)− xT(n)ĥ(n + 1)− γ
) . (17)
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Let
∂J(n)

∂ĥ(n + 1)
= 0, (18)

and
∂J(n)

∂λ
= 0. (19)

Then, we can get

G−1(n)
(

ĥ(n + 1)− ĥ(n)
)
+ ρCIMG−1(n)

∂CIM
2
(

ĥ(n + 1), 0
)

∂ĥ(n + 1)
− λx(n) = 0, (20)

and
xT(n)ĥ(n + 1) = d(n)− γ. (21)

Left multiplying G(n) to both sides of the Equation (20), and we can get

(
ĥ(n + 1)− ĥ(n)

)
+ρCIM

∂CIM
2
(

ĥ(n + 1), 0
)

∂ĥ(n + 1)
− λG(n)x(n) = 0. (22)

Thus, we have

ĥ(n + 1) = ĥ(n) + λG(n)x(n)− ρCIM

∂CIM
2
(

ĥ(n + 1), 0
)

∂ĥ(n + 1)
. (23)

Multiplying xT(n) on Equation (23) and substituting it into Equation (21), we will get

λ =
e(n)− γ + xT(n)ρCIM

∂CIM
2
(ĥ(n+1),0)

∂ĥ(n+1)

xT(n)G(n)x(n)
. (24)

Substituting Equation (24) into Equation (23), we will get

ĥ(n + 1) = ĥ(n) +
µCIMG(n)x(n)e(n)

xT(n)G(n)x(n)

− ρCIM

(
I− x(n)xT(n)G(n)

xT(n)G(n)x(n)

) ∂CIM
2
(

ĥ(n + 1), 0
)

∂ĥ(n + 1)
.

(25)

If one does not affect the minimum disturbance, a simpler method can be used to reduce the

computational burden. Herein, x(n)xT(n)G(n)
xT(n)G(n)x(n) is ignored, which is similar to [24,37,42]. In addition, from

Equation (15), we can get

CIM
2
(

ĥ(n + 1), 0
)
=

1
Nσ
√

2π

1− exp

−
(

ĥ(n + 1)
)2

2σ2


 . (26)

Thus, we have

∂CIM2
(

ĥ(n + 1), 0
)

∂ĥ(n + 1)
=

1
Nσ3
√

2π
ĥ(n + 1)exp

−
(

ĥ(n + 1)
)2

2σ2

 . (27)
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Assuming that ĥ(n + 1) ≈ ĥ(n), we can write the update function of the CIMSM-PNLMS as

ĥ(n + 1) = ĥ(n) +
µCIMx(n)G(n)e(n)

xT(n)G(n)x(n) + εCIM
− ρCIM

1
Nσ3
√

2π
ĥ(n)exp(− (ĥ(n))

2

2σ2 ), (28)

where µCIM is also obtained from Equation (7). In the second term of Equation (28), εCIM is a small
positive constant used to prevent the denominator from zero. G(n) in the CIMSM-PNLMS is the same
as that in the SM-PNLMS algorithm. For ∀ĥ(n + 1) ∈ Θ, the updating equation of the CIMSM-PNLMS
algorithm is

ĥ(n + 1) = ĥ(n). (29)

We can see that the updating equation of the proposed CIMSM-PNLMS algorithm has an

additional term −ρCIM
1

Nσ3
√

2π
ĥ(n)exp(− (ĥ(n))

2

2σ2 ) in comparison with the SM-PNLMS algorithm,
which is denoted as CIM zero attractor. The zero attraction strength of the CIM zero attractor is
controlled by the parameter ρCIM.

In a word, the proposed CIMSM-PNLMS algorithm exploits the sparsity of a sparse channel
or a sparse system by the zero attraction penalty. Here, the CIMSM-PNLMS algorithm can be
summarized as

ĥ(n + 1) = ĥ(n)

P1︷︸︸︷
+A1︸ ︷︷ ︸

SM−PNLMS algorithm

P2︷︸︸︷
+A2

︸ ︷︷ ︸
CIMSM−PNLMS algorithm

, (30)

where

A1 =
µCIMx(n)G(n)e(n)

xT(n)G(n)x(n) + εCIM
, (31)

A2 =− ρCIM
1

Nσ3
√

2π
ĥ(n)exp(− (ĥ(n))

2

2σ2 ), (32)

where the A1 term is an adaptive update term and the A2 term denotes the sparsity constraint term,
which acts as a zero attractor. In addition, the CIMSM-PNLMS algorithm provides two update paths,
namely, P1 and P2. The path P1 approximates ĥ(n) to the hyperplane defined by e(n) = 0. P2 is the
zero attractor that forces the zero or near zero coefficients of ĥ(n) in the direction of zero. Similar
to the CIMSM-PNLMS, we also proposed a zero attracting SM-PNLMS (ZASM-PNLMS), which is
implemented by integrating a l1-norm into the cost function of the SM-PNLMS algorithm whose
updating function is

ĥ(n + 1) = ĥ(n) +
µZASM(n)x(n)G(n)e(n)
xT(n)G(n)x(n) + εZASM

− ρZASMsgn[ĥ(n)], (33)

where µZASM(n) is the same as Equation (7) and εZASM is a small positive constant used to prevent the
denominator from zero. G(n) in the ZASM-PNLMS is the same as that in the SM-PNLMS algorithm.

4. Performance of the Proposed CIMSM-PNLMS Algorithm

In order to analyze the performance of the proposed CIMSM-PNLMS algorithm, five experiments
are constructed within the sparse channel estimation scenarios. In the first experiment, the convergence
speed of the proposed CIMSM-PNLMS will be investigated. In the second experiment, the mean
square error (MSE) of the CIMSM-PNLMS with different SNRs are presented. In the third experiment,
the CIMSM-PNLMS is evaluated with different sparsity levels. In the fourth experiment, the key
parameter of the CIMSM-PNLMS is investigated in detail. In the fifth experiment, we verify the
performance of the CIMSM-PNLMS in an acoustic echo channel.
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Experiment 1. The proposed CIMSM-PNLMS algorithm is investigated in an underwater acoustic channel
mode with a length of 64 to discuss the convergence speed. Herein, only four active coefficients are considered
in this underwater acoustic channel [43], where the active coefficients are 1 and the other coefficients are 0.
The signal-to-noise ratio (SNR) is set to be 30 dB, where input signal is normalized to 1 (δs

2 = 1) and the
noise power (δv

2) is 1 × 10−3. One hundred Monte Carlo runs are considered to obtain each point. The
convergence speed of the proposed CIMSM-PNLMS is compared with that of the NLMS, PNLMS, IPNLMS,
SM-PNLMS, ZASM-PNLMS, RZASM-PNLMS and CIMSM-NLMS [44] algorithms. Assume that the
noise is Gaussian white noise, which is independent from the input signal. The MSE is used for evaluating
the estimation performance, and the simulation parameters are: µNLMS = 0.45, µPNLMS = µIPNLMS = 0.4,
a = −0.5, ρZASM = ρRZASM = 6× 10−6, ρCIMN = ρCIM = 8× 10−5, γ =

√
2δv

2, σ = 0.05. µNLMS,
µPNLMS and µIPNLMS denote the step sizes of the NLMS, PNLMS and IPNLMS, respectively. a denotes the
adjusting parameter of the IPNLMS whose value range is [−1, 1]. ρZASM, ρRZASM, ρCIMN, ρCIM denote
the zero-attraction factors of the ZASM-PNLMS, RZASM-PNLMS, CIMSM-NLMS and CIMSM-PNLMS.
γ denotes the error bound of the SM technique. σ denotes the kernel width. The simulation result is shown
in Figure 1. We can see that the proposed CIMSM-PNLMS achieves the fastest convergence. The PNLMS
algorithm converges quickly at the initial iterations while its convergence slows down dramatically at the later
iterations. Our proposed CIMSM-PNLMS algorithm integrates a CIM zero attractor, and hence, the convergence
is speeded up at the later iterations.
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Figure 1. Convergence of the CIM penalized SM-PNLMS (CIMSM-PNLMS) algorithm.

Experiment 2. The estimation behaviors of the proposed CIMSM-PNLMS algorithm at different SNRs
are analyzed herein. In this experiment, the length of the channel is 64 and only one coefficient is active
in this channel. We set the SNR to be 30 dB, 20 dB and 10 dB, respectively. To get the same initial
convergence speed, the parameters are set as follows: µNLMS = 0.8, µPNLMS = 0.65, µIPNLMS = 0.6,
a = −0.5, ρZASM = 3× 10−5, ρRZASM = 6× 10−5, ρCIMN = 7× 10−5, ρCIM = 5× 10−5, γ =

√
2δv

2,
σ = 0.01. The simulation results are given in Figures 2–4 for SNR = 30 dB, SNR = 20 dB and
SNR = 10 dB, respectively. It is found that the proposed CIMSM-PNLMS algorithm has the smallest estimation
error in terms of the MSE. The larger the SNR is, the smaller the MSE is. Even when the SNR is equal to
10 dB, the CIMSM-PNLMS algorithm still possesses the lowest MSE. In a word, the proposed CIMSM-PNLMS
algorithm can give a good estimation performance even though channel environment is not good. It is worth
noting that the estimation performance of the ZASM-PNLMS algorithm decreases for SNR = 10 dB.
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Figure 2. Estimation behavior of the CIMSM-PNLMS for SNR (signal-to-noise ratio) = 30 dB.
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Figure 3. Estimation behavior of the CIMSM-PNLMS for SNR = 20 dB.
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Figure 4. Estimation behavior of the CIMSM-PNLMS for SNR = 10 dB.
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Experiment 3. In this experiment, the proposed CIMSM-PNLMS algorithm with various sparsity levels
is studied in detail. Here, the sparsity level K is defined as the number of the active channel coefficients.
K = 1, K = 4 and K = 8 are employed to investigate the estimation performance at different sparsity levels.
The related parameters are µNLMS = 0.75, µPNLMS = 0.65, µIPNLMS = 0.5, a = 0, ρZASM = ρRZASM =

ρCIMN = ρCIM = 9× 10−6, γ =
√

2δv
2, σ = 0.01. The numerical results are demonstrated in Figures 5–7

for K = 1, K = 4 and K = 8, respectively. It is observed that the proposed CIMSM-PNLMS outperforms
the PNLMS, SM-PNLMS, ZASM-PNLMS, RZASM-PNLMS, CIMSM-NLMS and IPNLMS algorithms.
When the sparsity level K increases from 1 to 8, the proposed CIMSM-PNLMS algorithm performs best in all
the mentioned algorithms with respect to the MSE. Even though K = 8, the CIMSM-PNLMS algorithm still
achieves the lowest MSE. However, the estimation gain is reduced with an increment of K.
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Figure 5. Estimation behavior of the CIMSM-PNLMS for K = 1.
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Figure 6. Estimation behavior of the CIMSM-PNLMS for K = 4.
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Figure 7. Estimation behavior of the CIMSM-PNLMS for K = 8.

Experiment 4. The key parameters of the proposed CIMSM-PNLMS algorithm is considered to obtain the
effects on the convergence and the MSE. Herein, we set the sparsity level K = 2 and SNR = 30 dB. The effects
on the MSE of ρCIM are presented in Figure 8. It is found that when ρCIM decreases from 5× 10−4 to 5× 10−5,
the MSE is reduced. A lowest MSE is achieved for ρCIM = 5× 10−5. When ρCIM continues to reduce from
ρCIM = 5× 10−5 to ρCIM = 5× 10−8, the MSE rebounds to the opposite direction, which means that the
estimation error is increased. ρCIM effects at different SNRs on the MSE are also given in Figure 9. It can be seen
that the ρCIM gives similar effects on the MSE at different SNRs. When ρCIM reaches 5× 10−5, the proposed
CIMSM-PNLMS algorithm has the smallest MSE. The effects of γ are reported in Figure 10. We found that with
the decrement of γ, the MSE is reduced and the convergence is accelerated. However, the MSE will not continue
to decrease when the γ is less than 0.1. Thus, we should select proper parameters to get a good estimation
performance for the proposed CIMSM-PNLMS.
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Figure 8. ρCIM effects of the CIMSM-PNLMS algorithm on the mean square error (MSE).
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Figure 9. ρCIM effects on MSE at different SNRs.
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Experiment 5. Finally, the proposed algorithm is used to estimate an acoustic echo channel to further verify the
estimation performance of the CIMSM-PNLMS algorithm. A typical acoustic echo channel with a length of
256 is shown in Figure 11. Herein, the active coefficients are obtained by an exponential function, while other
coefficients are zeros. The sparsity measurement is defined as ξ12(h)= N

N−
√

N
(1− ‖h‖1√

N‖h‖2
), which is used for

measuring the sparsity of this acoustic echo channel. Herein, we consider ξ12(h)= 0.7416. The related parameters
are µPNLMS = 0.8, µIPNLMS = 0.75, ρZASM = 5× 10−7, ρRZASM = 7× 10−7, ρCIMN = 3× 10−7, ρCIM =

3× 10−6. The numerical results are shown in Figure 11. It is noted that the CIMSM-PNLMS still performs
best in comparison with the NLMS, PNLMS, IPNLMS, SM-PNLMS, ZASM-PNLMS, RZASM-PNLMS,
CIMSM-NLMS and ZASM-PNLMS algorithms.
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Figure 11. Comparison of MSE in echo paths.

5. Conclusions

In this paper, a robust sparse SM-PNLMS algorithm with a CIM zero attractor has been proposed
and its performance has been deeply investigated in various acoustic channels. The CIMSM-PNLMS
algorithm has been derived in detail and the key parameter effects on the MSE and convergence have
been studied. The proposed CIMSM-PNLMS algorithm has been used for estimating acoustic channels
at different sparsity levels to verify its effectiveness. The numerical results show that the proposed
CIMSM-PNLMS algorithm provides the fastest convergence speed and the lowest MSE for estimating
underwater acoustic channels and acoustic echo channels at different SNRs and sparsity levels.
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