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Abstract: This paper develops Bayesian inference in reliability of a class of scale mixtures of
log-normal failure time (SMLNFT) models with stochastic (or uncertain) constraint in their reliability
measures. The class is comprehensive and includes existing failure time (FT) models (such as
log-normal, log-Cauchy, and log-logistic FT models) as well as new models that are robust in terms of
heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the
SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing
a Markov chain Monte Carlo (MCMC) sampling based approach. This paper introduces a two-stage
maximum entropy (MaxEnt) prior, which elicits a priori uncertain constraint and develops Bayesian
hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for
Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt
prior that are useful for method development. Finally, two data sets are used to illustrate how the
proposed methodology works.
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1. Introduction

In some practical situations, reliability analysis must engage positive data. This includes,
for example, cases requiring power plant system analysis, software reliability analysis, and hydrology
(flows in a river) among others (see [1,2]). Any reliability analysis must be based on precisely defined
model in order to estimate the reliability measure of interest from the available data and subsequently
provide a logical basis for improving the reliability of a system. The exponential model is the most
fundamental parametric model used to establish reliability. We refer to [3] for an excellent review
of reliability analysis based on the exponential model. Complex failure time events, such as system
failure events, appear to always produce a set of positively skewed observations and show, initially,
an increase over time and, then, a decrease in hazard rate. In such cases, alternative to the exponential
model, log-normal distribution (denoted by LN (µ, σ2)) can be used to characterize and construct
a more plausible model for assessing the failure time Y of the event. The density of Y ∼ LN (µ, σ2) is

f (y|µ, σ2) = (y σ)−1(2π)−1/2 exp
{
−
(
log(y)− µ

)2

2σ2

}
, y > 0,

where µ = E[log(Y)] and σ2 = var(log(Y)). In current statistics literature, the use of the log-normal
distribution in reliability has become increasingly widespread. Ref. [4–7] used log-normal models
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please confirm. for reliability and security analysis; Ref. [8–10] applied these models for survival
analysis, loss reserving method, and hydrology, respectively. These studies were mainly concerned
with the reliability of log-normal models with no constraints on the parameter space. There are
also numerous studies in literature that deal with specific constrained parameter space problems in
reliability analysis. See [11–13] for examples.

However, information on the constraint may sometimes be uncertain. In these cases, we have
to analyze reliability of the log-normal model with a stochastic constraint on its parameter space,
which causes restriction of reliability measures in their functional forms. For example, in a automobile
system analysis, we may be interested in estimating MTTF (mean time to failure) of steering, brakes,
or other mechanisms based on a log-normal model. Suppose it is known beforehand that such
an automotive system exhibits MTTF ∈ (a , b), but this information is uncertain. In spite of uncertain
prior information, if we adopt a log-normal model whose parameter space is truncated to µ ∈ C
(i.e., MTTF ∈ (a , b)) for reliability analysis, we then have two problems. First, we pass over the
uncertainty of the prior information associated with our inference so that we completely ignore
possibility of µ /∈ C in the inference, even though empirical data strongly advocates this possibility.
In this case, we may commit incorrect reliability analysis of the model. Second, we may lose data
information, which strongly contradicts the uncertain information µ ∈ C. Furthermore, there are few
valid robust models to assess poorly-distributed and fat-tailed failure time observations. A class of robust
FT models can be obtained by the use of scale mixtures of log-normal models. The study about the
robust model and its reliability estimation have not yet been tackled in the literature. These factors
motivate the contents of the present paper.

The remainder of this paper is arranged as follows. Section 2 introduces a class of scale mixtures of
log-normal failure time (SMLNFT) models by applying a scale mixture technique to a log-normal model.
Subsequently, various class reliability measures are obtained. Section 3 provides a two-stage MaxEnt
prior of µ by applying Boltzmann’s maximum entropy theorem (see, e.g., [14,15]) to the two-stages of
prior hierarchy frame according to [16]. We also introduce a scale (degree of prior belief) for stochastic
constraint presumption µ ∈ C that is accounted for by the MaxEnt prior. Section 4 develops the
Bayesian hierarchical SMLNFT model by utilizing the two-stage MaxEnt prior hierarchy involving
µ and a scale mixture hierarch of the SMLNFT model. This section also explores Bayesian inference
in reliability for the proposed model utilizing an MCMC sampling based approach. This section
also develops an MCMC sampling method based on the Gibbs sampler and the Metropolis–Hastings
algorithm, and discusses Monte Carlo methods in posterior estimation of reliability measures. Section 5
illustrates the empirical performance of the proposed methodology based on a real and artificial
data applications involving proposed SMLNFT models. Section 6 provides concluding remarks
and discussion.

2. The Class of SMLNFT Models

Let failure time Y have a log-normal distribution with parameters (µ, κ(η)σ2), denoted by
LN (µ, κ(η)σ2), where κ(η) is a suitably chosen positive weight function of a mixing variable η ∼ G(η)

and G(η) denotes the cumulative distribution function (cdf) of η. Subsequently, a simple location

model for the failure time Y can be formulated in terms of X d
= log(Y):

X = µ + ε, ε ∼ F, (1)

where F ∈ F with

F =
{

F : N
(

0, κ(η)σ2
)

, η ∼ G(η) with κ(η) > 0, and η > 0
}

(2)

so that the distribution of X is a scale mixtures of normal distributions, denoted by
X ∼ SMN (µ, σ2, κ, G). Refer to [17] for detailed properties of the scale mixtures of normal distributions.
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The proposed model for the failure time Y can be defined as follows:

Definition 1. Let the model (1) construct a plausible model for a random failure time Y. Then, the model for Y
can then be referred to as an SMLNFT (scale mixtures of log-normal failure time) model. The distribution law of
Y is a scale mixture of log-normal (SMLN) distributions with a weight function κ(η) and the cdf G of a mixing
variable η. This is written by Y ∼ SMLN (µ, σ2, κ, G).

The density of Y ∼ SMLN (µ, σ2, κ, G) is

f (y|µ, σ2) =
∫ ∞

0
(y σ)−1(2πκ(η))−1/2 exp

{
−
(
log(y)− µ

)2

2κ(η)σ2

}
dG(η), y > 0. (3)

The SMLNFT model can vary depending on designation for the function κ(η) and the distribution
of η. In the special case where the distribution of η degenerates at κ(η) = 1, the SMLNFT model
produces a log-normal failure time (LNFT) model. In cases where η ∼ Gamma(ν/2, ν/2) with
E[η] = 1 and κ(η) = 1/η are chosen, the SMLNFT model changes to log-tν failure time (LtνFT) or
log-Cauchy failure time (LCFT ≡ Lt1FT) models, allowing for the regulation of model tail distribution
by means of the degrees of freedom. The LCFT model has been particularly used for certain survival
processes where significant outliers or extreme results may occur (see, e.g., [18]). We also see
that the SMLNFT model approximately reduces to log-logistic failure time (LLFT) model (see [19]),
provided that the choices are κ(η) = 4η2 and η2 ∼ IG(2.5, 1.233), where IG(α, β) is an inverse gamma
distribution with a probability function f (x) = βαx−(α+1)eβ/x/Γ(α). This approximation is known
to simplify the implementation of MCMC sampling. The LLFT model has been used in survival
analysis as a parametric model for mortality rate, hydrology, and networked telerobots (see, e.g., [20]).
Following the same procedure as in [17], we can construct new robust FT models through differing
designations of κ(η) and the distribution of η. Particularly, in the regulation of tail distribution in
the FT model, a log-slash failure time (LSFT) model can be obtained by taking κ(η) = η−1 and
η ∼ Beta(1/2, 1)—that is Beta distribution. Therefore, the proposed class of SMLNFT models defined
by Equation (1) is flexible enough to include existing FT models (i.e., LNFT, LCFT, and LLFT) and also
provide new robust failure time models (such as LtνFT and LSFT).

The densities of five SMLN (µ, σ2, κ, G) class members are shown in Figure 1 for different
designations of the mixing distribution η and κ(η). Figure 1 shows that the tail area of the log-normal
density is thinner than that of the other densities. Thus, the use of SMLN (µ, σ2, κ, G) models is useful
for flexible and robust reliability analysis of failure time data involving fat-tailed empirical distribution.
Figure 1 also demonstrates that the class of SMLN (µ, σ2, κ, G) models is useful to describe those
situations in which early failure or occurrences dominate the distribution.
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Figure 1. Densities of Y ∼ SMLN (µ, σ2, κ, G) for five different choices of the mixing variable
distribution G(η) and κ(η): (a) (µ, σ) = (0, 1) case and (b) (µ, σ) = (2, 0.5) case.
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Reliability and hazard rate of the class of SMLNFT models are directly related to those
of the SMN (µ, σ2, κ, G) distribution. Let Y be failure time or down time formulated by the
SMLN (µ, σ2, κ, G) model, and then respective MTTF (mean time to failure) and variance of Y be

E(Y) = E
[

exp
{

µ +
κ(η)σ2

2

}]
and Var(Y) = E

[
exp

{
2µ + κ(η)σ2

}(
exp

{
κ(η)σ2

}
− 1
)]

. (4)

In addition, the reliability and hazard rates of the SMLNFT model are given by

R(y; µ, σ2) = 1− E
[
Φ
(

A(η)
)]

(5)

and

h(y; µ, σ2) =
E
[
κ(η)−1/2φ

(
A(η)

)]
σ y E

[{
1−Φ

(
A(η)

)}] , (6)

where A(η) = (log(y) − µ)/(κ(η)1/2σ), η ∼ G(η), and φ and Φ are the density and the cdf of
a standard normal variable, respectively. Exact expressions for Equations (5) and (6) based on the
above five FT models are as follows:

(i) LNFT model:

R(y; µ, σ2) = 1−Φ
(

B
)

and h(y; µ, σ2) =
φ
(

B
)

σ y R(y; µ, σ2)
,

where B = (log(y)− µ)/σ.
(ii) LtνFT model:

R(y; µ, σ2) = 1− Fν

(
B
)

and h(y; µ, σ2) =
fν

(
B
)

σ y R(y; µ, σ2)
,

where Fν(·) and fν(·) denote the cdf and density function of a Student-tν distribution,
respectively.

(iii) LCFT model:

R(y; µ, σ2) =
1
2
−

arctan
(

B
)

π
and h(y; µ, σ2) =

1

σ yπ
[
1 + B2

]
R(y; µ, σ2)

.

(iv) LLFT model:

R(y; µ, σ2) =
1

1 + eB and h(y; µ, σ2) =
eB R(y; µ, σ2)

σ y
.

(v) LSFT model:

R(y; µ, σ2) =

{
1−Φ

(
B
)
+
[
φ
(

0
)
− φ

(
B
)]/

B for B 6= 0,

1/2 for B = 0,

h(y; µ, σ2) =


[
φ
(

0
)
− φ

(
B
)]/{

B2σ y R(y; µ, σ2)
}

for B 6= 0,

2
[
φ
(

0
)
− φ

(
B
)]/{

B2σ y
}

for B = 0.
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The reliable life Tγ, denoting the 100(1-γ)th percentile of the failure time distribution
SMLN (µ, σ2, κ, G) of the SMLNFT model, may also be expressed as

Tγ = E
[

exp
{

κ(η)1/2σ Φ−1(1− γ) + µ
}]

. (7)

The expectations made for the reliability measures (Equation (4) through Equation (7)) are given
in respect to the distribution of η.

Figure 2 illustrates the reliability and hazard functions for each of five different
SMLN (µ, σ2, κ, G) models (i.e., LNFT, LCFT, LLFT, Lt5FT, and LSFT models) for the choice of µ = 2
and σ = 0.5. It is apparent from the left panel of Figure 2 that all the reliability functions are monotone
decreasing functions of y (time) and approaching zero in relation to sufficiently large values of times,
but the shape of the functions are not the same. As expected from the densities of Figure 1, we see that
each reliability function of heavy tailed models (i.e., LCFT, LLFT, Lt5FT, and LSFT models) initially
decreases more rapidly than that of the LNFT model; then, it decreases toward zero more slowly
than that of the LNFT model. The right panel of Figure 2 describes hazard rates of the five models.
The hazard rate of the LNFT model initially increases and then decreases toward zero as y (time) passes
by. Hazard functions of the LLFT and Lt5FT models resemble that of the LNFT model, aside from a
rapid decrease toward zero after the initial increase. However, the right panel shows that the LCFT and
LSFT models have different hazard functions from that of the LNFT model in that the initial increase
of the hazard rate does not apply to these models.
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Figure 2. Reliability and hazard functions for five SMLN (µ, σ2, κ, G) models with (µ, σ) = (2, 0.5):
(a) reliability functions, R(y; µ, σ2); (b) hazard functions, h(y; µ, σ2).

3. Two-Stage MaxEnt Prior

3.1. Stochastic Constraint on Reliability Measures

Let y1, . . . , yn be n complete (nontruncated/noncensored) failure times generated from the
SMLNFT model in Equation (1), and let the reliability measures, defined by Equation (4) through
Equation (7), have a stochastic functional constraint in terms of µ and σ2, where the constraint does
not depend on σ2. Thus, a reliability measure, written by B(µ, σ2), needs to be located in a restricted
interval B(µ, σ2) ∈ (a , b) (or equivalently µ ∈ C) with a degree of prior belief α, where C ⊂ R is either
an interval or a set of intervals. Nevertheless, observations from the SMLNFT model often do not
provide strong evidence that information of the constraint, µ ∈ C, is true and therefore may appear to
contradict the assumption of the model associated with the constraint.

In this situation, a Bayesian approach can be effectively adopted to model the stochastic
(or uncertain) functional constraint on parameter µ. Bayesian reliability analysis of the model (1) begins
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with specifying prior distribution π(µ, σ2), which represents information concerning the parameters µ

and σ2 that are combined with the joint probability distribution of yis to yield the posterior distribution:

p(µ, σ2|y1, . . . , yn) ∝ π(µ, σ2)
n

∏
i=1

f (yi|µ, σ2),

where f (yi|µ, σ2) is the density given in Equation (3). When there are no constraints on the location
parameter µ, then a common joint prior π(µ, σ2) (e.g., Jeffreys prior or normal-inverse gamma prior)
can be used, and posterior reliability inference can be performed without any difficulty. When we have
sufficient evidence that the constraint condition on the model (1) is true (i.e., α = 1), then a suitable
restriction on the parameter space such as using a truncated prior distribution, e.g., π(µ, σ2)I

(
µ ∈ C

)
,

is expected. Here, I(·) denotes an indicator function. See, e.g., [21–24], for various applications of
truncated prior distribution in Bayesian inference. However, it is often the case that prior information
about the constraint is not certain to carry out Bayesian reliability analysis. In this case, it is expected
that the uncertainty, i.e., Pr

(
µ ∈ C

)
= α, is taken into account in eliciting a prior distribution of µ.

3.2. Two-Stage MaxEnt Prior

Assume that σ2 is known and that it is possible to specify that partial information concerning the
parameter µ ∈ R is of the form

E[tj(µ)] =
∫
R

tj(θ)π(µ)dµ = tj, j = 1, . . . , k, (8)

but nothing else about prior distribution π(µ). In this case, maximum entropy prior can be obtained
by choosing π(θ) that maximizes the entropy

Ent(π) = −
∫
R

π(µ) log π(µ)dµ,

in the presence of the partial information in the form of Label (8). Boltzmann’s maximum entropy
theorem (see, e.g., [14,15]) tells us that the density π(µ) that maximizes Ent(π), subject to the
constraints E[tj(µ)] = tj, j = 1, . . . , k, takes the k-parameter exponential family form

π(µ) ∝ exp
{

λ1t1(µ) + λ2t2(µ) · · ·+ λktk(µ)
}

, µ ∈ R, (9)

where λ1, λ2, . . . , λk can be determined, via the k-constraints, in terms of t1, . . . , tk.
The theorem can be directly applied to obtain the MaxEnt prior π(µ) of the SMLNFT model,

provided that prior information on the mean and variance of unconstrained µ can be specified,
i.e., E[µ] = θ0 and E[(µ− θ0)

2] = σ2
0 . Supposing that we have additional information that p(µ ∈ C) = α,

0 < α < 1, we then have the following lemma.

Lemma 1. Suppose we can specify partial prior information about µ by E[µ] = θ0, E[(µ − θ0)
2] = σ2

0 ,
and µ ∈ C with degree of belief α. Then, the MaxEnt prior density of µ is given by

πMaxEnt(µ) = φ(µ; θ0, σ2
0 )

Φ̄
(
C; θ0 + δ(µ− θ0), δ(1− δ)σ2

0

)
Φ̄(C; θ0, δσ2

0 )
, µ ∈ R, (10)

where the value of δ (δ ∈ [0, 1]) is determined by the following equation

α = Φ̄2

(
C × C; θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ) with θ0 =

(
θ0

θ0

)
and Σ0 = σ2

0

(
δ δ

δ 1

)
. (11)
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Here, Φ̄(C; θ∗, σ2
∗) is probability p(W ∈ C) of W ∼ N(θ∗, σ2

∗), and Φ̄2

(
C × C : θ0, Σ0

)
denotes a joint

probability p(X1 ∈ C, X2 ∈ C) of X1 and X2 whose joint distribution is a bivariate normal N2(θ0, Σ0).

Proof. The stochastic constraint p(µ ∈ C) = α can be expressed in terms of a moment as
E[I(µ ∈ C)] = α. Take t1(µ) = µ, t1 = θ0, t2(µ) = (µ − θ0)

2, t2 = σ2
0 , t3(µ) = I(µ ∈ C), t3 = α,

and tk(µ) = 0 for k > 3. Then, by setting λ1 = 0 and λ2 = −1/(2σ2
0 ), the MaxEnt prior of µ in Label (9)

reduces to

πMaxEnt(µ) ∝ exp
{
(µ− θ0)

2/2σ2
0

}
exp

{
λ3t3(µ)

}
, µ ∈ R. (12)

Now, the second exponential term on the right-hand side of Label (12) can be determined by
using the stochastic constraint E[I(µ ∈ C)] = α: among all of the possible proper prior densities of the

form (12), the choice of λ3t3(µ) = ln
{

Φ̄
(
C; θ0 + δ(µ− θ0), δ(1− δ)σ2

0

)
/Φ̄(C; θ0, δσ2

0 )
}

yields a proper
prior density. Furthermore, this choice leads to Equation (11), which satisfies the stochastic constraint

E[I(µ ∈ C)] =
∫
C

πMaxEnt(µ)dµ = Φ̄2

(
C × C : θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ) = α.

From Lemma 1, we see that δ = 0 implies no functional stochastic constraint on µ of the SMLNFT
model, while δ = 1 denotes that the functional constraint on the model is certain so that Pr(µ ∈ C) = 1.
We also see that πMaxEnt(µ) reduces to the normal density π0(µ) = φ(µ; θ0, σ2

0 ) for the former case and
the truncated normal density π1(µ) = φ(µ; θ0, σ2

0 )/Φ̄(C; θ0, σ2
0 ) with the support µ ∈ C for the latter

case. This indicates that δ ∈ [0, 1] is directly related to the degree α of prior belief on the constraint
µ ∈ C, where α = Pr(µ ∈ C). The relationship between them is as follows.

Corollary 1. The degree α of prior belief on the constraint µ ∈ C accounted for by the MaxEnt prior πMaxEnt(µ)

is α = Φ̄2

(
C × C : θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ), and its range is

Φ̄(C; θ0, σ2
0 ) ≤ α ≤ 1.

Proof. For the cases where δ = 0 and δ = 1, the degree of prior beliefs are
∫
C πMaxEnt(µ)dµ =∫

C π0(µ)dµ = Φ̄(C; θ0, σ2
0 ) and

∫
C πMaxEnt(µ)dµ =

∫
C π1(µ) = 1, respectively. When 0 < δ < 1,

Φ̄(C; θ0, σ2
0 ) < α < 1

because Φ̄2

(
C × C : θ0, Σ0

)
> Φ̄(C; θ0, σ2

0 )Φ̄(C; θ0, δσ2
0 ) by the Theorem of [25].

Corollary 1 indicates that πMaxEnt(µ) is useful for eliciting priori uncertainty concerning constraint
on µ by varying the value of δ. By applying the work of [26], we can organize πMaxEnt(µ) within the
frame of the two-stage prior hierarchy by [16].

Theorem 1. The distribution of πMaxEnt(µ) can be expressed as a two-stage prior hierarchy:

µ|µ0 ∼ N(µ0, (1− δ)σ2
0 ),

µ0 ∼ TNC(θ0, δσ2
0 ),

where δ ∈ [0, 1] and TNC(θ0, δσ2
0 ) denote a truncated N(θ0, δσ2

0 ) distribution with the support µ0 ∈ C.
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Proof. From the hierarchy of the prior distributions, we see that

π(µ) =
∫

µ0∈C
p(µ|µ0)p(µ0)dµ0 =

∫
µ0∈C φ(µ; µ0(1− δ)σ2

0 )φ(µ0; θ0, δσ2
0 )dµ0

Pr(µ0 ∈ C)

=
φ(µ; θ0, σ2)

Φ̄(C; θ0, δσ2)

∫
µ0∈C

φ
(
µ0; θ0 + δ(µ− θ0) , δ(1− δ)σ2

0
)
dµ0,

which is equivalent to πMaxEnt(µ).

From now on, we shall call the MaxEnt prior πMaxEnt(µ), expressed by the two-stage prior
hierarchy in Theorem 1, as a “two-stage MaxEnt prior” of µ.

4. Bayesian Hierarchical SMLNFT Model

4.1. Bayesian Hierarchical Model

Let (y1, . . . , yn) be n complete failure times as generated from the SMLNFT model in Equation (1),
and let ηi denote contribution of latent variable η in relation to each observation yi. Suppose one of the
reliability measures defined by Equation (4) through Equation (7) has a stochastic functional constraint
in terms of µ, e.g., B(µ) ∈ (a , b) (or equivalently µ ∈ C), with the degree of prior belief α, and suppose
C ⊂ R is either an interval or a set of intervals. Then, from Equations (3) and (10), we obtain posterior
distribution of µ and σ2 given by

p(µ, σ2|y1, . . . , yn) ∝
n

∏
i=1

∫ ∞

0

[
(yi σ)−1(2πκ(ηi))

−1/2 exp
{
−
(
log(yi)− µ

)2

2κ(ηi)σ2

}]
G(ηi)dηi

×
φ(µ; θ0, σ2

0 )Φ̄
(
C; θ0 + δ(µ− θ0), δ(1− δ)σ2

0

)
Φ̄(C; θ0, δσ2

0 )
p(σ2),

where p(σ2) is a prior distribution of σ2. This is a complex function for the Bayesian inference in
reliability based on the SMLNFT model. Alternately, following hierarchical representation of the
stochastically constrained SMLNFT Model is useful for simple Bayesian inference. Using the two-stage
MaxEnt prior in Theorem 1 and assuming prior independence of µ and τ = 1/σ2, we formulate
a Bayesian hierarchical model for the stochastically constrained SMLNFT model as follows:

yi|(µ, τ, ηi)
d
= exp{xi}|(µ, τ, ηi), τ = σ−2 i = 1, . . . , n,

xi|(µ, τ, ηi)
ind∼ N(µ, κ(ηi)τ

−1),

µ|µ0 ∼ N(µ0, (1− δ)σ2
0 ), 0 < δ < 1, (13)

µ0 ∼ TN(θ0, δσ2
0 ) I(

(
µ0 ∈ C

)
,

τ ∼ Gamma(ν1, ν2),

ηi
ind∼ G(ηi).

All hyper-parameters, {θ0, σ0, δ, ν1, ν2}, are assumed to be given from the prior information of
previous studies or alternate sources. In particular, the value of δ is chosen to satisfy Equation (11) for
given values of α, θ0, and σ2

0 . In cases where the prior information is not available, a convenient strategy
of avoiding improper posterior distribution is to use proper priors with fixed hyper-parameters as
appropriate quantity to reflect the diffuseness of the priors (i.e., limiting non-informative priors).
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4.2. The Gibbs Sampler

Let η = (η1, . . . , ηn)> be the latent variables, and let x = (x1, . . . , xn)> be logarithmic failure
time data where xi = log(yi). Based on the Bayesian Hierarchical SMLNFT model structure, the joint
posterior distribution of (µ, µ0, τ, η) given the observed data x is

p(µ, µ0, τ, η|x) ∝
(

∏n
i=1 φ(xi; µ, κ(ηi)τ

−1)
)

φ(µ; µ0, (1− δ)σ2
0 )

× φ(µ0;θ0,δσ2
0 )I(µ0∈C)

Φ̄(C;θ0,δσ2
0 )

f (τ; ν1, ν2)
(

∏n
i=1 g(ηi)

)
,

(14)

where f (τ; ν1, ν2) is the density of Gamma(ν1, ν2) variate and g(ηi) is the density of the mixing variable
ηi. Note that the joint posterior distribution of the structure parameters, µ and τ, is

p(µ, τ|x) =
∫

η>0

∫
C

p(µ, µ0, τ, η|x)dµ0dη.

This is not simplified in an analytic form of known density, and is thus intractable for posterior
inference. Accordingly, we treat latent observations in η as hypothetical missing data, and augment the
observed data set x with η in posterior analysis. Thus, we derive each conditional posterior distribution
of µ, µ0, τ and η, for posterior inference based on Markov chain Monte Carlo (MCMC). All of the full
conditional posterior distributions are as follows:

(1) The full conditional distribution of µ is an univariate normal given by:

[
µ|µ0, τ, η, x

]
∼ N

(τ−1µ0 + ∆ ∑n
i=1 κ(ηi)

−1xi

τ−1 + ∆ ∑n
i=1 κ(ηi)−1 ,

1
∆−1 + τ ∑n

i=1 κ(ηi)−1

)
, (15)

where ∆ = (1− δ)σ2
0 .

(2) The full conditional distribution of µ0 is a truncated normal given by:

[
µ0|µ, τ, η, x

]
∼ TN

(∆θ0 + ∆0µ

∆ + ∆0
,

1
∆−1 + ∆−1

0

)
I(µ0 ∈ C), (16)

where ∆0 = δσ2
0 .

(3) The full conditional distribution of τ is a Gamma distribution:

[
τ|µ, µ0, η, x

]
∼ Gamma

(
ν1 +

n
2

, ν2 +
∑n

i=1 κ(ηi)
−1(xi − µ)2

2

)
. (17)

(4) The full conditional distributions of ηis are independent and their densities are

p(ηi|µ, µ0, τ, x) ∝ g(ηi)κ(ηi)
−1/2 exp

{
− τκ(ηi)

−1(xi − µ)2

2

}
, i = 1, . . . , n, (18)

where g(ηi) is the density of a mixing variable.

The conditionals in Equation (15) through Equation (18) define the Gibbs sampler, provided that
Equation (18) is a known density of standard form. Otherwise, we can define a Metropolis-within-Gibbs
sampler that uses an M–H (Metropolis–Hastings) step to sample from the conditional in Equation (18).
See [26], for the Metropolis-within-Gibbs sampler.

4.3. Markov Chain Monte Carlo Method

An MCMC method that works with the posterior Equation (14) is not complicated since Gibbs
sampling of (µ, µ0, τ) is routinely implemented based on each of their full conditionals outlined in
Section 4.2. However, in posterior sampling of η, an M–H sampling algorithm may be used when the



Entropy 2017, 19, 274 10 of 16

conditional posterior density Equation (18) does not have explicit form of known distribution. For the
MCMC method, one should note the following points.

note 1: With given initial values of (µ, µ0, τ, η), implementation of the Gibbs (or Metropolis-within-Gibbs)
sampling algorithm consists of drawing repeatedly from distributions Equation (15) through
Equation (18). The R package tmvtnorm and the R package mvtnorm can be used to sample
from the conditionals and to calculate δ for a given α from Equation (11).

note 2: In cases using the LNFT model, ηi degenerates at κ(ηi) = 1. This means that the conditional
distribution Equation (18) can be eliminated from the Gibbs sampler by setting κ(ηi) = 1 for
the conditionals of µ and τ.

note 3: When the LtνFT model is used for reliability analysis, the last stage of the Bayesian
hierarchical model in Equation (13) becomes ηi ∼ Gamma(ν/2, ν/2) with κ(ηi) = η−1

i .
Thus, the conditional distribution in Equation (18) yields

[
ηi|η\ηi

, µ, µ0, τ
]
∼ Gamma

(ν + 1
2

,
ν + τηi(xi − µ)2

2
)
,

where η\ηi
denotes an (n− 1)× 1 vector whose elements are those of η except for ηi. Note

that the LCFT model is a special case of the LtνFT model with ν = 1. To allow ν to be
determined within the model, one can specify one more prior stage for the Bayesian hierarchy
in Equation (13). As suggested by [19,27], a uniform prior on 1/ν (0 < 1/ν < 1) can be
considered. To limit model complexity, we consider only fixed ν so that the investigation of
different LtνFT models is possible.

note 4: The conditional distribution Equation (18) for LSFT model is[
ηi|η\ηi

, µ, µ0, τ
]
∼ Gamma

(
1, τ(xi − µ)2/2

)
I(ηi ∈ (0, 1)),

a truncated gamma whose support is ηi ∈ (0, 1).
note 5: It is easily seen that the approximate conditional distribution η2

i for LLFT model is[
η2

i |η\ηi
, µ, µ0, τ

]
∼ IG

(
3, 1.233 + τ(xi − µ)2/8

)
.

Then, a move to the proposal point ηi and posterior sampling of ηis can be made by using the
M–H algorithm suggested by [19]. See, e.g., [28,29], a general procedure for M–H algorithm.

note 6: The convergence of an MCMC algorithm is an important issue for the correct estimation
of the posterior distribution of interest. See [30] for an example of multiple convergence
diagnosis and output analysis. When the Markov chain is converged, Rao–Blackwellization
yields good estimates of µ and τ.

note 7: As measures of model comparison among SMLNFT models, a deviance information criterion
(DIC) can be used. This measure can be calculated based on extensions of the MCMC method.
See [31] and references therein for a review and comparisons of such extensions.

The Rao-Blackwellized Bayesian estimate of µ and τ = 1/σ2 from m post-convergence Markov
chain values are given by the ergodic theorem as:

µ̂ =
1
m

m

∑
k=1

E[µ|µ(k)
0 , τ(k), η(k), x] =

1
m

m

∑
k=1

µ
(k)
0 /τ(k) + ∆(k) ∑n

i=1 xi/κ(η
(k)
i )

1/τ(k) + ∆(k) ∑n
i=1 1/κ(η

(k)
i )

,

τ̂ =
1
m

m

∑
k=1

E[τ|µ(k), µ
(k)
0 , η(k), x] =

1
m

m

∑
k=1

ν1 + n/2

ν2 + ∑n
i=1(xi − µ(k))2/(2κ(η

(k)
i ))

,

and σ̂2 = τ̂−1.
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As indicated by Equation (4) through Equation (7), it is evident that the reliability measures are
functions of µ and σ2 as denoted by u(µ, σ2). Represent Bayesian estimate with

E[E[u(µ, σ2|η)]] =
∫ ∞

0

{ ∫
Ω

u(µ, σ2|η)p(µ, σ2|y)dµdσ2
}

g(η)dη,

where p(µ, σ2|y) is joint posterior density of µ and σ2 based on a fitted SMLNFT model, g(η) is the
density of η, and Ω = {(µ, σ2); µ ∈ R, σ2 > 0} is the support of p(µ, σ2|y). Next, a Bayesian Monte
Carlo estimate of u(µ, σ2) is given by

û(µ, σ2) =
1
K

K

∑
k=1

( 1
m

m

∑
r=1

u(µ(r), σ2(r)|η(k))
)

, (19)

where (µ(r), σ2(r)), r = 1, . . . , m, denote the rth Gibbs sample obtained from a fitted SMLNFT model,
while η(k) is an independently generated kth sample value from the mixing distribution η ∼ G(η).
When we have exact expression of u(µ, σ2), then the Monte Calro integration, using generated η(k)s,
vanishes from Equation (19). For example, the estimate of posterior predictive reliability of the LtνFT
model for specified y is

R̂(y; µ, σ2) = 1− 1
m

m

∑
r=1

Fν

( log(y)− µ(r)

σ(r)

)
,

where (µ(r), σ2(r)), r = 1, . . . , K, denote the rth Gibbs sample obtained from the fitted LtνFT model.
Now, (1− α)× 100% credible interval of the reliability at time y can be calculated by [R1−α/2, Rα/2],

where Rq denotes the qth quantile value of R(r)s with R(r) = 1− Fν

(
log(y)−µ(r)

σ(r)

)
. When the LNFT model

is assumed, Bayesian estimates of reliability measures can be simply obtained by setting κ(η(k)) = 1 to
Equation (18). That is, the reliability at time y is

R̂(y; µ, σ2) = 1− 1
m

m

∑
r=1

Φ
( log(y)− µ(r)

σ(r)

)
.

5. Numerical Illustrations

We provide two data applications to illustrate and demonstrate the performance of the proposed
methodology. The first real data application demonstrates the performance of the proposed
methodology (MCMC method based on a Bayesian hierarchical SMLNFT model) for inference in
reliability with stochastic constraint. Proposed SMLNFT models were fitted to the second data set
and compared in terms of their data-fitting performances, estimating parameters, and robustness to
fat-tailed empirical distribution. For numerical implementations, we developed our program written
in R, which is available from the author upon request.

5.1. Equipment Failure Data Example

This example considers failure time data (assessed in hours) obtained from a reliability study of
assembly line equipment in operation in an automobile plant. The data, available in [32], consists of
43 observations of the failure time (Y). It provides summary statistics (mean and standard deviation
(S.D.)) as listed in Table 1. We implemented the Shapiro–Wilks (S–W) and Kolmogorov–Smirnov (K–S)
tests to determine the log-normality of Y (i.e., normality of X = log(Y)) based on the data. The test
statistic values and corresponding p-values are also listed in Table 1.
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Table 1. Summary statistics for the failure time data.

Variable Mean S.D. S–W (p-Value) K–S (p-Value)

Y 2201.488 2519.174 0.732 (<0.01) 0.231 (<0.01)
X 7.143 1.088 0.982 (0.760) 0.064 (>0.150)

As seen in the table, the formal tests do not reject the log-normality of Y, i.e., Y ∼ LN (µ, σ2).
Our objective of data analysis is to estimate reliability measures of the assembly line equipment
subject to Pr(µ ∈ C) = α with C = (c, ∞), where c and α are known values. We can get the prior
information about µ from past studies or an assembly line quality control report. This stochastic
constraint on µ indicates that, with α× 100% degree of prior belief, the reliability of the LNFT model
decreases slower than the empirical implication because x̄ = 7.143 < c. Following the proposal of
this paper, the two-stage MaxEnt prior πMaxent(µ) can be used to elicit the stochastic constraint on µ.
Utilizing πMaxent(µ), we can use the Bayesian hierarchical LNFT model (developed in Section 4) to
carry out reliability analysis of the assembly line.

To see the adequacy of the Bayesian hierarchical LNFT model, we fitted the failure time data
to five Bayesian hierarchical models (LNFT, LLFT, LCFT, Lt5FT, and LSFT Bayesian hierarchical
models) and compared them in terms of deviance information criterion (DIC), which is a measure of
model comparison and adequacy. For each of the five models, we set up and ran a MCMC sampling
algorithm (using Gibbs sampler) on the failure time data set and generated 100,000 Gibbs samples
of model parameters from the conditional posteriors given in Section 4.2. For the MCMC algorithm,
we used a burn-in period of 1000, a thin interval of 100, and the following choice of hyper-parameter
values: θ0 = 7, σ0 = 1, and ν1 = ν2 = 0.001. DIC values of the five models were calculated and they
were 132.421, 135.704, 150.209, 135.698, and 145.971 for LNFT, LLFT, LCFT, Lt5FT, and LSFT models,
respectively. Thus, Bayesian hierarchical LNFT model achieves minimum DIC value among the five
models. This, along with the formal log-normality test results in Table 1, provides support in favor of
the LNFT model for fitting the data.

Table 2 shows some posterior summary statistics for the LNFT model. The statistics include
posterior estimate, posterior standard deviation (S.D.), 0.025th quantile, 0.975th quantile, and MC error
calculated from the Gibbs samples obtained by differing the values of c and δ. Mote Carlo (MC) errors
in the table were obtained by setting δ = 0.9. In estimating the Mote Carlo (MC) errors, we used the
batch mean method with 50 batches. See, e.g., ([31], pp. 39–40) for the batch mean method. The degree
of the prior belief (α) in the constraint (µ ∈ C) were calculated by use of Equation (11), and their values
are also listed in Table 2.

Table 2. Posterior summaries for each model parameters and degree α of prior belief.

C Parameter δ = 0 δ = 0.5 δ = 0.9 δ = 1 S.D. 2.5% 97.5% MC Error

(7.5, ∞)
µ 7.141 7.182 7.261 7.553 0.155 6.964 7.569 0.002
σ2 1.181 1.185 1.196 1.327 0.295 0.812 1.930 0.004
α 0.308 0.698 0.865 1.000 - - - -

(8.0, ∞)
µ 7.141 7.202 7.364 8.029 0.157 7.067 7.684 0.002
σ2 1.181 1.188 1.228 1.941 0.313 0.823 2.036 0.004
α 0.158 0.660 0.834 1.000 - - - -

(9.0, ∞)
µ 7.141 7.255 7.637 9.035 0.187 7.306 8.041 0.002
σ2 1.181 1.198 1.408 4.734 0.401 0.901 2.450 0.005
α 0.023 0.610 0.780 1.000 - - - -

The small MC error values listed in Table 2 convince us of the convergence of the MCMC algorithm.
The table shows that πMaxEnt(µ) induces a shrinkage effect in the Bayesian estimation of µ with the
uncertain interval constraint, i.e., Pr(µ ∈ C) = α. This effect can be seen from the comparison of the
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posterior estimates of µ obtained from the case of δ = 0 with those from δ ∈ (0, 1]. This comparison
indicates the followings: (i) the Bayesian estimate of µ, based on the two-stage prior πMaxEnt(µ),
shrinks toward the interval C = (c, ∞). The magnitude of shrinkage effect induced by using the
proposed prior becomes more evident as value of δ (or the degree α of belief in the interval constraint
µ ∈ C) gets larger. Especially, in the case of C = (9, ∞) and δ = 0.9, we see that the 95% credible interval
for µ does not include µ̂Bayes = 7.141 (estimate of µ with no constraint). This highlights the shrinkage
effect induced by using πMaxEnt(µ). (ii) When the priori constraint is certain, i.e., δ = α = 1, Table 2
shows that estimate of µ is located in the given constraint C. This advocates the use of the Bayesian
hierarchical LNFT model for reflecting the uncertain parameter constraint in reliability analysis.

Posterior predictive reliability measures of the LNFT model were also estimated by using the
failure time data. Figure 3 depicts estimates of posterior predictive reliability and hazard rate functions
for each case where the stochastic constraint is µ ∈ C = (c, ∞), c = 0.5, 0.7, 0.9 for given δ = 0.9.
The figure also compares the functions with those obtained by setting c = −∞, which denotes the
case where there is no priori constraint on µ, i.e., the case of δ = 0. Figure 3 clearly indicates that
the two-stage MaxEnt prior appropriately reflects the priori stochastic constraint µ ∈ C = (c, ∞) in
estimating the posterior predictive predictive measures. The left panel (a) shows that reliability of
the constrained LNFT model decreases slower than that of the unconstrained model (with c = −∞),
and this phenomenon is more evident as the constrained interval C locates far from the empirical mean
value x̄ = 7.143. This, in turn, affects shape of hazard rate functions in the right panel (b). For c > x̄,
priori constrained LNFT models tend to produce lower hazard rates than the unconstrained LNFT
model at all time points, but the pattern of their hazard rate functions is similar. We also see that the
hazard rate becomes lower as the value of c gets larger. This coincides with the implication of the
reliability functions in the panel (a).
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Figure 3. Estimated posterior predictive reliability measures for δ = 0.9: the label for the y-axis of (a) is
reliability and that of (b) is hazard rate. The label for the x-axis is failure time and the value for tick
marks in the y-axis of (b) is multiplied by 104.

5.2. Artificial Data Example

A study using artificial data is done to evaluate the performance of proposed Bayesian hierarchical
estimation methodology based on the class of SMLNFT models. For the study, we have considered a
Lt5FT model with location µ = 2 and scale parameter σ2 = 0.25. By use of the model, we simulated
a sample of size 300 in complete failure times. Five models (LNFT, LCFT, Lt5FT, LSFT, and LLFT
models) were fitted to the same simulated data. Using the data, we ran the MCMC sampling algorithm
based on each Bayesian hierarchical model with no constraint (i.e., δ = 0) and generated 50,000 random
samples from the conditional posteriors by using a burn-in period of 5000 and a thin interval of 10.
For constructing each hierarchical model, we used the following choice of hyper-parameter values,



Entropy 2017, 19, 274 14 of 16

θ0 = 0, σ0 = 3, and ν1 = ν2 = 0.001, which reflect the diffuseness of the priors (i.e., limiting
non-informative priors) of µ and τ.

Table 3 provides posterior summaries from the posterior samples generated by using the MCMC
algorithm developed for each of the five models. The small MC error values listed in Table 3
indicate that we have calculated the parameter estimates with precision and the MCMC algorithm
has converged to its target distributions as well. DIC values of all models are also presented in the
table. We observe that the Lt5FT model has the lower DIC value, while the other models’ results are
considerably higher DIC values than the corresponding one under the Lt5FT model. This demonstrates
model selection function of the methodology. Concerning the posterior estimates, the estimate of σ2

under the Lt5FT model is accurate in comparison to that under the other models. To be more specific,
the scale parameter σ2 ranges from 0.025 to 0.365 with 95% posterior probability for the Lt5FT model,
while, for the other models, none of the credible intervals include true value σ2 = 0.25 with the same
posterior probability. On the other hand, Table 3 shows that the MCMC algorithm applied to each of
the five models correctly estimates true location parameter value µ = 2. This implies that the proposed
Lt5FT model is robust to fat tailed failure time observations affecting the scale parameter.

Table 3. Posterior summaries for parameters of five models.

Model Parameter Mean S.D. MC Error 2.5% Median 97.5% DIC

LNFT µ 2.043 0.147 <0.001 1.755 2.043 2.332 861.602
σ2 4.329 0.438 0.002 3.554 4.300 5.274 -

LCFT µ 1.948 0.043 <0.001 1.863 1.948 2.035 463.242
σ2 0.146 0.026 <0.001 0.101 0.146 0.204 -

Lt5FT µ 1.948 0.043 <0.001 1.862 1.948 2.033 394.339
σ2 0.289 0.036 <0.001 0.225 0.286 0.365 -

LSFT µ 1.992 0.118 <0.001 1.761 1.992 2.227 867.325
σ2 0.557 0.098 <0.001 0.389 0.548 0.776 -

LLFT µ 2.025 0.132 <0.001 1.767 2.025 2.282 842.847
σ2 1.363 0.176 <0.001 1.056 1.350 1.745 -

6. Conclusions

This paper has provided a methodology for Bayesian inference in reliability of SMLNFT models
in cases where the interval constraint µ ∈ C must be incorporated due to uncertainty. For failure time
modeling with stochastic restriction, we proposed a Bayesian hierarchical model involving a two-stage
MaxEnt prior distribution of µ based on Boltzmann’s maximum entropy theorem. The two-stage
MaxEnt prior reflects uncertainty about the prior constraint, that is, the Bayesian hierarchical SMLNFT
models are subject to reliability restriction with uncertainty. Furthermore, we provide an MCMC
method for assessing inference in the reliability of SMLNFT models based on their Bayesian hierarchical
models. The effectiveness of our methodology is demonstrated by conducting two data applications.

We find that the proposed class of SMLNFT models is flexible enough to account for the behavior
of reliability, unlike the log-normal FT model. We also find a connection between the degree of
constraint presumption and the hyper-parameters of the two-stage MaxEnt prior, indicating adequacy
of the MaxEnt prior in eliciting the priori uncertain constraint (see Corollary 1). Finally, we find
that the proposed Bayesian hierarchical methodology enables the development of a simple MCMC
algorithm to assess the posterior inference in reliability of the SMLNFT models with a stochastic
constraint. Our proposed methodology can be easily extended to cases where the failure time
data is incomplete, as a result, for example, of truncated or censored data, as well as to other FT
models, including exponential, Weibull, and Gamma FT models. In addition, the class of SMLNFT
models could accommodate multivariate FT models at higher dimension without much difficulty.
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The methodological process proposed here in relation to Bayesian estimation can be extended to the
multivariate models with a multivariate stochastic constraint.
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