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Abstract: Fluctuation Analysis (FA) and specially Detrended Fluctuation Analysis (DFA) are
techniques commonly used to quantify correlations and scaling properties of complex time series
such as the observable outputs of great variety of dynamical systems, from Economics to Physiology.
Often, such correlated time series are analyzed using the magnitude and sign decomposition, i.e.,
by using FA or DFA to study separately the sign and the magnitude series obtained from the original
signal. This approach allows for distinguishing between systems with the same linear correlations but
different dynamical properties. However, here we present analytical and numerical evidence showing
that FA and DFA can lead to spurious results when applied to sign and magnitude series obtained
from power-law correlated time series of fractional Gaussian noise (fGn) type. Specifically, we show
that: (i) the autocorrelation functions of the sign and magnitude series obtained from fGns are always
power-laws; However, (ii) when the sign series presents power-law anticorrelations, FA and DFA
wrongly interpret the sign series as purely uncorrelated; Similarly, (iii) when analyzing power-law
correlated magnitude (or volatility) series, FA and DFA fail to retrieve the real scaling properties,
and identify the magnitude series as purely uncorrelated noise; Finally, (iv) using the relationship
between FA and DFA and the autocorrelation function of the time series, we explain analytically
the reason for the FA and DFA spurious results, which turns out to be an intrinsic property of both
techniques when applied to sign and magnitude series.

Keywords: complex time series; power-law correlations; detrended fluctuation analysis; magnitude
and sign decomposition

1. Introduction

Since the observation of the Hurst effect [1] in the Nile river, a huge number of dynamical
systems whose observable outputs are time series with complex long-range power-law correlations
and scaling properties have been identified. The diversity of such time series include meteorological
data, physiological signals such as heart rate, brain activity, gait or postural system, biological signals
as DNA sequences, stock market activity, seismic signals and many others. In order to properly analyze
this great variety of (possibly non-stationary) signals, several techniques were proposed. In this work,
we consider two of them: Fluctuation Analysis (FA) [2] and Detrended Fluctuation Analysis (DFA) [3].
Both are based on similar grounds, and try to characterize the scaling properties of the fluctuations
of a signal. In particular, DFA has probably become the standard method of choice when analyzing
complex time series and it has been used in hundreds of scientific articles.

Often, given a non-stationary strongly correlated time series {Yi}, i = 1, 2, . . . , N i.e., of fractional
Brownian motion type, its increment time series {xi} given by xi = Yi+1 −Yi is more informative and
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can be easier to analyze than the original series itself. On the one hand, the dynamical properties of the
increments can shed light on the underlying dynamics of the system. On the other hand, the increment
series is very likely (quasi)stationary, i.e., of fractional Gaussian noise type. However, for nonlinear
systems, it is worth going beyond the study of linear correlations since they do not account for all
the dynamical properties of the systems. For example, increment time series with identical linear
correlations may well correspond to systems with different nonlinear and multifractal behavior [4,5].
To overcome this problem and break the possible degeneration, the magnitude and sign decomposition
method was proposed [4], consisting of studying separately the correlation properties of the magnitude
and sign of the increment time series, typically using DFA or FA. The correlations in the magnitude
series (termed volatility series in Economics contexts) are usually related to nonlinear correlations
and multifractal properties [4–7]. Intuitively, the magnitude series carries the information on how
big are the changes in the original signal. In contrast, the correlations in the sign series are uniquely
determined by the linear correlations [4,6] and, from an intuitive point of view, the sign series provide
the information of the direction of the changes of the original signal. The applications of the magnitude
and sign decomposition method include heart rate analysis [8,9], fluid dynamics [10], geological [11,12],
geophysical [13,14], and economical time series [15].

In this work, we use fractional Gaussian noises with different correlation strengths as a model
for typical increment time series, apply to them the magnitude and sign decomposition method and
study their correlations by using both FA and DFA. We obtain that, below a certain degree of the
strength of the correlations (different for sign and magnitude series), FA and DFA interpret that the
magnitude and sign series are purely uncorrelated. However, by studying analytically and numerically
the corresponding autocorrelation functions, we show that, in all cases, the magnitude and sign series
are power-law correlated, and therefore that FA and DFA provide spurious results. Finally, we explain
the origin of these spurious results by obtaining analytically the FA and DFA scaling properties when
applied to sign and magnitude series.

The paper is organized as follows: in Section 2, we introduce FA and DFA, and the analytical
relationship between both techniques and the autocorrelation function is presented in Section 3.
The magnitude and sign decomposition method is described in Section 4, and the results of FA and
DFA when analyzing magnitude and sign series obtained from fractional Gaussian noises are presented
in Section 5. In Section 6, we obtain the exact autocorrelation functions of the magnitude and sign
series analyzed in Section 5 and show that the FA and DFA scaling results are spurious, and the reason
for these results is analyzed in Section 7. Finally, we present our conclusions.

2. Fluctuation Analysis and Detrended Fluctuation Analysis

Let us consider a stationary time series {xi} (i = 1, 2, ..., N). The autocorrelation function C(r)
of {xi} can be calculated as

C(r) =
〈xixi+r〉 − 〈xi〉2

σ2 , (1)

where 〈. . .〉 denotes average over the whole time series, and σ2 is the variance of the time series.
Without loss of generality, in the following, we assume that 〈xi〉 = 0. When the time series {xi} is
long-range power-law correlated, such as, for example, in fractional Gaussian noises (fGn), then its
autocorrelation function, C(r), behaves asymptotically as a power law of the lag r [16]:

C(r) ' H(2H − 1)
r2−2H ∼ sign(1− γ)

rγ
, (2)

where H is the well-known Hurst exponent with values in the range H ∈ (0, 1), and then the
autocorrelation exponent γ given by γ = 2 − 2H, must be in the range γ ∈ (0, 2). For γ < 1
(H > 0.5), the correlations are positive, while for γ > 1 (H < 0.5), the time series is anticorrelated.
Note that, for the special case γ = 1 (H = 0.5), the autocorrelation function vanishes, and the time
series is uncorrelated (white noise behavior).
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However, in many cases, the autocorrelation function is not convenient to determine the
exponent γ, since C(r) is noisy and very sensitive to the time series size N [16,17], and it is only
properly estimated for large N, very often not available in real experiments. This is the reason
motivating the use of indirect methods to quantify correlations and scaling, being paradigmatic
examples Fluctuation Analysis and Detrended Fluctuation Analysis.

Fluctuation Analysis (FA) [2,18] is a technique aimed at calculating the scaling properties of the
fluctuations of a given stationary signal. It works as follows: the time series is interpreted as the steps
of a walk in a diffusion process, and then consider the “accumulated walk” Yj of the signal as

Yj =
j

∑
i=1

xi. (3)

The FA method tries to determine the averaged diffused distance in ` steps as the Mean Square
Distance FFA(`) obtained as:

FFA(`) =
√
〈(Yi+` −Yi)2〉. (4)

Scaling is present when
FFA(`) ∼ `α. (5)

Typically, α is estimated as the slope of a linear fitting of log(FFA(`)) vs. log(`). The exponent α

quantifies the strength of the correlations present in the time series. The exponents γ and α are related
via [19–21]

γ = 2− 2α. (6)

Then, for stationary correlated signals, α ∈ (0, 1) and it coincides with the Hurst exponent H
(Equation (2)). α = 0.5 indicates absence of correlations (white noise), α > 0.5 indicates positive
power-law correlations which are stronger as α increases, and α < 0.5 indicates anticorrelations,
stronger as α decreases.

Detrended Fluctuation Analysis was created [3] to solve some drawbacks of FA, especially the
ones related to the presence of non-stationarities in the time series. The behavior of DFA when
applied to signals with different characteristics (trends, nonlinear filters, etc.) has been intensively
studied [22,23] and, since then, DFA has become one of the standard methods used to analyze complex
time series in many scientific fields [15,24,25]. DFA works as follows: (i) calculate the “accumulated
walk” Yj (3) of the analyzed time series xi of length N; (ii) divide the walk Yj into boxes of equal length
` (the scale of observation); (iii) In each box of length `, calculate a linear fit of Yj to determine the linear
trend within that box. The Y coordinate of the fit line in each box is denoted by Y`,j; (iv) the walk Yj
is detrended by subtracting the local trend Y`,j in each box of length `; and (v) for a given box size `,
the root mean-square (r.m.s.) fluctuation for the detrended walk is calculated:

FDFA(`) =
√
〈(Yj −Y`,j)2〉; (7)

and (vi) the above computation is repeated for a broad range of scales (box sizes `) in order to provide
a relationship between FDFA(`) and the scale `. As in the case of FA, scaling is present when

FDFA(`) ∼ `α. (8)

This equation is identical to Equation (5), and the exponent α is also the same and with the same
interpretation as the one in Equation (5) when the analyzed signal is stationary and power-law
correlated (0 < α < 1), i.e., of fractional Gaussian noise type. However, DFA can be also applied
to non-stationary long-range correlated signals of fractional Brownian motion type, and in this case,
1 < α < 2. For example, for the standard Brownian motion, α = 3/2.
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In this work, we restrict ourselves to the case of stationary long-range correlated signals
(0 < α < 1), where both FA and DFA can be applied.

3. The Relationship of the Autocorrelation Function with FA and DFA

When the analyzed time series {xi} is stationary, then it is possible to obtain analytical equations
relating the autocorrelation function C(r) and the FA and DFA fluctuation functions FFA(`) and
FDFA(`). In the case of FA, the calculation is simpler. Let us consider that {xi} has zero mean and
variance σ2. Starting from Equation (4), note first that

〈(Yi+` −Yi)
2〉 = 〈(xi+1 + xi+2 + . . . + xi+`)

2〉. (9)

After expanding the square in the R.H.S. of Equation (9), we obtain

〈(. . .)2〉 =
〈

`

∑
j=1

x2
i+j + 2

`−1

∑
j=1

`

∑
k=j+1

xi+jxi+k

〉
,

and then, noting that the series is stationary with 0 mean and variance σ2, we can evaluate the
averages to get

F2
FA(`) = σ2

(
`+ 2

`−1

∑
r=1

(`− r)C(r)

)
, (10)

in agreement with [26].
For the case of DFA, the relationship between FDFA(`) and C(r) is more complicated with an

elaborated derivation recently obtained by Höll and Kantz [27]. The final result is

F2
DFA(`) = σ2

(
W(`) +

`−1

∑
r=1

L(`, r)C(r)

)
, (11)

with

W(`) =
`2 − 4

15`
, (12)

and

L(`, r) = 1
15(`4−`2)

[
(3r5 + (−20`2 + 5)r3 + 30(`3 − `)r2 + (−15`4 + 35`2 − 8)r + 2`5 − 10`3 + 8`

]
. (13)

We note that, although expressed in a different manner as in Equation (11), the relation between
F2

DFA(`) and C(r) was also obtained by Talkner and Weber [28].
We end this section with two important remarks on Equations (10) and (11). First, the variance σ2

of the time series xi appears as a multiplicative constant in both equations, and then from now on, we
can consider without loss of generality that σ2 = 1. Secondly, we want to stress that Equations (10)
and (11) are exact results, and therefore independent of the particular behavior of the autocorrelation
function C(r) of {xi}. Then, provided that {xi} is stationary, no matter whether the correlations are
short- or long-ranged, positive or negative, power-law (with scaling) or exponentially decaying, etc.,
both equations hold.

4. Magnitude and Sign Decomposition. Volatility

As we mentioned above, the observable output of many complex systems, from heart rate to
seismic signals, consists of time series with scaling properties. In many cases, such time series are
non-stationary (of fractional Brownian motion type) and are originated as a consequence of the
coupling of different underlying mechanisms. In order to shed light on the possible mechanisms
responsible for the observed dynamics, the magnitude and sign decomposition method [4,6] is used.
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The method works as follows: given a non-stationary time series {Yi} (i = 1, . . . , N + 1), first we obtain
its increments time series {xi} as

xi = Yi+1 −Yi, i = 1, 2, . . . , N. (14)

Typically, the increment time series is stationary and approximately Gaussian, i.e., of fractional
Gaussian noise type. Then, the increment time series is decomposed into the sign {si} and the
magnitude {mi} time series defined as:

si = sign(xi),

mi = |xi|, i = 1, 2, . . . , N. (15)

The sign series carries the information about the direction of the increments (positive or negative)
and the magnitude time series, the information about the size of the increments, i.e., whether the
increment is big or small. The utility of the magnitude and sign decomposition method is then the
possibility of studying independently both types of information [4–8,10]. In addition, the correlations
of the sign series is associated with the linear correlations of the original signal [4,6], and the sign
series contains also important information related to the recurrence intervals of the original signal [29].
In addition, the correlations in the magnitude series are usually associated with nonlinear correlations
and multifractal properties [4–7].

In the particular case of financial time series, which are strongly correlated and non-stationary,
a convenient way to make stationary the time series consists of a logarithmic transformation.
For example, let us consider a stock prize time series {Pi}, (i = 1, . . . , N + 1), where the index i
defines a time unit (minute, hour, day, etc.). For these series, instead of the increments of {Pi}, the returns
time series {ri} is defined as [15]

ri = log
(

Pi+1

Pi

)
i = 1, . . . , N. (16)

Typically, the return time series {ri} is correlated and approximately Gaussian with zero mean,
and therefore of fractional Gaussian noise type. Then, in a similar way to Equation (15), one could
analyze separately the sign and the magnitude series obtained from {ri}. In economics, the magnitude
of the returns time series {ri} is known as volatility [7,15] time series {vi}, i.e.,

vi = |ri|, i = 1, . . . , N. (17)

Then, in general, both the increment {xi} and the return {ri} time series are stationary and can be
modeled to a first approximation by fractional Gaussian noises. Therefore, the correlation properties of
their corresponding sign and magnitude (or volatility) [7] time series can be studied by decomposing
fGns as in Equation (15). In the next section, we study the scaling properties of the sign and magnitude
of fGns by applying FA and DFA.

5. Magnitude and Sign Study Using FA and DFA

Gaussian linear noises of fGn type can be generated using the Fourier Filtering Method
(FFM) [30,31]. FFM works as follows: (i) generate a Gaussian white noise in the time domain {gi};
(ii) Fourier-transform {gi} to obtain a white noise {G f } in the frequency domain; (iii) multiply {G f }
by a power-law of the type f−β/2; and (iv) Fourier-transform the result back to time domain to obtain
{xi}. Then, the power spectrum S( f ) of the final time series {xi} behaves by constructions as:

S( f ) ∼ 1
f β

, (18)
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with β ∈ (−1, 1) for stationary time series. Since S( f ) behaves as a power-law, then according to the
Wiener–Khinchim theorem, C(r) behaves also as a power law (see Equation (2)), with the exponents β

and γ related via γ = 1− β. Then, using Equation (6), the three exponents α, β and γ are related as [21]

α = 1− γ

2
=

β + 1
2

. (19)

Due to the relation (19), we use for convenience the FA and DFA exponent α as the input parameter of
FFM, which we term αin from now on. Then, we choose a large time series size N to avoid as much as
possible finite-size effects. For any αin value, using FFM, we generate a large number of correlated time
series {xi}, each one with an exponent α = αin by construction. Then, we decompose any individual
series into its sign series {si} and its magnitude series {mi} (see Figure 1 for an example with small N)
according to (15) and apply FA and DFA to {si} and {mi} to obtain the sign αs and magnitude αm

scaling exponents. Then, we average the sets of individual αs and αm values to obtain αs(αin) and
αm(αin). The behavior of αs and αm as a function of αin is shown in Figure 2. We note that both FA
and DFA provide very similar scaling exponents αs and αm. For the sign series, αs ' 0.5 for αin < 0.5,
and αs ' αin when αin > 0.5. In the magnitude series case, we observe that αm ' 0.5 for αin < 0.75,
and αm ' 2αin − 1 when αin > 0.75. In both cases, the approximate equality ’'’ tends to the strict
equality as the series size N increases. In the particular case of DFA, these results are in agreement with
previous works [5,7]. The most noticeable difference between FA and DFA is that, for a given large
series size N, the former presents larger deviations from the asymptotic behaviors (20) and (21) than
the latter when αin → 1 (Figure 2). Note that the limiting value αin = 1 corresponds to a non-stationary
time series where FA is not applicable, and therefore a slower convergence of FA to the asymptotic
results for αin close to 1 is expected.

In the asymptotic limit N → ∞, the αs and αm results provided by both FA and DFA can be
summarized as follows:

αs =

{
0.5 for αin ≤ 0.5,
αin for αin > 0.5,

(20)

αm =

{
0.5 for αin ≤ 0.75,

2αin − 1 for αin > 0.75.
(21)

- 2
0
2

- 1
0
1

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0
1
2
3 c )

b )

 

 

x i

a )

 s i

 i n d e x  i

 m i

Figure 1. (a) a fractional Gaussian noise-type time series, {xi}, generated using the Fourier Filtering
Method (FFM) with αin = 0.85 and N = 28; (b) the sign series {si} obtained from {xi}; and (c) the
magnitude (or volatility) series {mi} obtained from {xi}.
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Figure 2. The sign scaling exponent αs and the magnitude scaling exponent αm as a function of the
scaling exponent αin of the original signal. Top panel: results of Fluctuation Analysis (FA); bottom
panel: results of Detrended Fluctuation Analysis (DFA). We have used time series with N = 220, and we
have generated 200 series for any αin value.

The common interpretation of these results is the following: (i) the sign series of fractional
Gaussian noises with αin ≤ 0.5 is uncorrelated (white noise behavior) because in that case αs = 0.5.
However, when αin > 0.5, the scaling properties of the time series and of its sign series are the same
since for that range αs = αin. Note that this interpretation precludes the existence of anticorrelations in
the sign series, for which αs < 0.5 are expected; and (ii) the magnitude series of fractional Gaussian
noises with αin ≤ 0.75 is uncorrelated (white noise behavior) since αm = 0.5. In contrast, for
αin > 0.75, the magnitude scaling exponent depends linearly on αin as αm = 2αin − 1. According to this,
the magnitude time series should behave randomly and thus without correlations for 0 < αin < 0.75.

However, in the next sections, we show that the above interpretation is misleading: on the
one hand, the sign series presents power-law anticorrelations for αin ≤ 0.5. On the other hand,
the magnitude series is power-law correlated for αin ≤ 0.75. The problem is that both FA and DFA
do not work properly in the sign and magnitude series, and therefore the scaling provided by both
methods is spurious for αin ≤ 0.5 in the sign case and for αin ≤ 0.75 in the magnitude case.

6. Exact Autocorrelation Function of Magnitude and Sign Series

The correlations in the sign and magnitude series obtained from correlated and stationary time
series of fractional Gaussian noise type can be derived analytically. Let x and y be two stochastic
Gaussian variables, and let us assume that the linear correlation between both variables is C, i.e.,

C =
〈xy〉 − 〈x〉〈y〉

σxσy
, (22)

where σ denotes the standard deviation. Without loss of generality, from now on, we consider that
〈x〉 = 〈y〉 = 0 and σx = σy = 1, i.e., x and y are of N(0, 1) type. Note that Equation (22) is equivalent
to affirm that the joint probability density of x and y, p(x, y), is the bivariate Gaussian distribution. If x
and y are N(0, 1) variables, then p(x, y) = (2π

√
1−C2)−1 exp

[
−(x2 + y2 − 2Cxy)/(2(1−C2))

]
. Now,

let us consider the pairs of stochastic variables sign(x) and sign(y), and |x| and |y|. Then, the correlation
Cs of the pair sign(x) and sign(y), and the correlation Cm of the pair |x| and |y| are given by
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Cs ≡ 〈sign(x)sign(y)〉 − 〈sign(x)〉〈sign(y)〉
σsign(x)σsign(y)

= 〈sign(x)sign(y)〉, (23)

Cm ≡ 〈|x||y|〉 − 〈|x|〉〈|y|〉
σ|x|σ|y|

=
〈|x||y|〉 − 2

π

1− 2
π

, (24)

where we have used that, as x and y are N(0, 1) variables, then 〈sign(x)〉 = 〈sign(y)〉 = 0 and
σsign(x) = σsign(y) = 1. In addition, 〈|x|〉 = 〈|y|〉 =

√
2/π, and σ|x|=σ|y| =

√
1− (2/π).

Interestingly, both Cs and Cm are determined exactly by C. For Cs, Apostolov et al. have
shown [32] that

Cs =
2
π

arcsin C. (25)

In the Cm case, we have obtained recently [9] that

Cm =
2C arcsin C− 2(1−

√
1−C2)

π− 2
. (26)

In the time series language, Equations (25) and (26) can be easily written in terms of autocorrelation
functions. Note that for a stationary and correlated Gaussian time series {xi}, just replacing x by xi
and y by xi+r in Equation (22), we obtain the autocorrelation function C(r) (Equation (1)). Similarly,
replacing sign(x) and sign(y) by sign(xi) and sign(xi+r), we obtain the autocorrelation function of the
sign series Cs(r). Finally, just replacing |x| and |y| by |xi| and |xi+r| in Equation (24), we obtain the
autocorrelation function of the magnitude series, Cm(r). Then, from (25) and (26), we can write directly

Cs(r) =
2
π

arcsin C(r), (27)

Cm(r) =
2C(r) arcsin C(r)− 2(1−

√
1−C2(r))

π− 2
. (28)

As −1 < C(r) < 1, we can plot Cs(r) and Cm(r) for any C(r) ∈ (−1, 1), and both curves are shown in
Figure 3. The sign autocorrelation Cs(r) is an odd function of C(r), and then negative values of C(r)
produce negative values of Cs(r). In other words, when the time series is (anti)correlated, the sign
series is also (anti)correlated. In contrast, Cm(r) is an even function of C(r), and then no matter the
sign of C(r), the correlations in the magnitude series, Cm(r), are always positive. In addition, note that
both (27) and (28) are exact, independently of the behavior of C(r) (positive or negative, power-law or
exponentially decaying, etc.).

Very typically, C(r) is a decaying function of the lag r and then small for large enough r. Therefore,
in these conditions, we can expand Equations (27) and (28) in a Taylor series of C(r) and, considering
only the first term in the expansions, we get

Cs(r) '
2
π

C(r), (29)

Cm(r) '
C2(r)
π− 2

. (30)

These two approximations are also shown in Figure 3 (dashed lines), and are fairly precise for
C(r) ∈ (−0.4, 0.4). According to Equations (29) and (30), the correlations in the sign series behave as a
linear function of C(r), while the correlations in the magnitude series are quadratic with C(r).
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Figure 3. The sign (a) and magnitude (b) autocorrelation functions, Cm(r) and Cs(r), as a function of
the values of the autocorrelation function of the original time series, C(r). The solid lines correspond
to the exact analytical results (Equations (27) and (28)), and the dashed lines to the first term in the
corresponding Taylor expansions (Equations (29) and (30)).

These last results have profound implications, especially when the analyzed time series are
stationary Gaussian power-law correlated (fGns), as the cases studied in Section 5. Indeed, in that case,
C(r) behaves as a decaying power-law of r (Equation (2)) and for large enough r, using Equations (29)
and (30), we obtain finally:

Cs(r) '
2
π

αin(2αin − 1)
r2−2αin

∝
sign(1− γ)

rγ
, (31)

Cm(r) '
1

π − 2
α2

in(2αin − 1)2

r2(2−2αin)
∝

1
r2γ

, (32)

where, for convenience, we have used the FA and DFA exponents αin characterizing the original time
series instead of H since they are equivalent in this case. Note that Equations (31) and (32) are valid for
γ ∈ (0, 2) and then for αin ∈ (0, 1). The consequences of these two equations are important: given a
power-law correlated time series characterized by an exponent γ ∈ (0, 2) (or by αin = 1− γ/2 ∈ (0, 1)),
the corresponding sign and magnitude series are also power-law correlated. In the sign series, its
autocorrelation function exponent is identical to that of the original series, γ (Equation (31)). In the
magnitude series, the exponent characterizing Cm(r) is given by twice the exponent γ of the original
series (Equation (32)). The only case in which there is absence of correlations in the three time
series corresponds to αin = 0.5 or γ = 1, where the three autocorrelation functions, C(r), Cs(r) and
Cm(r), vanish.

To show the validity of these results, in Figure 4, we show the autocorrelation functions C(r), Cs(r)
and Cm(r) obtained numerically for power-law correlated synthetic N(0, 1) fractional Gaussian noises
generated using FFM with different αin values. We observe that Equations (31) and (32) provide correct
results: on the one hand, the sign autocorrelation function Cs(r) behaves as a power law with the same
exponent as the original time series. Indeed, both C(r) and Cs(r) behave as parallel power-laws and
then differ essentially in a multiplicative constant, in agreement with Equation (29). This last equation
has been used to plot the solid lines representing Cs(r) in Figure 4. On the other hand, the magnitude
autocorrelation function Cm(r) behaves as a power-law with an exponent twice the exponent γ of
the original series, and the results for Cm(r) are also in perfect agreement with Equation (30), which
has been used to plot the dotted lines for Cm(r) in Figure 4. One last remark concerning the results
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on Figure 4: for αin < 0.5, both the original and the sign series are power-law anticorrelated, i.e.,
C(r), Cs(r) < 0, and, for this reason, we use the absolute values |C(r)| and |Cs(r)| in panels (e) and (f)
to produce a log-log plot.
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Figure 4. Autocorrelation function of the original time series (C(r)), of the sign series (Cs(r)) and
of the magnitude series (Cm(r)) obtained numerically for synthetic fractional Gaussian noises (fGns)
generated with different αin values. (a–d) correspond to situations where the original fGn presents
positive correlations (αin > 0.5); (e,f) show examples in which the fGn is anticorrelated (αin < 0.5).
As, in this case, both C(r) and Cs(r) are negative, (e,f) show the absolute value of C(r) and Cs(r). In
all cases, the lines correspond to the analytical values of Cs(r) (solid lines) and Cm(r) (dotted lines)
obtained from C(r) using Equations (29) and (30). For any αin value, we generate 100 fGns of length
N = 224 and average the corresponding C(r), Cs(r) and Cm(r).

6.1. Spurious Results and Misinterpretations of FA and DFA on Sign and Magnitude Series

According to our analytical (Equations (29)–(32)) and numerical results (Figure 4), the sign and
magnitude series from power-law correlated fractional Gaussian noises are also power-law correlated.
However, when FA and DFA are applied to these series, then the results shown in Figure 2 and
summarized in Equations (20) and (21) spuriously indicate a different behavior.

For the sign series, since both C(r) and Cs(r) are power-laws with the same exponent γ, then one
should expect that αs = αin in the whole range αin ∈ (0, 1). FA and DFA provide the correct result
αs = αin only in the case αin ∈ (0.5, 1). However, both FA and DFA predict αs = 0.5 (white noise
behavior) when αin ∈ (0, 0.5) or, in other words, the two techniques consider that the sign series is
completely uncorrelated in this case, which is clearly not the case (see Figure 4e,f).

For the magnitude series, Cm(r) behaves as a power-law with an exponent 2γ, twice the
exponent γ of C(r) (in Figure 4a–d). Then, according to Equation (6), one has αin = 1− γ/2 for
the original series and αm = 1− γ for the magnitude series. Combining both expressions, we get
that the relation between αin and αm should be αm = 2αin − 1, and this relation holds for αin ∈ (0, 1).
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Both FA and DFA predict (correctly) αm = 2αin − 1 only in the case αin ∈ (0.75, 1). However, the two
techniques wrongly estimate that αm = 0.5 when αin ∈ (0, 0.75) (Figure 2 and Equation (21)). In other
words, FA and DFA consider that, for αin ≤ 0.75, the magnitude series in completely uncorrelated
(white noise behavior), which is clearly false (see Figure 4b–d).

Then, according to the autocorrelation function behavior, the results for αs and αm can be
summarized as

αs = αin

αm = 2αin − 1

}
for αin ∈ (0, 1). (33)

The discrepancies between the values of αs and αm predicted using FA and DFA (Equations (20)
and (21) and Figure 2 ) and the correct expected values for αs and αm given by Equation (33) are shown
in Figure 5. Indeed, both expected values are linear functions of αin, and lack of the abrupt corners
exhibited by the FA and DFA results.

Before concluding this section, we add a final remark on the behavior of αm: the correct result
αm = 2αin − 1 indicates that, for αin < 0.75, then αm < 0.5. Traditionally, values of the FA and DFA
scaling exponent α smaller than 0.5 are interpreted as an indicator of anticorrelations. However, this is
not the case: we have proved above (Equations (28) and (30)) that, in general, the correlations in the
magnitude series are always positive (see also Figures 3 and 4) even in the case αm < 0.5.

In the next section, we derive an analytical explanation for the spurious scaling results of FA and
DFA on sign and magnitude series.
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α s, α
m

α i n
Figure 5. Magnitude and sign scaling exponents, αm and αs provided by FA and DFA (symbols),
and the correct results for αm and αs (lines) expected from the corresponding autocorrelation functions.

7. Analytical FA and DFA Scaling on Sign and Magnitude Series

Let us consider a fractional Gaussian noise with σ = 1, and with an autocorrelation function
given in terms of αin by

C(r) ' αin(2αin − 1)
r2−2αin

. (34)

For this signal, by construction both FA and DFA give a scaling of the type:

FFA(`) ∼ FDFA(`) ∼ `αin . (35)
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We analyze first the FA and DFA scaling properties of the sign series. We recall Equation (10)
establishing the relationship between F2

FA(`) and C(r). Since the sign series is also stationary, from
Equation (10), we can also write

F2
s,FA(`) = `+ 2

`−1

∑
r=1

(`− r)Cs(r), (36)

where Fs,FA(`) is the FA fluctuation function for the sign series. As C(r) decays as a power-law, for
large enough `, we can use the approximation (29) to write Equation (36) in terms of C(r):

F2
s,FA(`) = `+

4
π

`−1

∑
r=1

(`− r)C(r). (37)

Note that the sum in Equation (37) also appears in Equation (10) and then, combining both equations,
we finally obtain

Fs,FA(`) =

√(
1− 2

π

)
`+

(
2
π

)
F2

FA(`). (38)

This equation establishes the relationship between the FA fluctuation functions of the original series,
FFA(`), and of the sign series, Fs,FA(`), and explains perfectly the (spurious) αs value provided by
FA. Indeed, for an fGn, Equation (35) holds and then FFA(`) ∼ `αin . Thus, obviously for αin > 0.5,
the second term in the sum inside the square root dominates for large ` and then Fs,FA(`) ∼ `αin , i.e.,
αs = αin. In contrast, for αin < 0.5, the first term dominates for large ` and then Fs,FA(`) ∼ `1/2, i.e.,
αs = 1/2. In other words, we recover exactly the numerical results in Equation (20).

Similar calculations can be carried out for DFA: in this case, starting from Equation (11) and using
Equation (29), we get:

F2
s,DFA(`) = W(`) +

2
π

`−1

∑
r=1

L(`, r)C(r), (39)

where Fs,DFA(`) is the DFA fluctuation function for the sign series. Again, the sum in Equation (39)
also appears in Equation (11) and, combining both equations and using the definition of W(`) in
Equation (12), we obtain

Fs,DFA(`) =

√(
1− 2

π

)
`2 − 4

15`
+

(
2
π

)
F2

DFA(`). (40)

This equation relates the DFA fluctuation function of the sign series, Fs,DFA(`), to the DFA fluctuation
function of the original series, FDFA(`). Similarly to the FA case, Fs,DFA(`) presents two terms inside
the square root, which can explain the αs value provided by DFA. Indeed, when the original series
is a fGn, then Equation (35) holds and FDFA(`) ∼ `αin . Thus, for αin > 0.5, the second term inside
the square root dominates for large `, and, therefore, Fs,DFA(`) ∼ `αin , i.e., αs = αin. In contrast, for
αin < 0.5, for large `, the first term dominates and is proportional to `, thus implying Fs,DFA(`) ∼ `1/2,
i.e., αs = 1/2. In other words, we also recover the numerical results in Equation (20), which are
spurious for αin < 0.5.

In conclusion, the reason behind the spurious FA and DFA result αs = 1/2 for αin < 1/2 is the
presence of a first term proportional to ` inside the square root of Equations (38) and (40), which
dominates for large ` when αin < 1/2. Note that this ` term should be absent in order to obtain the
correct result αs = αin for αin ∈ (0, 1), but it is an intrinsic property of the FA and DFA techniques.

Next, we study the FA and DFA scaling properties of the magnitude series. Concerning FA,
since the original series is an fGn, then the magnitude series is stationary and, from Equation (10), we
can write
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F2
m,FA(`) = σ2

m

(
`+ 2

`−1

∑
r=1

(`− r)Cm(r)

)
, (41)

with σ2
m the variance of the magnitude series. Noting that we are considering fGns with σ2 = 1, then

σ2
m = 1− 2/π. For large `, we can use the approximation in Equation (30) to obtain

F2
m,FA(`) =

(
1− 2

π

)
`+

2
π

`−1

∑
r=1

(`− r)C2(r). (42)

Contrary to the sign case, in this last equation the sum is not the same as the one in Equation (10) because
we have the square of C(r). Then, to evaluate Equation (42), we proceed as follows: first, we note that
C(r) is given by Equation (34) and insert it in Equation (42). Then, in order to evaluate the sum, we
substitute it by a definite integral that we solve and simplify by keeping only the highest powers of `
with constant and non-constant exponents. In this way, after regrouping terms, we get finally:

F2
m,FA(`) =

[
1− 2

π

(
1 + α2 (2αin − 1)2

4αin − 3

)]
`+

[
α2

in(2αin − 1)
π(4αin − 3)

]
`4αin−2. (43)

The validity of this analytic result is shown in Figure 6, where we plot Fm,FA(`) obtained numerically in
magnitude time series from fGns generated using FFM for two values of αin (open symbols), and also
the corresponding analytical values using Equation (43), shown in solid lines. Equation (43) explains
the αm results obtained using FA (21): for 4αin − 2 > 1, i.e., αin > 3/4, the second term in the sum
dominates asymptotically and then Fm,FA(`) ∼ `2αin−1 leading to αm = 2αin − 1 (see the case αin = 0.8
in Figure 6). In contrast, for 4αin − 2 < 1, i.e., αin < 3/4, the first term in the sum is the dominant one
and Fm,FA(`) ∼ `1/2 from where αm = 1/2, as the case αin = 0.65 in Figure 6.
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Figure 6. FA and DFA Fluctuation functions for the magnitude series obtained from two fGns with
αin = 0.65 and 0.8, and N = 223. The numeric results of applying FA and DFA to the corresponding
time series are shown in symbols, and the lines correspond to the analytical results obtained from
Equations (43) and (46). We also include dashed lines corresponding to the correct scaling `2αin−1,
which gives `0.6 and `0.3 for αin = 0.8 and 0.65, respectively, and to the spurious scaling `1/2. Note how
FA and DFA predict the correct scaling exponent αm = 0.6 for αin = 0.8 but fail for αin = 0.65 since,
instead of αm = 0.3, both techniques give αm = 1/2.
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A similar, though more elaborated calculation can be carried out for the scaling of the magnitude
series using DFA. In this case, starting from Equation (11), we write for the magnitude series

F2
m,DFA(`) = σ2

m

(
W(`) +

`−1

∑
r=1

L(`, r)Cm(r)

)
, (44)

where, as before, σ2
m = 1− 2/π. Using Equation (30), we get:

F2
m,DFA(`) =

(
1− 2

π

)
W(`) +

1
π

`−1

∑
r=1

L(`, r)C2(r). (45)

To evaluate this equation, we insert the expression of C(r) (Equation (34)), use the definitions of W(`)

(Equation (12)) and L(`, r) (Equation (13)), substitute the sum by a definite integral and calculate it,
and simplify the results by keeping the highest powers of ` to get the (asymptotically correct) result:

F2
m,DFA(`) =

[
1

15
− 2

15π

(
1 +

α2
in(2αin − 1)2

4αin − 3

)]
`+

[
αin(1− αin)(2αin − 1)

π(2αin + 1)(4αin − 1)(4αin − 3)

]
`4αin−2. (46)

The validity of this last equation is also shown in Figure 6, where we plot for two different αin values
the numerical Fm,FA(`) functions provided by DFA (solid symbols) and the corresponding analytic
Fm,DFA(`) functions from Equation (46) (solid lines). Similarly to the FA case, Equation (46) allows for
understanding the spurious αm results (21) obtained using DFA. As before, for 4αin − 2 > 1, i.e., for
αin > 3/4 (see the case αin = 0.8 in Figure 6), the second term in the sum dominates for large ` and
then Fm,DFA(`) ∼ `2αin−1, or αm = 2αin − 1. For 4αin − 2 < 1, i.e., αin < 3/4 (see the case αin = 0.65 in
Figure 6), the first term in the sum is the dominant one and Fm,DFA(`) ∼ `1/2 from where αm = 1/2.

We conclude that the spurious FA and DFA result αm = 1/2 for αin < 3/4 is due to the existence
of a first term proportional to ` in Equations (43) and (46), which dominates asymptotically when
αin < 3/4. The correct result αm = 2αin − 1 for αin ∈ (0, 1) could only be obtained by FA and
DFA without such `-term in Equations (43) and (46), which, regrettably, is an intrinsic property of
both techniques.

8. Conclusions

We have shown that the magnitude and sign series obtained from power-law correlated stationary
time series, such as fractional Gaussian noises, are also power-law correlated for any scaling of the
original series. Indeed, we have obtained analytical expressions for both power-law autocorrelation
functions confirmed by numerical results. However, when the magnitude and sign series are analyzed
using Fluctuation Analysis and Detrended Fluctuation Analysis, also known as the magnitude and
sign decomposition method, depending on the scaling of the original time series, both techniques
can provide spurious scaling results and lead to wrongly interpreting the magnitude and sign series
as completely uncorrelated (white noises). By using the relationships between the autocorrelation
functions and the fluctuation functions of FA and DFA, we find analytically and confirm numerically
the reason for these spurious results, which turns out to be an intrinsic property of both methods.
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