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Abstract: In this paper, the noise-enhanced detection problem is investigated for the binary 
hypothesis-testing. The optimal additive noise is determined according to a criterion proposed by 
DeGroot and Schervish (2011), which aims to minimize the weighted sum of type I and II error 
probabilities under constraints on type I and II error probabilities. Based on a generic composite 
hypothesis-testing formulation, the optimal additive noise is obtained. The sufficient conditions 
are also deduced to verify whether the usage of the additive noise can or cannot improve the 
detectability of a given detector. In addition, some additional results are obtained according to the 
specificity of the binary hypothesis-testing, and an algorithm is developed for finding the 
corresponding optimal noise. Finally, numerical examples are given to verify the theoretical 
results and proofs of the main theorems are presented in the Appendix. 
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1. Introduction  

In the binary hypothesis testing problem, there are usually a null hypothesis 0H  and an 
alternative hypothesis 1H , and the objective of testing is to be determine truthfulness of them 
based on the observation data and a decision rule. Due to the presence of noise, the decision result 
obviously cannot be absolutely correct. Generally, two erroneous decisions may occur in the signal 
detection: type I error that rejects a true null hypothesis and type II error that accepts a false null 
hypothesis [1].  

In the classical statistical theory, the Neyman–Pearson criterion is usually applied to obtain a 
decision rule that minimizes the type II error probability β  with a constraint on the type I error 
probability α . However, the minimum β  may not always correspond to the optimal decision 
result. For instance, in the example 1 of [2], a binary hypothesis testing is designed to determine the 
mean of a normal data: the mean equals to −1 under 0H  and equals to 1 under 1H . Under the 
constraint that the type I error probability is fixed to 0.05, the type II error probability is decreased 
from 0.0091 to 0.00000026 when the data size increases from 20 to 100, whereas the rejection region 
of the null hypothesis is changed from (0.1, +∞) to (−0.51, +∞). In such case, more information brings 
a worse decision result even a smaller type II error probability is achieved with the fixed type I 
error probability. Similarly, the decision rule that minimizes the type I error probability for a fixed 
type II error probability may not perform well. Therefore, it could not be appropriate to simply 
minimize one of the two error probabilities in practice. The ideal case is to develop a decision 
criterion that minimizes the two types of error probabilities simultaneously, but it is almost 
impossible in practical applications. 

In order to obtain a better decision result to balance the type I and II error probabilities, 
DeGroot and Schervish [1] proposed a criterion to minimize a weighted sum of type I and II error 
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probabilities, i.e., 1 2min[ ( ) ( )]c c
φ

α φ β φ⋅ + ⋅ , where φ  represents the decision rule, 1c  and 2c  are the 

weight coefficients corresponding to α  and β , respectively, and 1 2, 0c c > . Furthermore, DeGroot 
also provided the optimal decision procedure to minimize the weighted sum. The decision rule is 
given as follows. If 1 0 2 1( | ) ( | )c f x H c f x H< , the null hypothesis 0H  is rejected, where 0( | )f x H  
and 1( | )f x H  are the respective probability density functions (pdfs) of the observation x  under 

0H  and 1H . If 1 0 2 1( | ) ( | )c f x H c f x H> , the alternative hypothesis 1H  is rejected. In addition, if 

1 0 2 1( | ) ( | )c f x H c f x H= , the hypothesis 0H  can be either rejected or not. The optimal detector in 
this case is closely related to the distribution of the observation. This implies that once the 
distribution changes, the detector should be adjusted accordingly. But in the cases where the 
detector is fixed, this weighted sum rule cannot be directly applied. In such a case, finding an 
alternative method to minimize the weighted sum of type I and II error probabilities instead of 
changing the detector is important. Fortunately, the stochastic resonance (SR) theory provides a 
means to solve this problem. 

The SR, first discovered by Benzi et al. [3] in 1981, is a phenomenon where noise plays a 
positive role in enhancing signal and system through a nonlinear system under certain conditions. 
The phenomenon of SR in the signal detection is also called noise-enhanced detection. Recent 
studies indicate that the system output performance can be improved significantly by adding noise 
to the system input or increasing the background noise level [4–22]. The improvements achieved 
via noise can be measured in the forms of increased signal-to-noise ratio (SNR) [7–10], mutual 
information (MI) [11,12] or detection probability [13–16], or in the form of decreased Bayes risk 
[17,18]. For example, the SNR gain of a parallel uncoupled array of bistable oscillators, operating in 
a mixture of sinusoidal signal and Gaussian white noise, is maximized via extra array noise [8]. In 
addition, due to the added array noise, the performance of a finite array closely approaches to an 
infinite array. In [11], the throughput MI of threshold neurons is increased by increasing the 
intensity of faint input noise. The optimal additive noise to maximize the detection probability with 
a constraint on false-alarm probability is studied in [13], and the sufficient conditions for 
improvability and non-improvability are deduced. In [17], the effects of additive independent noise 
on the performance of suboptimal detectors are investigated according to the restricted Bayes 
criterion, where the minimum noise modified Bayes risk is explored with certain constraints on the 
conditional risks. Inspired by this concept, it is reasonable to conjecture that a proper noise can 
decrease the weighted sum of type I and II error probabilities for a fixed detector.  

In the absence of constraints, it is obvious that the additive noise that minimizes the weighted 
sum is a constant vector, whereas the corresponding type I or II error probability may exceed a 
certain value to cause a bad decision result. To avoid this problem, two constraints are enforced on 
type I and II error probabilities, respectively, to keep a balance. The aim of this work is to find the 
optimal additive noise that minimizes the weighted sum of type I and II error probabilities with the 
constraints on type I and II error probabilities for a fixed detector. Furthermore, the work can also 
be extended to some applications, such as the energy detection in sensor networks [23,24] and the 
independent Bernoulli trials [25]. The main contributions of this paper are summarized as follows: 

 Formulation of the optimization problem for minimizing the noise modified weighted sum of 
type I and II error probabilities under the constraints on the two error probabilities is 
presented. 

 Derivations of the optimal noise that minimizes the weighted sum and sufficient conditions for 
improvability and nonimprovability for a general composite hypothesis testing problem are 
provided. 

 Analysis of the characteristics of the optimal additive noise that minimizes the weighted sum 
for a simple hypothesis testing problem is studied and the corresponding algorithm to solve 
the optimization problem is developed. 

 Numerical results are presented to verify the theoretical results and to demonstrate the 
superior performance of the proposed detector. 
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The remainder of this paper is organized as follows: in Section 2, a noise modified composite 
hypothesis testing problem is formulated first for minimizing the weighted sum of type I and II 
error probabilities under different constraints. Then the sufficient conditions for improvability and 
nonimprovability are given and the optimal additive noise is derived. In Section 3, additional 
theoretical results are analyzed for a simple hypothesis testing problem. Finally, simulation results 
are shown in Section 4 and conclusions are made in Section 5. 

Notation: Lower-case bold letters denote vectors, with iυ  denoting the i-th element of υ ; θ  
denotes the value of parameter Θ ; ( )f θ|υ υ  denotes the pdf of υ  for a given parameter value 

θΘ = ; iΩ  denotes the set of all possible parameter values of Θ  under iH ; ( )δ ⋅  denotes the 
Dirac function; ,  and ∅  denote intersection, union and null set, respectively; ∗ , ( )T⋅ ,  , 

{}E ⋅ , min , max  and arg  denote convolution, transpose, integral, expectation, minimum, 
maximum and argument operators, respectively; inf{}⋅  and sup{}⋅  denote the infimum and 
supremum operators, respectively;   means summation; ∇  and H  denote the respective 
gradient and Hessian operators. 

2. Noise Enhanced Composite Hypothesis Testing 

2.1. Problem Formulation  

Consider the following binary composite hypothesis testing problem: 

0 0

1 1

: ( ),
: ( ),

H f

H f

θ θ
θ θ

∈Ω
 ∈Ω

x

x

x |
x |

 (1) 

where N∈x   is the observation vector, 0H  and 1H  are the null and the alternative hypothesizes, 
respectively, θ  denotes the value of parameter Θ , ( )f θx x |  represents the pdf of x  for a given 
parameter value θΘ = . The parameter Θ  has multiple possible values under each hypothesis and 
denote the pdf of any parameter value θΘ =  under 0H  and 1H  by 0 ( )ϖ θ  and 1( )ϖ θ . In 
addition, 0Ω  and 1Ω  denote the respective sets of all possible values of Θ  under 0H  and 1H . 
It is true that 0 1Ω Ω = ∅  and the union of them forms the parameter space Ω , i.e., 0 1Ω=Ω Ω . 

Without loss of generality, a decision rule (detector) is considered as: 

1

0

1,
( )

0,
φ

∈Γ
=  ∈Γ

x
x

x
 (2) 

where 0Γ  and 1Γ  form the observation space Γ . Actually, the detector chooses 1H  if 1∈Γx , 
otherwise chooses 0H  if 0∈Γx . 

In order to investigate the performance of the detector achieved via an additive noise, a noise 
modified observation y  is obtained by adding an independent additive noise n  to the original 
observation x , i.e., = +y x n . For a given parameter value θΘ= , the pdf of y  is calculated by the 
convolution of the pdfs of x  and n , given by:  

( ) ( ) ( ) ( ) ( )
N

f f p p f dθ θ θ= ∗ = −y x n n xy | x | n n y n | n


 (3) 

where ( )pn n  denotes the pdf of n . For a fixed detector, the noise modified type I and II error 
probabilities of the detector for given parameter values now is expressed as: 

1
0( ; ) ( ) ( ) ( ) ,f d f dα φ θ φ θ θ θ

Γ Γ
= = ∈Ω y

y yy y | y y | y  (4) 
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0
1( ; ) (1 ( )) ( ) ( ) ,f d f dβ φ θ φ θ θ θ

Γ Γ
= − = ∈Ω y

y yy y | y y | y  (5) 

Correspondingly, the average noise modified type I and II error probabilities are calculated by: 

0
0( ) ( ; ) ( )dα φ α φ θ ϖ θ θ

Ω
= y y  (6) 

1
1( ) ( ; ) ( )dβ φ β φ θ ϖ θ θ

Ω
= y y  (7) 

From (6) and (7), the weighted sum of the two types of average error probabilities is obtained as: 

0 1

1 2

1 0 2 1

( ) ( )

( ; ) ( ) ( ; ) ( )

Er c c

c d c d

α φ β φ

α φ θ ϖ θ θ β φ θ ϖ θ θ
Ω Ω

= ⋅ + ⋅

= ⋅ + ⋅ 

y y y

y y  (8) 

where 1c  and 2c  are the weights assigned for the type I and II error probabilities, which can be 
predefined according to the actual situations. For example, if the prior probabilities are known, the 
value of 1c  and 2c  equal the prior probabilities corresponding to 0H  and 1H , respectively. 
Besides, the values of 1c  and 2c  can also be determined based on the expected decision results. 

In this work, the aim is to find the optimal independent additive noise, which minimizes the 
weighted sum of the average error probabilities under the constraints on the maximum type I and II 
error probabilities for different parameter values. The optimization problem can be formulated as 
below: 

( )
( ) arg minopt

p
p Er=

n

y
n n
n  (9) 

subject to 0

1

max ( ; )

max ( ; )

o

o

θ

θ

α φ θ α

β φ θ β
∈Ω

∈Ω

 ≤



≤

y

y
 (10) 

where oα  and oβ  are the upper limits for the type I and II error probabilities, respectively.  
In order to explicitly express the optimization problem described in (9) and (10), substituting (3) 

into (4) produces: 

1

1

( ; ) ( ) ( )

( ) ( )

( ) ( )

{ ( )}

N

N

N

p f d d

p f d d

p A d

E A

θ

θ

α φ θ θ

θ
Γ

Γ

= −

= −

=

=

 
 


y
n x

n x

n

n y n | n y

n y n | y n

n n n

n







, 0θ ∈Ω  (11) 

where 
1

( ) ( ) ( ) ( )A f d f dθ θ φ θ
Γ Γ

= − = − x xn y n | y y y n | y , 0θ ∈Ω  (12) 

It should be noted that ( )Aθ n  can be viewed as the type I error probability obtained by 
adding a constant vector n  to x  for 0θ ∈Ω . Therefore, ( ; ) ( ) ( ) ( )A f dθα φ θ φ θ

Γ
= = x

x0 x x | x  

denotes the type I error probability for the original observation x .  
Similarly, ( ; )β φ θy  in (5) can be expressed as: 

( ; ) { ( )}E Bθβ φ θ =y n , 1θ ∈Ω  (13) 

where 
0

( ) ( ) (1 ( )) ( )B f d f dθ θ φ θ
Γ Γ

= − = − − x xn y n | y y y n | y , 1θ ∈Ω  (14) 
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The ( )Bθ n  can be treated as the type II error probability obtained by adding a constant vector 
n  to x  for 1θ ∈Ω  and ( ; ) ( ) (1 ( )) ( )B f dθβ φ θ φ θ

Γ
= = −x

x0 x x | x  is the original type II error 

probability without adding noise for 1θ ∈Ω .  
With (11) and (13), (8) becomes:  

0 1
1 0 2 1( ) ( ) ( ) ( ) ( ) { ( )}

N
Er p c A d c B d d E Erθ θϖ θ θ ϖ θ θ

Ω Ω
 = ⋅ + ⋅ =    y

n n n n n n


 (15) 

where 
0 1

1 0 2 1( ) ( ) ( ) ( ) ( )Er c A d c B dθ θϖ θ θ ϖ θ θ
Ω Ω

= ⋅ + ⋅ n n n  (16) 

Accordingly, ( )Er n  is the weighted sum of two types of average error probabilities achieved 
by adding a constant vector n  to the original observation x . Naturally, ( )Er Er=x 0  denotes the 
weighted sum of type I and II average error probabilities for the original observation x .  

Combined (11), (13) and (15), the optimization problem in (9) and (10) now is: 

( )
( ) arg min { ( )}opt

p
p E Er=

n
n n
n n  (17) 

subject to 0

1

max { ( )}

max { ( )}

o

o

E A

E B

θθ

θθ

α

β
∈Ω

∈Ω

≤
 ≤

n

n
 (18) 

2.2. Sufficient Conditions for Improvability and Non-improvability 

In practice, the solution of the optimization problem in (17) and (18) requires a research over 
all possible noises and this procedure is complicated. Therefore, it is worthwhile to determine 
whether the detector can or cannot be improved by adding additive noise in advance. From (17) 
and (18), a detector is considered to be improvable if there exists one noise n  that satisfies 

{ ( )} (0)E Er Er Er< =xn , 
0

max { ( )} oE Aθθ
α

∈Ω
≤n  and 

0

max { ( )} oE Bθθ
β

∈Ω
≤n  simultaneously; otherwise, the 

detector is considered to be non-improvable. 
The sufficient conditions for non-improvability can be obtained according to the characteristics 

of ( )Aθ n , ( )Bθ n  and ( )Er n , which are provided in Theorem 1.  

Theorem 1. If there exists *
0θ ∈Ω  ( *

1θ ∈Ω ) such that * ( ) oAθ α≤n  ( * ( ) oBθ β≤n ) implies 

( ) ( )Er Er≥n 0  for any P∈ nn , where Pn  represents the convex set of all possible additive noises, and if 
* ( )Aθ n  ( * ( )Bθ n ) and ( )Er n  are convex functions over Pn , then the detector is non-improvable.  

The proof is provided in Appendix.  
Under the conditions in Theorem 1, the detector cannot be improved and it is unnecessary to 

solve the optimization problem in (17) and (18). In other words, if the conditions in Theorem 1 are 
satisfied, the three inequities Er Er≥y x , 

0

max { ( )} oE Aθθ
α

∈Ω
≤n  and 

1

max { ( )} oE Bθθ
β

∈Ω
≤n  cannot be 

achieved simultaneously by adding any additive noise. In addition, even if the conditions in 
Theorem 1 are not satisfied, the detector can also be non-improvable. This implies the sufficient 
conditions for improvability need to be addressed.  

The sufficient conditions for improvability are discussed now. Suppose that ( )Aθ x  ( 0θ∀ ∈Ω ),
( )Bθ x  ( 1θ∀ ∈Ω ) and ( )Er x  are second-order continuously differentiable around =x 0 . In order 

to facilitate the subsequent analysis, six auxiliary functions are predefined as follows based on the 
first and second partial derivatives of ( )Aθ x , ( )Bθ x  and ( )Er x  with respect to the elements of 
x . The first three auxiliary functions (1) ( , )aθ x g , (1) ( , )bθ x g  and (1) ( , )er x g are defined as the weight 
sums of the first partial derivatives of ( )Aθ x , ( )Bθ x  and ( )Er x , respectively, based on the 
coefficient vector g . Specifically: 
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(1)
0

1

( )
( , ) ( ),

N
T

i
i i

A
a g A

x
θ

θ θ θ
=

∂
= ∇ ∈Ω

∂ xx g g x  (19) 

(1)
1

1

( )
( , ) ( ),

N
T

i
i i

B
b g B

x
θ

θ θ θ
=

∂
= ∇ ∈Ω

∂ xx g g x  (20) 

(1)

1

( )( , ) ( )
N

T
i

i i

Er
er g Er

x=

∂ = ∇
∂ xx g g x  (21) 

where g  is a N -dimensional column vector, Tg is the transposition of g , ix  and ig  are the i-th 
elements of x  and g , respectively. In addition, ∇  denotes the gradient operator, thereby 

( )Aθ∇ x  ( ( )Bθ∇ x , ( )Er∇ x ) is a N -dimensional column vector with i-th element ( ) / iA xθ∂ ∂x  
( ( ) / iB xθ∂ ∂x , ( ) / iEr x∂ ∂x ), 1, ,i N=  . The last three auxiliary functions (2) ( , )aθ x g , (2) ( , )bθ x g  and 

(2) ( , )er x g  are defined as the weight sums of the second partial derivatives of ( )Aθ x , ( )Bθ x  and
( )Er x  based on the N N×  coefficient matrix Tgg , i.e., 

2
(2)

0
1 1

( )
( , ) ( ( )) ,

( )

N N
T

j i
j i j i

A
a g g H A

x x
θ

θ θ θ
= =

∂
= ∈Ω

∂ ∂ xx g g x g  (22) 

2
(2)

1
1 1

( )
( , ) ( ( )) ,

( )

N N
T

j i
j i j i

B
b g g H B

x x
θ

θ θ θ
= =

∂
= ∈Ω

∂ ∂ xx g g x g  (23) 

2
(2)

1 1

( )( , ) ( ( ))
( )

N N
T

j i
j i j i

Er
er g g H Er

x x= =

∂ =
∂ ∂ xx g g x g  (24) 

where H  denote the Hessian operator, ( ( ))H Aθ x  ( ( ( ))H Bθ x , ( ( ))H Er x ) is a N N×  matrix with 
its ( , )j i -th element denoted by 2 ( ) / ( )j iA x xθ∂ ∂ ∂x  ( 2 ( ) / ( )j iB x xθ∂ ∂ ∂x , 2 ( ) / ( )j iEr x x∂ ∂ ∂x ), where 
,i j =  1, ,N .  

Based on the definitions in (19)–(24), Theorem 2 presents the sufficient conditions for 
improvability. 

Theorem 2. Suppose that 0Λ  and 1Λ  are the sets of all possible values of θ  that maximize ( )Aθ 0  
and ( )Bθ 0 , respectively, 

0

max ( )o Aθθ
α

∈Ω
= 0  and 

1

max ( )o Bθθ
β

∈Ω
= 0 . The detector is improvable, if there 

exists a N -dimensional column vector g  that satisfies one of the following conditions for all 0 0θ ∈Λ  
and 1 1θ ∈Λ : 

(1) (1)
0( , ) | 0er = <xx g , 

0

(1)
0( , ) | 0aθ = <xx g , 

1

(1)
0( , ) | 0bθ = <xx g ; 

(2) (1)
0( , ) | 0er = >xx g , 

0

(1)
0( , ) | 0aθ = >xx g , 

1

(1)
0( , ) | 0bθ = >xx g ; 

(3) (2)
0( , ) | 0er = <xx g , 

0

(2)
0( , ) | 0aθ = <xx g , 

1

(2)
0( , ) | 0bθ = <xx g . 

The proof is presented in Appendix. 
Theorem 2 indicates that under the condition (1), (2) or (3), there always exist noises that 

decrease the weighted sum of average error probabilities under the constraints on the type I and II 
error probabilities. In addition, alternative sufficient conditions for improvability can be obtained 
by defining the following two functions, and they are:  

0

( ) inf{ ( ) | max ( ) , }NI t Er A tθθ∈Ω
= = ∈n n n   (25) 

1 0

( ) sup{max ( ) | max ( ) , }NS t B A tθ θθ θ∈Ω ∈Ω
= = ∈n n n   (26) 
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where ( )I t  and ( )S t  are the minimum weighted sum of two types of average error probabilities 
and the maximum type II error probability for a given maximum type I error probability obtained 
via adding a constant vector, respectively. If there is a 0 ot α≤  such that 0( ) ( )I t Er≤ 0  and 

( ) oS β≤0 , the detector is improvable. More specifically, there exists a constant vector 0n  that 
satisfies 

0
0 0max ( ) oA tθθ

α
∈Ω

= ≤n , 0( ) ( )Er Er≤n 0  and 
0

0max ( ) oBθθ
β

∈Ω
≤n  simultaneously. However, in 

most cases, the solution of the optimization problem in (17) and (18) is not a constant vector. A 
more practical sufficient condition for improvability is shown in Theorem 3. 

Theorem 3. Let 
0

max ( ; )
θ

α α φ θ
∈Ω

= x  and 
1

max ( ; )
θ

β β φ θ
∈Ω

= x  be the respective maximum type I and II 

error probabilities without adding any noise, and suppose that oα α≤ , oβ β≤  and ( )S α β=  . If ( )I t  
and ( )S t  are second-order continuously differentiable around t α=  , and ( ) 0I α′′ <  and ( ) 0S α′′ <  
hold at the same time, then the detector is improvable.  

The proof is given in Appendix. 
Additionally, the following functions ( )J ε  and ( )G ε  are defined: 

1

( ) inf{ ( ) | max ( ) , }NJ Er Bθθ
ε ε

∈Ω
= = ∈n n n   (27) 

0 1

( ) sup{max ( ) | max ( ) , }NG A Bθ θθ θ
ε ε

∈Ω ∈Ω
= = ∈n n n   (28) 

A similar conclusion to the Theorem 3 can be made as well, provided in Corollary 1.  

Corollary 1. The detector is improvable, if ( ) 0J β′′ ≤  and ( ) 0G β′′ ≤  hold, where ( )J ε  and ( )G ε  
are second-order continuously differentiable around ε β=  , and ( )G β α=  .  

The proof is similar to that of Theorem 3 and it is omitted here. 

2.3. Optimal Additive Noise  

In general, it is difficult to solve the optimization problem in (17) and (18) directly, because the 
solution is obtained based on the search over all possible additive noises. Hence, in order to reduce 
the computational complexity, one can utilize Parzen window density estimation to obtain an 
approximate solution. Actually, the pdf of the optimal additive noise can be approximated by: 

1
( ) ( )

L

l l
l

p ηϑ
=

=n n n  (29) 

where 0lη ≥  and 
1

1L

ll
η

=
= , while ( )lϑ ⋅  represents the window function that satisfies ( ) 0lϑ ≥x  

for any x  and ( ) 0l dϑ x x =  for 1, ,l L=  . The window function can be a cosine window, 

rectangular window, or Gauss window function. With (29), the optimization problem is simplified 
to obtain the parameter values corresponding to each window function. In such cases, global 
optimization algorithms can be applied such as Particle swarm optimization (PSO), Ant colony 
algorithm (ACA), and Genetic algorithm (GA) [26–28].  

If the numbers of parameter values in 0Ω  and 1Ω  are finite, the optimal additive noise 
for (17) and (18) is a randomization of no more than M K+  constant vectors. In this case, 0Ω  
and 1Ω  can be expressed by 0 01 02 0{ , , , }Mθ θ θΩ =   and 1 11 12 1{ , , , }Kθ θ θΩ =  , where M  and 
K  are finite positive integers. The Theorem 4 states this claim. 

Theorem 4. Suppose that each component in the optimal additive noise is finite, namely [ , ]i i in a b∈  for 
1, ,i N=  , where ia  and ib  are two finite values. If 

0
( )

i
Aθ ⋅  and 

1
( )

i
Bθ ⋅  are continuous functions, 
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the pdf of the optimal additive noise for the optimization problem in (17) and (18) can be expressed as: 

1
( ) ( )

M K

l l
l

p η δ
+

=

= −n n n n  (30) 

where 0lη ≥  and 
1

1M K

ll
η+

=
= .  

The proof is similar to that of Theorem 4 in [17] and Theorem 3 in [13], and omitted here. In 
some special cases, the optimal additive can be solved directly based on the characteristics of ( )I t  
( ( )H ε ). For example, let min min ( ) ( )mt

Er I t I t= =  ( min min ( ) ( )mEr H I
ε

ε ε= = ) and 
0

max ( )m mA tθθ∈Ω
=n  

(
1

max ( )m mBθθ
ε

∈Ω
=n ). If m ot α≤  ( m oε β≤ ) and 

1

max ( )m oBθθ
β

∈Ω
≤n  (

0

max ( )mAθθ∈Ω
≤n oα ), the optimal 

additive noise is a constant vector with pdf of ( ) ( )mp δ= −n n n n . In addition, equality of 

0

max { ( )} oE Aθθ
α

∈Ω
=n  (

1

max { ( )} oE Bθθ
β

∈Ω
=n ) holds if m ot α>  ( m oε β> ). 

3. Noise Enhanced Simple Hypothesis Testing 

In this section, the noise enhanced binary simple hypothesis testing problem is considered, 
which is a special case of the optimization problem in (9) and (10). Therefore, the conclusions 
obtained in Section 2 are also applicable in this section. Furthermore, due to the specificity of simple 
binary hypothesis testing problem, some additional results are also obtained.  

3.1. Problem Formulation 

When { }i iθΩ = , 0,1i = , the composite binary hypothesis testing problem described in (1) is 
simplified to a simple binary hypothesis testing problem. In this case, the probability of iθ  under 

iH  equals to 1, i.e., ( ) 1iϖ θ =  for 0,1i = . Therefore, the corresponding noise modified type I and II 
error probabilities is rewritten as: 

1
0 0 0( ) ( ; ) ( ) ( ) { ( )}

N
p f d d E Aα φ α φ θ

Γ
= = − = y y

n n y n y n n


 (31) 

0
1 1 1( ) ( ; ) ( ) ( ) { ( )}

N
p f d d E Bβ φ β φ θ

Γ
= = − = y y

n n y n y n n


 (32) 

where 0( )f ⋅  and 1( )f ⋅  represent the pdfs of x  under 0H  and 1H , respectively, and 0 ( )A n  and 

1( )B n  are: 

1
0 0( ) ( )A f d

Γ
= −n y n y  (33) 

0
1 1( ) ( )B f d

Γ
= −n y n y  (34) 

Correspondingly, the weighted sum of noise modified type I and II error probabilities is 
calculated by: 

1 2 1 0 2 1

1 0 2 1

( ) ( ) { ( )} { ( )}

( )( ( ) ( ))

{ ( )}

N

Er c c c E A c E B

p c A c B d

E Er

α φ β φ= + = +

= +

=


y y y

n

n n

n n n n

n


 (35) 

 

where 1 0 2 1( ) ( ) ( )Er c A c B= +n n n  (36) 

As a result, the optimization problem in (9) and (10) becomes:  
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( )
( ) arg min { ( )}opt

p
p E Er=

n
n n
n n  (37) 

subject to 0

1

{ ( )}
{ ( )}

o

o

E A

E B

α
β

≤
 ≤

n
n

 (38) 

Based on the definitions in (33) and (34), 0 ( )A n  and 1( )B n  are viewed as the noise modified 
type I and II error probabilities obtained by adding a constant vector noise. Furthermore, 0 ( )A 0  
and 1( )B 0  are the original type I and II error probabilities, respectively. 

3.2. Algorithm for the Optimal Additive Noise  

According to the Theorem 4 in Section 2.3, the optimal additive noise for the optimization 
problem in (37) and (38) is a randomization of most two constant vectors with the pdf 

1 2( ) ( ) (1 ) ( )optp ηδ η δ= − + − −n n n n n n . In order to find the values of η , 1n  and 2n , we first divide 
each constant vector n  into four disjoint sets according to the relationships of 0 ( )A n  and oα , 

1( )B n  and oβ . To be specific, the four disjoint sets are 1 0 1{ | ( ) , ( ) }o oQ A Bα β= ≤ ≤n n n , 

2 0 1{ | ( ) , ( ) }o oQ A Bα β= ≤ >n n n , 3 0 1{ | ( ) , ( ) }o oQ A Bα β= > ≤n n n , and 4 0 1{ | ( ) , ( ) }o oQ A Bα β= > >n n n . 
Then, we calculate the minimum ( )Er n , the corresponding set of all possible values of n  is 
denoted by { | arg min ( )}eQ Er= =

n
n n n . It should be noted that eQ∈n  is the optimal additive noise 

that minimizes the weighted sum without constraints.  
It is obvious that 1Q , 2Q  and 3Q  do not exist if all the elements of eQ  belong to 4Q . In 

other words, if 4eQ Q⊂ , there is no additive noise that satisfies { ( )} ( )E Er Er<n 0  under the 
constraints of 0{ ( )} oE A α≤n  and 1{ ( )} oE B β≤n . Therefore, if the detector is improvable, the 
elements of eQ  must come from 1Q , 2Q  and/or 3Q . Theorem 5 is now provided to find the 
values of η , 1n  and 2n . 

Theorem 5. Let 1
0 2

0 1 0 2

( )
( ) ( )
o A

A A
αη −

−= n
n n  and 2

1 2

1 1 1 2

( )
( ) ( )
o B

B B
βη −

−= n
n n .  

(1) If 1eQ Q ≠ ∅ , then 1η =  and 1 1eQ Q∈n   such that 1( ) min ( )optEr Er Er= =y

n
n n . 

(2) If 2eQ Q ≠ ∅  and 3eQ Q ≠ ∅  are true, then we have 1 2eQ Q∈n  , 2 3eQ Q∈n  , 1 2η η η≤ ≤ , 
and min ( )optEr Er=y

n
n .  

(3) If 2eQ Q⊂ , then optEr y  is obtained when 2η η= , and the corresponding 0{ ( )}E A n  achieves the 
minimum and 1{ ( )} oE B β=n .  

(4) If 3eQ Q⊂ , then 
optE r y  is achieved when 1η η= , and the corresponding 0{ ( )} oE A α=n  and 

1{ ( )}E B n  reaches the minimum.  

The corresponding proofs are provided in Appendix. 
From (3) and (4) in Theorem 5, under the constraints on 0{ ( )} oE A α≤n  and 1{ ( )} oE B β≤n , the 

solution of the optimization problem in (37) and (38) is identical with the additive noise that 
minimizes 0{ ( )}E A n  ( 1{ ( )}E B n ) when 2eQ Q⊂  ( 3eQ Q⊂ ). In such cases, the optimal solution can 
be obtained easily by referring the algorithm provided in [14]. 

4. Numerical Results 

In this section, a binary hypothesis testing problem is studied to verify the theoretical analysis, 
and it is:  
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0

1

:
:

H x v

H x vΘ
=

 = +
 (39) 

where x∈  is an observation, Θ  is a constant or random variable, and v  is the background 
noise with pdf ( )vp ⋅ . From (39), the pdf of x  under 0H  is 0 ( ) ( )vf x p x= , and the pdf of x  under 

1H  for a given parameter value Θ=θ  is denoted by ( ) ( ) ( )vf x p pθ θ= ⋅ ∗ ⋅ , where ( )pθ ⋅  represents 
the pdf of Θ=θ . A noise modified observation y is obtained via adding an additive independent 
noise n  to the observation x , i.e., y x n= + . If the additive noise n  is a constant vector, the pdf of 
y  under 0H  is calculated as 0 0( ) ( )f y f x n= − , and the pdf of y  under 1H  for Θ=θ  is 

( ) ( )f y f x nθ θ= − . In addition, a linear- quadratic detector is utilized here, given by:  

1

0

2
0 1 2( )

H

H

T y d y d y d γ<= + + >  (40) 

where 0d , 1d  and 2d  are detector parameters, and γ  denotes the detection threshold. In the 
numerical examples, x

oα α=  and x
oβ β= , where xα  and xβ  are the original type I and II error 

probabilities, respectively. 

4.1. Rayleigh Distribution Background Noise 

Suppose that sΘ =  is a constant, the problem shown in (39) represents a simple binary 
hypothesis testing problem. Here, we set 0 2 0d d= =  and 1 1d = , then the detector becomes 

1

0

( )
H

H

T y y γ<= >  (41) 

It is assumed that the background noise v  obeys the mixture of Rayleigh distributions with 

zero-means such that 1
( ) ( )M

v i i ii
p v m vϕ μ

=
= − , where 0im ≥  for 1, ,i M=  , 1

1M

ii
m

=
= , and  

2

2 22
exp( ), 0

( )
0, 0

i
i i

x x x
x

x

σ σϕ
 − ≥= 
 <

 (42) 

In the simulations, the variances of all the Rayleigh components are assumed to be the same, 
i.e., iσ σ=  for 1, ,i M=  . In addition, the parameters are specified as 4M= , 1 0.2u = , 2 0.4u = , 

3 22 0.2u πσ= − − , 4 22 0.4u πσ= − −  and 0.25im =  for 1, ,4i =  . From (33) and (34), the noise 

modified type I error probability 0 ( )A n  and type II error probability 1( )B n  obtained by adding a 
constant vector n  is calculated as: 

4

0 0
1

( ) ( ) ( )i i
i

A n f y dy m n
γ

γ μ
+∞

=

= = Φ − −  (43) 

4

1 1
1

( ) ( ) 1 ( )i i
i

B n f y dy m n s
γ

γ μ
−∞

=

= = − Φ − − −  (44) 

where 2
2 22( ) exp( )

x

x xx dtσ σ
∞

Φ = − , when 0x> ; ( ) 1xΦ = , when 0x≤ . Accordingly, 0 (0)x Aα =  
4

1
( )i ii

m γ μ
=

= Φ −  and 
4

1 1
(0) 1 ( )x

i ii
B m sβ γ μ

=
= = − Φ − − . Let 1 ( )x x xc β α β= +  and 2c = 

( )x x xα α β+ , the noise modified weighted sum of the two types of error probabilities obtained 

via adding a constant vector is 
4 4

1 21 1
( ) ( ) ( )i i i ii i

Er n c m n c m n sγ μ γ μ
= =

= Φ − − + Φ − − −  .  
From Section 3.3, the pdf of the optimal additive noise that minimizes weighted sum of type I 

and II error probabilities is denoted by 1 2( ) ( ) (1 ) ( )optp ηδ η δ= − + − −n n n n n n , under the two 
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constraints that y xα α≤  and y xβ β≤ . Moreover, the optimal additive noise for the case without 
any constraints is a constant vector.  

Figure 1 plots the minimum noise modified weighted sums of type I and II error probabilities 
obtained under no constraint and two constraints that y xα α≤  and y xβ β≤ , and the original 
weighted sum without adding any noise for different values of σ  when 3s=  and 2sγ = . When 

1σ σ≤ , there is no noise that decreases the weighted sum. With the increase of σ , noise exhibits a 
positive effect on the detection performance. To be specific, when 1 2σ σ σ< < , the weighted sum 
can be decreased by adding a constant vector for the no constraint case. When 2σ σ> , the weighted 
sum can be decreased adding the noise under two constraints. The noise modified weighted sum 
obtained without any constraints is less than or equal to that obtained under the two constraints, 
and the difference between them first decreases to zero for 3 4σ σ σ< <  and then gradually 
increases when 4σ σ> . In addition, once σ  exceeds a certain value, no noise exists that can 
decrease the weighted sum for any cases. 

 

Figure 1. The minimum noise modified weighted sums of the type I and II error probabilities 
obtained under no constraint and two constraints, and the original weighted sum for different σ  
when 3s =  and 2sγ = . 

Figure 2 shows the type I and II error probabilities corresponding to the weighted sum in 
Figure 1. From both Figures 1 and 2, it is observed that one of the noise modified Type I and II error 
probabilities performs worse than the original one for the no constraint case. Therefore, though the 
noise modified weighted sum obtained with no constraint is less than that obtained under the two 
constraints, the corresponding noise is actually not suitable to add to the observation. Furthermore, 
when the minimum value of the noise modified weighted sum is obtained under the two 
constraints, the corresponding type II probability equals to the original one and the type I 
probability achieves the minimum for 2 3σ σ σ< < . Conversely, when 4σ σ> , the corresponding 
type I probability equals to the original one and the type II probability achieves the minimum. The 
results are consistent with part (3) and part (4) in Theorem 5. Especially, for 3 4σ σ σ< < , the 
minimum values of the noise modified weighted sum obtained under no constraint is equal to that 
obtained under two constraints, and the corresponding type I and II error probabilities are the same, 
which also agrees with part (2) in Theorem 5. In order to further illustrate the results in Figures 1 
and 2, Table 1 provides the optimal additive noises added for the two different cases. 
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Table 1. The optimal additive noises that minimize the weighted sum under two constraints and no 
constraint for various σ  where 3s =  and 2sγ = . 

σ  Two Constraints No Constraints 

1n  2n  η on  

0.950 - - - −1.7089 

1.250 −1.9082 1.7963 0.6950 −1.9218 

2.125 −2.5136 3.1896 0.7862 −2.5136/3.1896 

3.000 −3.3771 4.6942 0.3770 4.7449 

 

(a) (b)

Figure 2. The type I (a) and II (b) error probabilities corresponding to the weighted sum in Figure 1. 

Figure 3 depicts the minimum noise modified weighted sums of the type I and II error 
probabilities versus s for the cases of no constraint and two constraints, and the original weighted 
sum, when 1σ=  and 2sγ = . The corresponding type I and II error probabilities are depicted in 
Figure 4a,b, respectively. It is seen in Figure 3, the improvement of the weighted sum obtained by 
adding noise first increases and then decreases with the increase of s, and finally they all converge 
to the same value. The differences for the cases with and without constraints are very small in most 
cases. In the small interval of s, i.e., 1 2( , )s s s∈ , the difference even decreases to zero. On the other 
hand, the noise modified type I error probability obtained under no constraint is significantly 
greater than the original one for 1s s< , while the corresponding type II error probability is less than 
that obtained under the two constraints. The situation, however, is reversed for 2 3s s s< < . When 

3s s> , there is no noise that decreases the weighted sum under the two constraints, while the 
weighted sum is still decreased by adding a constant vector for no constraint case. When 4s s> , the 
weighted sum cannot be decreased by adding any noise for all the cases. Furthermore, Table 2 
shows the optimal additive noises that minimize the weighted sum under the cases of no and two 
constraints. 
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Figure 3. The minimum noise modified weighted sums of the type I and II error probabilities 
obtained under no constraint and two constraints, and the original weighted sum for different s 
when 1σ =  and 2sγ = . 

(a) (b) 

Figure 4. The type I and II error probabilities corresponding to the weighted sum in Figure 3 are 
shown in (a) and (b), respectively. 

Table 2. The optimal additive noises that minimize the weighted sum under two constraints and no 
constraint for various s where 1σ =  and 2sγ = . 

s Two Constraints No Constraints 

1n  2n  η on  

1.25 −1.3682 1.7327 0.2918 1.7474 

1.75 −1.4408 1.6563 0.7265 −1.4408/1.6563 

2.5 −1.6052 1.4690 0.6983 −1.6201 

3.25 - - - −0.5866 

Figure 5 shows the minimum noise modified weighted sums of type I and II error probabilities 
versus γ  for the cases of no constraint and two constraints, and the original weighted sum, when 

1σ=  and 3s= . The corresponding type I and II error probabilities are depicted in Figure 6a,b, 
respectively. As illustrated in Figure 5, when γ  is close to zero, the original weighted sum xEr  
approaches to zero. In such case, no additive noise exists to decrease the weighted sum. For the case 
of two constraints, the improvement of the weighted sum first increases for 1 2γ γ γ< <  and then 
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decreases for 2 3γ γ γ< < , and no improvement can be obtained when 2γ γ> . On the other hand, 
the minimum noise modified weighted sum obtained under no constraint is smaller than that 
obtained under the two constraints for 1 3γ γ γ< < , and the difference between them first increases 
and then decreases for both 1 2γ γ γ< <  and 2 3γ γ γ< < . When 3γ γ> , there still exists a constant 
vector that decreases the weighted sum, but it may be not a suitable noise in the practical 
application according to the type II probability depicted in Figure 6b. Furthermore, in order to 
study the results illustrated in Figures 5 and 6, Table 3 shows the optimal additive noises that 
minimize the weighted sum for the cases of no and two constraints. 

 
Figure 5. The minimum noise modified weighted sums of the type I and II error probabilities 
obtained under no constraint and two constraints, and the original weighted sum for different γ  

when 1σ =  and 3s = . 

 
(a) (b) 

Figure 6. The type I and II error probabilities corresponding to the weighted sum in Figure 5 are 
shown in (a) and (b), respectively. 

Table 3. The optimal additive noises that minimize the weighted sum under two constraints and no 
constraint for various γ  where 1σ =  and 3s = . 

γ  
Two Constraints No Constraints

1n  2n  η on  
0.050 - - - - 
1.100 −2.1213 0.9341 0.2878 0.9691 
1.425 −1.7947 1.2585 0.5355 −1.7957 
2.250 −0.9693 2.0836 0.8867 −1.1763 
3.375 - - - −0.5775 
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4.2. Gaussian Mixture Background Noise 

Suppose that Θ  is a random variable with following pdf: 

1 ( ) ( ) (1 ) ( )s sϖ θ ρδ θ ρ δ θ= − + − +  (45) 

Therefore, we have 0 {0}Ω=  and 1 { , }s sΩ= − . In the simulations, we set 0 1d = , 1 0d = , 
2

2 4d s=−  and 0γ = , the detector is expressed as: 

1

0

2
2( ) 0

4

H

H

s
T y y <= − >  (46) 

Moreover, we assume that v is a zero-mean symmetric Gaussian mixture noise with pdf of

1
( ) ( )M

v i i ii
p v m vψ μ

=
= − , where 0im ≥ , 1

1M

ii
m

=
=  and:  

2
22

1
22

( ) exp( )i
ii

vv
σπσ

ψ = −  (47) 

Let 4M=  and the mean values of the symmetric Gaussian components are set as [0.05 0.52 
−0.52 −0.05] with corresponding weights [0.35 0.15 0.15 0.35]. In addition, the variances of Gaussian 
components are the same, i.e., iσ σ=  for 0, ,4i =  . According to (12) and (14), the noise modified 
type I error probability obtained by adding a constant vector n to x is calculated by: 

4

0
1

2 2
( ) ( ( ) ( ))i i

i
i

s n s n
A n m

μ μ
σ σ=

+ + − −
= Ψ +Ψ  (48) 

and the corresponding type II error probabilities for sΘ=  and s−  are respectively calculated as: 
4

1

3 2 2
( ) 1 ( ( ) ( ))i i
s i

i

s n s n
B n m

μ μ
σ σ=

+ + − − −
= − Ψ +Ψ  (49) 

4

1

2 3 2
( ) 1 ( ( ) ( ))i i
s i

i

s n s n
B n m

μ μ
σ σ−

=

− + + − −
= − Ψ +Ψ  (50) 

where 2
2

1
2 2

( ) exp( )
x

tx dtπ σ
∞

Ψ = − . Accordingly: 

1 ( ) ( ) (1 ) ( )s sB n B n B nρ ρ −= + −  (51) 

Therefore, the original type I and type II error probabilities for sΘ=  and s−  are 
0( ; 0) (0)x Aα φ = , ( ; ) (0)x

ss Bβ φ =  and ( ; ) (0)x
ss Bβ φ −− = , respectively.  

Due to the symmetry property of v, one obtains (0) (0)s sB B−= . In this case, the original 
average type II error probability is 1 (0) ( ; ) (1 ) ( ; ) (0) (0)x x x

s sB s s B Bβ ρβ φ ρ β φ −= = + − − = = . The noise 
modified weighted sum of type I and average type II error probabilities corresponding to the 
constant vector is expressed by 1 0 2 1( ) ( ) ( )Er n c A n c B n= + . The values of 1c  and 2c  are still 
specified as ( )x x xβ α β+  and ( )x x xα α β+ , respectively. From Theorem 4 in Section 2.3, the 
optimal additive noise that minimizes the weighted sum is a randomization with a pdf of 

1 1 2 2 3 3( ) ( ) ( ) ( )opt
np n n n n n n nη δ η δ η δ= − + − + − , where 0iη ≥  for 1, ,3i =  , and 3

1
1ii

η
=

= .  

Figure 7 shows the detection performance of the original detector and the noise enhanced 
detector that minimizes the weighted sum of type I and average type II error probabilities under the 
constraints that ( ; 0)y

oα φ α≤  and 
1

max ( ; )y
oθ

β φ θ β
∈Ω

≤ , for different values of σ  where 1s=  and 

0.6ρ = . The minimum achievable noise modified weighted sum is plotted in Figure 7a, and the 
corresponding type I error probability and type II error probabilities for sΘ=  and s−  are 
depicted in Figure 7b–d, respectively. 
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(a) (b) 

(c) (d) 

Figure 7. The weighted sums, type I error probabilities, and type II error probabilities for sΘ=  and 
s−  of the original detector and the noise enhanced detector for different σ  where 1s=  and 

0.6ρ =  shown in (a), (b), (c) and (d), respectively. 

From Figure 7, the original weighted sums, type I error probabilities, and type II error 
probabilities for sΘ=  and s−  increase as σ  decreases towards zero. In Figure 7a, when σ  is 
close to zero, the weighted sum can be decreased significantly. With the increase of σ , the 
improvement obtained by adding noise is reduced gradually to zero. In other words, the 
phenomenon of noise-enhanced detection performance cannot occur when σ  exceeds a certain 
value. In Figure 7b, the noise modified type I error probability stays at 0.1500 for 0.07σ <  and then 
increases gradually to equal to the original type I error probability. Moreover, the noise modified 
type II error probabilities for sΘ=  corresponding to the minimum weighted sum increases from 
zero to that of original detector, shown in Figure 7c, while the type II error probabilities for sΘ=−  
of the noise enhanced detector is equal to that of the original detector all the time. In fact, the type II 
error probability for sΘ=  also reaches the minimums under the constraints that ( ; 0)y

oα φ α≤  and 

1

max ( ; )y
oθ

β φ θ β
∈Ω

≤  in this example. In addition, Table 4 offers the optimal additive noises that 

minimize the weighted sum for different values of σ  to explain the results in Figure 7. It should 
be noted that the optimal noise is not unique.  
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Table 4. The optimal additive noises that minimize the weighted sum under two constraints for 
various σ  where 1s =  and 0.6ρ = . 

σ  1n  2n  3n  1η  2η  3η  

0.0001 0.2286 - - 1.0000 - - 

0.02 0.2286 −0.2255 - 0.8413 0.1587 - 

0.05 0.2287 −0.2208 0.2421 0.5310 0.3446 0.1244 

0.08 0.2180 −0.2185 −0.2168 0.5943 0.2449 0.1608 

 

(a) (b) 

(c) (d) 

Figure 8. The weighted sums, type I error probabilities, and type II error probabilities for sΘ=  and 
s−  of the original detector and the noise enhanced detector for different s where 0.08σ =  and 

0.6ρ =  shown in (a), (b), (c) and (d), respectively. 

Figure 8a demonstrates the weighted sums of type I and average type II error probabilities of 
the original detector and the noise enhanced detector versus s, where 0.08σ =  and 0.6ρ = . The 
corresponding type I error probability and type II error probabilities for sΘ=  and s−  are 
depicted in Figure 8b–d, respectively. From Figure 8a, the weighted sum cannot be decreased under 
the constraints on different error probabilities for 1s s<  and 2s s< . Conversely, there exists additive 
noise under the constraints that reduces the weighted sum for 1 2s s s< < , and the corresponding 
improvement first increases and then decreases with the increase of s. Comparing Figure 8b with 
Figure 8a, it is noted that the change of the noise modified type I error probability is similar to that 
of the noise modified weighted sum. In Figure 8c, the noise modified type II error probability for 
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sΘ=  first decreases to the minimum and then increases as s increases, while the type II error 
probability for sΘ=−  of the noise modified detector is always equal to that of the original detector, 
shown in Figure 8d. In addition, in order to further illustrate the results in Figure 8, Table 5 shows 
the optimal noises that minimize the weighted sum under the case of two constraints.  

Table 5 The optimal additive noises that minimize the weighted sum under two constraints for 
various s where 0.08σ =  and 0.6ρ = . 

s  
1n  2n  3n  1η  2η  3η  

0.65 0.1613 −0.1613 - 0.6267 0.3733 - 

0.75 0.2026 −0.2026 - 0.7949 0.2051 - 

0.85 0.2148 −0.2149 -0.2150 0.8262 0.1300 0.0438 

0.95 0.2195 −0.2196 -0.2190 0.7006 0.1916 0.1078 

5. Conclusions 

In this paper, a noise-enhanced detection problem has been investigated for a general 
composite hypothesis testing. Under the constraints of type I and II error probabilities, the 
minimization of the weighted sum of average type I and II error probabilities has been explored by 
adding an additive independent noise. The sufficient conditions for improvability of the weighted 
sum are provided, and a simple algorithm to search the optimal noise is developed. Then some 
additional theoretical results are made based on the specificity of the binary simple hypothesis 
testing problem. The studies on different noise distributions confirm the theoretical analysis that the 
optimal additive noise indeed minimizes the weighted sum under certain conditions. To be noted 
that, theoretical results can also be extended to a broad class of noise enhanced optimization 
problems under two inequality constraints such as the minimization of Bayes risk under the 
different constraints of condition risks for a binary hypothesis testing problem. 
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Appendix A. Proof of Theorem 1 

Proof. Due to the convexity of * ( )Aθ n  and according to the Jensen’s inequality, the type I error 

probability in (4) is calculated as:  

* *
*( ; ) { ( )} ( { )E A A Eθ θα φ θ = ≥y n n }  (A1) 

The contradiction method is utilized to prove this theorem. Suppose that the detector can be 
improved by adding noise. The improvability means that *( ; ) oα φ θ α≤y  for any *

0θ ∈ Ω , and then 

*( { ) oA Eθ α≤n}  from (A1). Since {E P∈ nn} , *( { ) oA Eθ α≤n}  implies ( { ) ( )Er E Er≥n} 0  based on the 

assumption in Theorem 1, (15) can be recalculated as: 

{ ( )} ( { }) ( )Er E Er Er E Er Er= ≥ ≥ =y xn n 0  (A2) 
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where the first inequality holds according to the convexity of ( )Er n . From (A1) and (A2), the 

inequality Er Er<y x  cannot be achieved by adding any noise under the conditions presented in 
Theorem 1. Therefore, the detector is nonimprovable, which contradicts the assumption. Similarly, 
the alternative conditions for nonimprovability stated in the parentheses can also be proved. □ 

Appendix B. Proof of Theorem 2 

Proof. According to the definitions in (9) and (10), improvability for a detector means that there 
exists at least one pdf ( )pn n  to satisfy three conditions, i.e., ( ) ( ) ( )

N
E r p E r d E r= <y

n n n n 0


, 

( ) ( )
N op A dθ α≤ n n n n


 for any 0θ ∈Ω  and ( ) ( )

N op B dθ β≤ n n n n


 for any 1θ ∈Ω . Suppose that the 

noise pdf ( )pn n  consists of L  infinitesimal noise components, i.e., 1
( ) ( )L

l ll
p λδ

=
= −n n n ε . The 

three conditions can be rewritten as follows: 

1
( ) ( )

L

l l
l

Er Er Erλ
=

= <y 0ε  (A3) 

0
1

( ) ,
L

l l o
l

Aθλ α θ
=

≤ ∀ ∈Ω ε  (A4) 

1
1

( ) ,
L

l l o
l

Bθλ β θ
=

≤ ∀ ∈Ω ε  (A5) 

Since lε , 1, ,l L=  , is infinitesimal, ( )lEr ε , ( )lAθ ε  and ( )lBθ ε  can be expressed approximately 
with Taylor series expansion as ( ) 0.5T T

l l lEr + +0 Er Hε ε ε , ( ) 0.5T T A
l l lAθ θ θ+ +0 A Hε ε ε  and 

( ) 0.5T T B
l l lBθ θ θ+ +0 B Hε ε ε , where Er( θA , θB ) and H ( A

θH , B
θH ) are the gradient and the Hessian 

matrix of ( )Er x ( ( )Aθ x , ( )Bθ x ) around =x 0, respectively. Therefore, (A3)–(A5) are rewritten as:  

1 1
0.5 0

L L
T T

l l l l l
l l

λ λ
= =

+ < Er Hε ε ε  (A6) 

0
1 1

0.5 ( ),
L L

T T A
l l l l l o

l l

Aθ θ θλ λ α θ
= =

+ ≤ − ∀ ∈Ω A H 0ε ε ε  (A7) 

1
1 1

0.5 ( ),
L L

T T B
l l l l l o

l l

Bθ θ θλ λ β θ
= =

+ ≤ − ∀ ∈Ω B H 0ε ε ε  (A8) 

Let lε  be expressed by l lτ= gε , where g is a N -dimensional real vector and lτ  is 
an infinitesimal real value, 1, ,l L=  . Accordingly, one obtains:  

2

1 1
0.5 0

L L
T T

l l l l
l l

λτ λτ
= =

+ < g Er g Hg  (A9) 

2
0

1 1
0.5 ( ),

L L
T T A

l l l l o
l l

Aθ θ θλ τ λ τ α θ
= =

+ ≤ − ∀ ∈Ω g A g H g 0  (A10) 

2
1

1 1
0.5 ( ),

L L
T T B

l l l l o
l l

Bθ θ θλτ λτ β θ
= =

+ ≤ − ∀ ∈Ω g B g H g 0  (A11) 

Based on the definitions given in (19)–(24), (A9)–(A11) are simplified as:  
(1) (2)( ( , ) ( , )) | 0k er er =⋅ + <x 0x g x g  (A12) 

(1) ( 2 )
02

1

2( ( ))
( ( , ) ( , )) | ,o

L

l ll

A
k a a θ

θ θ
α θ

λ τ
=

=

−
⋅ + < ∀ ∈ Ω


x 0

0
x g x g  (A13) 
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(1) ( 2 )
12

1

2( ( ))
( ( , ) ( , )) | ,o

L

l ll

B
k b b θ

θ θ
β θ

λ τ
=

=

−
⋅ + < ∀ ∈ Ω


x 0

0
x g x g  (A14) 

where 2
1 1

2 L L

l l l ll l
k λ τ λ τ

= =
=   . As ( )o Aθα = 0  for 0θ ∈Λ  and ( )o Aθα > 0  for 0 0\θ ∈ Ω Λ , the 

right-hand side of (A13) approaches to plus infinity for 0 0\θ ∈ Ω Λ . Similarly, when ( )o Bθβ = 0  
for 1θ ∈Λ  and ( )o Bθβ > 0  for 1 1\θ ∈ Ω Λ , the right-hand side of (A14) also goes to plus infinity 
for 1 1\θ ∈ Ω Λ . Therefore, we only need to consider the cases of 0θ ∈Λ  and 1θ ∈Λ . In doing so, 
(A12)–(A14) are now:  

(1) (2)( ( , ) ( , )) | 0k er er =⋅ + <x 0x g x g  (A15) 
(1) ( 2 )

0( ( , ) ( , )) | 0,k a aθ θ θ=⋅ + < ∀ ∈ Λx 0x g x g (A16) 
(1) ( 2 )

1( ( , ) ( , )) | 0,k b bθ θ θ=⋅ + < ∀ ∈ Λx 0x g x g (A17) 

It is obvious that k  can be set as any real value by choosing appropriate lλ  and lτ . As a 
result, (A15)–(A17) can be satisfied by selecting a suitable value of k  under each condition in 
Theorem 2. That is:  

(1) Inequalities (A15)–(A17) can be satisfied by setting k  as a sufficiently large positive number, if 
(1)

0( , ) | 0er = <xx g , 
0

(1)
0( , ) | 0aθ = <xx g , 

1

(1)
0( , ) | 0bθ = <xx g  hold. 

(2) Inequalities (A15)–(A17) can be satisfied by setting k  as a sufficiently large negative number, 
if (1)

0( , ) | 0er = >xx g , 
0

(1 )
0( , ) | 0eaθ = >xx g , 

1

(1)
0( , ) | 0bθ = >xx g  hold. 

(3) Inequalities (A15)–(A17) can be satisfied by setting k  as zero, if ( 2 )
0( , ) | 0er = <xx g , 

0

( 2 )
0( , ) | 0aθ = <xx g , 

1

( 2 )
0( , ) | 0bθ = <xx g  hold. □ 

Appendix C. Proof of Theorem 3 

Proof. Since ( )I t  and ( )S t  are second-order continuously differentiable around t α=  , there 
exists a 0ξ >  such that ( ) 0I ′′ ⋅ <  and ( ) 0S ′′ ⋅ <  for ( , )α ξ α ξΔ = − +  . If one adds a noise with pdf 

ˆ 1 2( ) 0.5 ( ) 0.5 ( )p δ δ= − + −n n n n n n , where 
0

1m a x ( )Aθθ
α ξ

∈ Ω
= +n   and 

0
2m a x ( )Aθθ

α ξ
∈ Ω

= −n  , to the 

original observation x , the maximum values of corresponding noise modified type I and II error 
probabilities are: 

0 0

ˆ ˆmax { ( )} {max ( )} 0.5( ) 0.5( ) oE A E Aθ θθ θ
α ξ α ξ α α

∈Ω ∈Ω
≤ ≤ + + − = ≤n n     (A18) 

1 1

ˆ ˆmax { ( )} {max ( )} 0.5 ( ) 0.5 ( ) ( ) oE B E B S S Sθ θθ θ
α ξ α ξ α β β

∈Ω ∈Ω
≤ ≤ + + − ≤ = ≤n n     (A19) 

In addition:  

ˆ{ ( )} { ( )} 0.5 ( ) 0.5 ( ) ( )E Er E I t I I Iα ξ α ξ α= = + + − <n     (A20) 

One obtains ˆ{ ( )} ( )E Er Er<n 0  because ( ) ( )I Erα ≤ 0  according to the definition of ( )I t . As a 
result, the detector is improvable. □ 
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Appendix D. Proof of Theorem 5 

Proof. Part (1): If 1eQ Q ≠ ∅ , any 1 1eQ Q∈n   satisfies the constraints of 0 1( ) oA α≤n  and 

1 1( ) oB β≤n  based on the definition of 1Q  and 1( ) min ( ) ( )optEr Er Er Er= = <y

n
n n 0  according to the 

definition of eQ .  
Part (2): If 2eQ Q ≠ ∅  and 3eQ Q ≠ ∅  simultaneously, there exists 1 2eQ Q∈n   and  

2 3eQ Q∈n   such that 
1 2( ) ( ) m in ( )E r E r E r= =

n
n n n  based on the definition of eQ . In order to 

meet the constraints that 0{ ( )} oE A α≤n  and 1{ ( )} oE B β≤n , the noise components η, 1n  and 

2n  should satisfy the following two inequalities: 

0 1 0 2( ) (1 ) ( ) oA Aη η α+ − ≤n n  (A21) 

1 1 1 2( ) (1 ) ( ) oB Bη η β+ − ≤n n (A22) 

Consequently, 1
0 2

0 1 0 2

( )
( ) ( )
o A

A A
αη η −

−≥ = n
n n  and 2

1 2

1 1 1 2

( )
( ) ( )
o B

B B
βη η −

−≤ = n
n n  according to the definitions of 

2Q  and 3Q . If 1 2η η η≤ ≤ , the noise with pdf 1 2( ) ( ) (1 ) ( )optp ηδ η δ= − + − −n n n n n n  can minimize 

{ ( )}E Er n  and satisfy the two inequalities, and 1 2( ) (1 ) ( ) min ( )optEr Er Er Erη η= + − =y

n
n n n . 

Part (3): If 2eQ Q⊂ , the optimal additive noise is not a constant vector, i.e., 1η ≠ . Therefore, 
one of 1n  and 2n  belongs to 2Q  and the second one comes from 1Q  or 3Q . In addition, η, 

1n  and 2n  should also satisfy the two constraints in (A21) and (A22). 
First, suppose that 1 2Q∈n  and 2 1Q∈n , then (A21) holds based on the definitions of 1Q  and 

2Q . We should only consider the constraint in (A22), which implies 2η η≤ . It is true that 

0 2( ) oA α≤n  and 1 2( ) oB β≤n  according to the definition of 1Q . If 1 2( ) ( )Er Er>n n , we have 

2 1 2( ) ( ) (1 ) ( )optEr Er Er Erη η< = + −yn n n , which contradicts with the definition of ( )optpn n . Hence, 

1 2( ) ( )Er Er<n n  and the minimum of { ( )}E Er n  is obtained when 2η η= .  
Next, suppose that 1 2Q∈n  and 2 3Q∈n . The two inequalities in (A21) and (A22) require that 

1 2η η η≤ ≤ . If 1 2( ) ( )Er Er>n n , the minimum of { ( )}E Er n  is obtained when 1η η= . In such case, 
there exists a noise with pdf ˆ ( ) ( ) (1 ) ( )opt

ep pς ς δ= + − −n nn n n n  that satisfies 0 ˆ{ ( )} oE A α≤n  and 

1 ˆ{ ( )} oE B β≤n  simultaneously, where e eQ∈n  and 0 1ς≤ ≤ . Therefore, ˆ{ ( )} optE Er Erς= +yn  

(1 ) ( )e optEr Erς− < yn  since ( ) min ( )e optEr Er Er= < y

n
n n , which contradicts with the definition of ( )optpn n . 

As a result, 1 2( ) ( )Er Er<n n  and the minimum of { ( )}E Er n  is obtained when 2η η= .  
When 2η η= , one obtains 1 1 1 1 2{ ( )} ( ) (1 ) ( ) oE B B Bη η β= + − =n n n . In other words, the 

minimum of { ( )}E Er n  is obtained when 0{ ( )}E A n  achieves the minimum and 0{ ( )}E A n . 

Accordingly, one obtains 1 2
y

opt opt oEr c cα β= +y
.  

Part (4): The proof of Part (4) is similar to that of Part (3) and it is omitted here. □ 

References  

1. DeGroot, M.H.; Sxhervish, M.J. Probability and Statistics, 4th ed.; Addison-Wesley: Boston, MA, USA, 2011. 
2. Pericchi, L.; Pereira, C. Adaptative significance levels using optimal decision rules: Balancing by 

weighting the error probabilities. Braz. J. Probab. Stat. 2016, 30, 70–90. 
3. Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A Math. 1981, 14, 

453–457. 
4. Patel, A.; Kosko, B. Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE 

Trans. Signal Process. 2011, 59, 488–505. 
5. Han, D.; Li, P.; An, S.; Shi, P. Multi-frequency weak signal detection based on wavelet transform and 

parameter compensation band-pass multi-stable stochastic resonance. Mech. Syst. Signal Process. 2016, 
70–71, 995–1010. 



Entropy 2017, 19, 276  22 of 23 

 

6. Addesso, P.; Pierro, V.; Filatrella, G. Interplay between detection strategies and stochastic resonance 
properties. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 15–31. 

7. Gingl, Z.; Makra, P.; Vajtai, R. High signal-to-noise ratio gain by stochastic resonance in a double well. 
Fluct. Noise Lett. 2001, 1, L181–L188. 

8. Makra, P.; Gingl, Z. Signal-to-noise ratio gain in non-dynamical and dynamical bistable stochastic 
resonators. Fluct. Noise Lett. 2002, 2, L147–L155. 

9. Makra, P.; Gingl, Z.; Fulei, T. Signal-to-noise ratio gain in stochastic resonators driven by coloured noises. 
Phys. Lett. A 2003, 317, 228–232. 

10. Duan, F.; Chapeau-Blondeau, F.; Abbott, D. Noise-enhanced SNR gain in parallel array of bistable 
oscillators. Electron. Lett. 2006, 42, 1008–1009. 

11. Mitaim, S.; Kosko, B. Adaptive stochastic resonance in noisy neurons based on mutual information. IEEE 
Trans. Neural Netw. 2004, 15, 1526–1540. 

12. Patel, A.; Kosko, B. Mutual-Information Noise Benefits in Brownian Models of Continuous and Spiking 
Neurons. In Proceedings of the 2006 International Joint Conference on Neural Network, Vancouver, BC, 
Canada, 16–21 July 2006; pp. 1368–1375. 

13. Chen, H.; Varshney, P.K.; Kay, S.M.; Michels, J.H. Theory of the stochastic resonance effect in signal 
detection: Part I—Fixed detectors. IEEE Trans. Signal Process. 2007, 55, 3172–3184. 

14. Patel, A; Kosko, B. Optimal noise benefits in Neyman–Pearson and inequality constrained signal 
detection. IEEE Trans. Signal Process. 2009, 57, 1655–1669. 

15. Bayram, S.; Gezici, S. Stochastic resonance in binary composite hypothesis-testing problems in the 
Neyman–Pearson framework. Digit. Signal Process. 2012, 22, 391–406. 

16. Bayrama, S.; Gultekinb, S.; Gezici, S. Noise enhanced hypothesis-testing according to restricted 
Neyman–Pearson criterion. Digit. Signal Process. 2014, 25, 17–27. 

17. Bayram, S.; Gezici, S.; Poor, H.V. Noise enhanced hypothesis-testing in the restricted Bayesian framework. 
IEEE Trans. Signal Process. 2010, 58, 3972–3989. 

18. Bayram, S.; Gezici, S. Noise enhanced M-ary composite hypothesis-testing in the presence of partial prior 
information. IEEE Trans. Signal Process. 2011, 59, 1292–1297. 

19. Chen, H.; Varshney, L.R.; Varshney, P.K. Noise-enhanced information systems. Proc. IEEE 2014, 102, 
1607–1261.  

20. Weber, J.F.; Waldman, S.D. Stochastic Resonance is a Method to Improve the Biosynthetic Response of 
Chondrocytes to Mechanical Stimulation. J. Orthop. Res. 2015, 34, 231–239. 

21. Duan, F.; Chapeau-Blondeau, F.; Abbott, D. Non-Gaussian noise benefits for coherent detection of narrow 
band weak signal. Phys. Lett. A 2014, 378, 1820–1824. 

22. Lu, Z.; Chen, L.; Brennan, M.J.; Yang, T.; Ding, H.; Liu, Z. Stochastic resonance in a nonlinear mechanical 
vibration isolation system. J. Sound Vib. 2016, 370, 221–229. 

23. Rossi, P.S.; Ciuonzo, D.; Ekman, T.; Dong, H. Energy Detection for MIMO Decision Fusion in Underwater 
Sensor Networks. IEEE Sens. J. 2015, 15, 1630–1640. 

24. Rossi, P.S.; Ciuonzo, D.; Kansanen, K.; Ekman, T. Performance Analysis of Energy Detection for MIMO 
Decision Fusion in Wireless Sensor Networks Over Arbitrary Fading Channels. IEEE Trans. Wirel. 
Commun. 2016, 15, 7794–7806. 

25. Ciuonzo, D.; de Maio, A.; Rossi, P.S. A Systematic Framework for Composite Hypothesis Testing of 
Independent Bernoulli Trials. IEEE Signal Proc. Lett. 2015, 22, 1249–1253. 

26. Parsopoulos, K.E.; Vrahatis, M.N. Particle Swarm Optimization Method for Constrained Optimization Problems; 
IOS Press: Amsterdam, The Netherlands, 2002; pp. 214–220. 

  



Entropy 2017, 19, 276  23 of 23 

 

27. Hu, X.; Eberhart, R. Solving constrained nonlinear optimization problems with particle swarm 
optimization. In Proceedings of the Sixth World Multiconference On Systemics, Cybernetics and 
Informatics, Orlando, FL, USA, 14–18 July 2002. 

28. Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; 
Springer: New York, NY, USA, 2005. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


