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Abstract: It is a relatively well-known fact that in problems of Bayesian model selection, improper
priors should, in general, be avoided. In this paper we will derive and discuss a collection of four
proper uniform priors which lie on an ascending scale of informativeness. It will turn out that these
priors lead us to evidences that are closely associated with the implied evidence of the Bayesian
Information Criterion (BIC) and the Akaike Information Criterion (AIC). All the discussed evidences
are then used in two small Monte Carlo studies, wherein for different sample sizes and noise levels
the evidences are used to select between competing C-spline regression models. Also, there is given,
for illustrative purposes, an outline on how to construct simple trivariate C-spline regression models.
In regards to the length of this paper, only one half of this paper consists of theory and derivations,
the other half consists of graphs and outputs of the two Monte Carlo studies.

Keywords: proper uniform priors; regression coefficients; Bayesian; model selection; Akaike Information
Criterion (AIC); Bayesian Information Criterion (BIC); non-linear; regression analysis; splines

1. Introduction

Using informational consistency requirements, Jaynes [1] derived the form of maximal non-informative
priors for location parameters, that is, regression coefficients, to be uniform. However, this does not
tell us what the limits of these uniform probability distributions should be, that is, what particular
uniform distribution to use. If we are faced with a parameter estimation problem, then these limits
of the uniform prior are irrelevant, as we may scale the product of the improper uniform prior and
the likelihood to one, which gives us a properly normalized posterior for our regression coefficients.
However, if we are faced with a problem of model selection, then the volume covered by the uniform
prior is an integral part of the evidence which is used to rank the various competing regression models.

In this paper we will give the four proper uniform priors originally derived in [2]. These priors
lie on an ascending scale of informativeness. It will turn out, as we discuss the Bayesian Information
Criterion (BIC), the Akaike Information Criterion (AIC), and the results of a small Monte Carlo study,
that these priors lead us to evidences that are closely associated with the implied evidences of the BIC
and the AIC, as these evidences fill in the space between and around the BIC and AIC on a continuum
of conservativeness, in terms of the number of parameters of the chosen regression analysis models.

This paper is structured as follows. First we give an introduction to the evidence construct,
that “too-often-ignored half of Bayesian inference” [3], as we give an outline on how to use these
evidences in Bayesian model selection. Then we describe the normal multiple regression models for
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both known and unknown σs, after which we specify the conditions under which improper priors
become problematic for model selection. This specification brings us naturally to a continuum of
informativeness on which priors of regression coefficients may be located. After these preliminaries,
we proceed to give the derivations of the four proper uniform priors, originally derived in [2], by way
of the results in [4], which are neither grossly ignorant nor grossly knowledgeable. Having checked
the coverage of these priors, we address the question what constitutes data and what constitutes prior
information. We then discuss the evidences that are associated with our proper priors, as we connect
these evidences to the BIC and AIC reference procedures and give the posterior probability distribution
of the unknown regression coefficients and the consequent predictive probability distribution that is
associated with these proper priors. In Appendix A we report on two small Monte Carlo studies with
the C-spline regression models, in order to give the reader a sense for all the discussed evidences. Also,
a collection of three simple trivariate C-spline regression models will be discussed in Appendix B,
in order to provide the reader with a low-level, hands-on introduction into C-splines [5].

2. The Evidence and Bayesian Model Selection

Bayesian probability theory has four fundamental constructs, namely, the prior, the likelihood,
the posterior, and the evidence. These constructs are related in the following way:

posterior =
prior× likelihood

evidence
. (1)

Most of us will be familiar with the prior, likelihood, and posterior. However, the evidence concept is
less universally known, as most people come to Bayes by way of the more compact relationship [6]:

posterior ∝ prior× likelihood, (2)

which does not make any explicit mention of the evidence construct. In what follows, we will employ
the correct, though notationally more cumbersome, relation (1), and forgo of the more compact, but
incomplete, Bayesian shorthand (2). This is done so the reader may develop some feeling for the
evidence construct, and how this construct relates to the other three Bayesian constructs (i.e., the prior,
likelihood, and posterior.)

Let p ( θ| I) be the prior of some parameter θ, where I is the prior information model of the
unknown θ. Let p (D| θ, M) be the probability of the data D conditional on the value of parameter θ

and the likelihood model M which is used; the probability of the data is also known as the likelihood
of the parameter θ. Let p ( θ|D, M, I) be the posterior distribution of the parameter θ, conditional on
the data D, the likelihood model M, and the prior information model I. Then

p ( θ|D, M, I) =
p ( θ| I) p (D| θ, M)∫
p ( θ| I) p (D| θ, M) dθ

=
p ( θ| I) p (D| θ, M)

p (D|M, I)
, (3)

where
p (D|M, I) =

∫
p ( θ, D|M, I) dθ =

∫
p ( θ| I) p (D| θ, M) dθ (4)

is the evidence, that is, the marginalized likelihood of both the likelihood model M and the prior
information model I.

Now, if we have a set of likelihood models Mi (e.g., a collection of regression models) we wish to
choose from, and just the one prior information model I (e.g., an ignorance model), then we may do so
by computing the evidence values p (D|Mi, I).

Let p (Mi) and p (Mi|D, I) be, respectively, the prior and posterior probability of the likelihood
model Mi. Then the posterior probability distribution of these likelihood models is given as

p (Mi|D, I) =
p (Mi) p (D|Mi, I)

∑i p (Mi) p (D|Mi, I)
. (5)
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For p (Mi) = p
(

Mj
)

for i 6= j, the posterior probabilities (5) will reduce to the normalized
evidence values:

p (Mi|D, I) =
p (D|Mi, I)

∑i p (D|Mi, I)
. (6)

So, if we assign equal prior probabilities to our likelihood models Mi, then we may rank these models by
way of their respective evidence values, where the model with the highest evidence value is the model
which has the highest posterior probability of all the models that were taken into consideration [7,8].

3. The Normal Multiple Regression Model (Known Sigma)

Let the model M for the response vector y be

y = Xβ + e, (7)

where X is some N ×m predictor matrix, β is the m× 1 vector with regression coefficients and e is the
N × 1 error vector to which we assign a multivariate normal distribution, that is,

p (e| σ) = 1

(2πσ2)
N/2 exp

(
−eTe

2σ2

)
, (8)

or, equivalently, e ∼ MN
(
0, σ2I

)
, where I is the N × N identity matrix and σ is some known standard

deviation. By way of a simple Jacobian transformation from e to y in (8), we then may obtain the
likelihood function of the βs:

p (y| σ, X, β, M) =
1

(2πσ2)
N/2 exp

[
− 1

2σ2 (y− Xβ)T (y− Xβ)

]
. (9)

If we assign a uniform prior to the unknown regression coefficients β [6]

p (β | I) = C, β ∈ Dβ, (10)

where C is a yet unspecified normalizing constant, I is the prior information regarding the unknown βs
which we have at our disposal, and Dβ is the prior domain of the βs, then the probability distribution
of both β and y is derived as

p (β, y| σ, X, M, I) = p (β | I) p (y| σ, X, β, M) =
C

(2πσ2)
N/2 exp

[
− 1

2σ2 (y− Xβ)T (y− Xβ)

]
. (11)

By integrating the unknown βs out of (11) over the prior domain Dβ, we obtain the evidence of model M:

p (y| σ, X, M, I) =
∫

Dβ

p (β, y| σ, X, M, I) dβ. (12)

The evidence (12) is used both to normalize (11) into a posterior distribution, (1), as well as to
choose between competing regression models, (5) and (6). In order to evaluate the evidence (12),
we rewrite (11) as [6]

p (β, y| σ, X, M, I) =
C

(2πσ2)
N/2 exp

{
− 1

2σ2

[
(y− ŷ)T (y− ŷ) +

(
β− β̂

)T
XTX

(
β− β̂

)]}
, (13)

where
β̂ =

(
XTX

)−1
XTy and ŷ = Xβ̂. (14)
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We then factor (13) as

p (β, y| σ, X, M, I) =
C

|XTX|1/2
(2πσ2)(

N−m)/2
exp

[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]

(15)

×
∣∣XTX

∣∣1/2

(2πσ2)
m/2 exp

[
− 1

2σ2

(
β− β̂

)T
XTX

(
β− β̂

)]
.

The last term in (15) is in the multivariate normal form [6], so it should evaluate to 1 when integrated
over the βs. Stated differently, for a prior domain Dβ which is centered correctly and ‘wide enough’,
we have, by way of the factorization (15), that the evidence (12) tends to the equality

p (y| σ, X, M, I) =
C

|XTX|1/2
(2πσ2)(

N−m)/2
exp

[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]

. (16)

By way of (13), (16) and the product rule (1), we obtain the posterior of the unknown βs, [6]:

p (β| σ, y, X, M, I) =
p (β, y| σ, X, M, I)

p (y| σ, X, M, I)
=

∣∣XTX
∣∣1/2

(2πσ2)
m/2 exp

[
− 1

2σ2

(
β− β̂

)T
XTX

(
β− β̂

)]
. (17)

This posterior of the unknown βs has a mean of β̂ =
(
XTX

)−1 XTy, (14), and a covariance matrix of(
XTX/σ2)−1.

In the parameter estimation problem, that is, the derivation of the posterior distribution (17),
any reference to the normalizing constant C of the uniform prior (10) has fallen away. In contrast, in
the model selection problem, that is, the derivation of the evidence (16), C is still present.

In closing, note that different N ×mi predictor matrices Xi correspond with different likelihood
models Mi in (5) and (6). It is to be understood that in what follows we will construct proper uniform
priors for a generic likelihood model M which has a generic N ×m predictor matrix X, as we drop the
sub-index j in both X and M in order to remove some of the notational clutter in our equations.

4. The Normal Multiple Regression Model (Unknown Sigma)

In case of unknown σ, we may assign the Jeffreys prior for scaling parameters [6]:

p (σ| I) = A
σ

, (18)

where A is some normalizing constant, to the unknown σ in (11), in order to lose this unknown
nuisance parameter by way of integration:

p (β, y|X, M, I) =
∫

p (σ, β, y|X, M, I) dσ =
∫

p (σ, β, y|X, M, I) dσ, (19)

where (11) and (18),

p (σ| I) p (β, y| σ, X, M, I) =
A C

(2π)N/2 σN+1
exp

[
− 1

2σ2 (y− Xβ)T (y− Xβ)

]
. (20)
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We may conveniently factorize (20) as,

p (σ, β, y|X, M, I) =
A Γ(N/2)

2πN/2
C[

(y− Xβ)T (y− Xβ)
]N/2

× 2
Γ(N/2)

[
(y− Xβ)T (y− Xβ)

2

]N/2
1

σN+1 exp
[
− 1

2σ2 (y− Xβ)T (y− Xβ)

]
.

(21)

The last term in (21) evaluates to 1 when integrated over σ, as it has the form of an inverted gamma
distribution [6], from which it follows that

p (β, y|X, M, I) =
A Γ(N/2)

2πN/2
C[

(y− Xβ)T (y− Xβ)
]N/2 , (22)

By integrating the unknown βs out of (22) over the prior domain Dβ, we obtain the evidence of model M:

p (y|X, M, I) =
∫

Dβ

p (β, y|X, M, I) dβ. (23)

In order to evaluate the evidence (23), we rewrite (22) as [6]

p (β, y|X, M, I) =
A Γ(N/2)

2πN/2
C[

(y− ŷ)T (y− ŷ) +
(

β− β̂
)T

XTX
(

β− β̂
)]N/2 . (24)

We then factor (24) as

p (β, y|X, M, I) =
1

|XTX|1/2
C

‖y− ŷ‖N−m
A Γ[(N −m) /2]

2π(N−m)/2

(25)

× Γ(N/2)
Γ[(N −m) /2]

∣∣XTX
∣∣1/2

πm/2
‖y− ŷ‖N−m[

‖y− ŷ‖2 +
(

β− β̂
)T

XTX
(

β− β̂
)]N/2 ,

where
‖y− ŷ‖2 = (y− ŷ)T (y− ŷ) , (26)

and where the last term in (25) is in the multivariate Student-t form [6]. So, for a prior domain Dβ

which is centered correctly and “wide enough”, we have, by way of the factorization (25), that the
evidence (23) tends to the equality

p (y|X, M, I) =
1

|XTX|1/2
C

‖y− ŷ‖N−m
A Γ[(N −m) /2]

2π(N−m)/2
. (27)

If we divide (24) by the evidence (27), we obtain, by way of the product rule (1), the posterior of the
unknown βs, [6]:

p (β| y, X, M, I) =
vv/2 Γ(N/2)

∣∣∣ 1
s2 XTX

∣∣∣1/2

Γ[(N −m) /2] πm/2

[
v +

(
β− β̂

)T
(

1
s2 XTX

)(
β− β̂

)]−N/2
. (28)
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where
s2 =

1
v
‖y− ŷ‖2 and v = N −m. (29)

This posterior of the unknown βs has a mean of β̂ =
(
XTX

)−1 XTy, (14), and a covariance matrix of(
XTX/s2)−1, (29).

Again, in the parameter estimation problem, that is, the derivation of the posterior distribution (28),
any reference to the normalizing constant C of the uniform prior (10) has, seemingly, fallen away.
In contrast, in the model selection problem, that is, the derivation of the evidence (27), C is still present.

5. The Problem with Improper Priors

In problems of model comparison between competing (regression) models one generally must take
care not to use improper priors, be they uniform or not. Since improper priors may introduce inverse
infinities in the evidence factors which do not cancel out if one proceeds to compute the posterior
probabilities of the respective models [9]. We will demonstrate this fact and its consequences with a
simple example in which we assign improper uniform priors to the respective regression coefficients.

Suppose that we want to compare two regression models:

M1 : y = X1β1 + e1 and M2 : y = X2β2 + e2, (30)

where X1 is an N ×m1 predictor matrix and X2 an N ×m2, with m2 > m1, and where both e1 and e1

are multivariate normally distributed MN
(
0, σ2I

)
, where I is the N × N identity matrix and σ is some

known standard deviation, (8). Let the uniform prior of a regression coefficient be given as

p
(

β j
∣∣ I
)
=

1
2B

, for − B ≤ β j ≤ B, (31)

for j = 1, . . . , m. If B→ ∞, then (31) will tend to the improper Jeffreys prior for location parameters [6]:

p
(

β j
∣∣ I
)

dβ j ∝ dβ j, for −∞ ≤ β j ≤ ∞, (32)

where “∝” is the proportionality sign that absorbs the normalizing constant 1/ (2∞). Let the uniform
prior of m regression coefficients be given as, (31),

p (β| I) =
m

∏
j=1

p
(

β j
∣∣ I
)
=

(
1

2B

)m
, for β ∈ Dβ, (33)

where Dβ is an m-dimensional cube which is centered at the origin. Substituting (33) into (10), we find
the evidences:

p (y| σ, Xi, Mi, I) =
A

(2B)mi
Li, (34)

for i = 1, 2, where (27)

Li =
1

|XTX|1/2
1

‖y− ŷ‖N−m
Γ[(N −m) /2]

2π(N−m)/2
, (35)

and mi is the number of columns in the N ×mi predictor matrix Xi, and ŷi is the regression model
estimate (14)

β̂i =
(

XT
i Xi

)−1
XT

i y and ŷi = Xi β̂i. (36)
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If we assign equal prior probabilities to M1 and M2, then we find posterior model probabilities,
(6) and (34):

p (M1| σ, X1, y, I) =
L1

L1 +
1

(2B)m2−m1
L2

and p (M2| σ, X2, y, I) =
1

(2B)m2−m1
L2

L1 +
1

(2B)m2−m1
L2

, (37)

as m2 > m1, (30). So, if in (31) we let B→ ∞, then the posterior model probabilities (37) will tend to

p (M1| σ, X1, y, I)→ L1

L1
= 1 and p (M2| σ, X2, y, I)→ 0

L1 + 0
= 0. (38)

It can be seen that the assigning of an improper Jeffreys’ prior to location parameters (32) will make
that the regression model with the least number of regression coefficients, or, equivalently, number of
predictors, is automatically chosen over any model which has more regression coefficients.

Improper priors can introduce inverse infinities in the evidence factors, as (2B)−m2+m1 in (37),
which do not cancel out if one proceeds to compute the posterior probabilities of the respective models.
However, if the parameter in question is shared by all the competing models, like, for example,
the parameter σ in (1), then the inverse infinities will cancel out, like A cancels out in (37). This is why
care must be taken to let the prior for the regression coefficients β, (10), be proper, while, at the same
time, as both a mathematical and a modeling convenience, one may let the prior of σ, (18), be improper.

6. A Continuum of Informativeness

The Jeffreys prior for location parameters (32),

p
(

β j
∣∣ I
)

dβ j ∝ dβ j, for −∞ ≤ β j ≤ ∞,

represents a limit of gross ignorance as we are even ignorant about the possible limits of the parameters
β j. This gross ignorance leads to evidences that are extremely conservative in that they will always
choose the regression model with least number of regression coefficients, (38).

An opposite limit of gross knowledgeableness is the empirical “sure thing” prior [3]:

p
(

β| β̂, “sure thing”
)
= δ

(
β− β̂

)
, (39)

where δ is the multivariate Dirac delta function for which we have∫ ∞

−∞
δ (x− c) f (x) dx = f (c) . (40)

The evidence that corresponds with the “sure thing” prior may be derived as, (9), (14), (18), (26), (39),
and (40):

p
(

y|X, β̂, “sure thing”
)
=
∫ ∞

0

∫ ∞

−∞
p
(

σ, β, y|X, β̂, “sure thing”
)

dβ dσ

=
∫ ∞

0

∫ ∞

−∞
p (σ| I) p

(
β| β̂, “sure thing”

)
p (y| σ, X, β, M) dβ dσ (41)

∝
1

‖y− ŷ‖N ,

where the “∝” symbol is used to absorb the factor A Γ(N/2) /
(

2πN/2
)

.
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Since an increase in the number of predictors m tends to decrease the length of the error vector
‖y− ŷ‖, with a limit length of zero as the number of predictors m tends to the sample size N:

‖y− ŷ‖ → 0, as m→ N, (42)

we have that, (41) and (42),

p
(

y|X, β̂, “sure thing”
)
→ ∞, as m→ N. (43)

So, the gross knowledgeableness of the “sure thing” prior leads to evidences that are extremely liberal in
that they will tend to choose regression models which have the largest number of regression coefficients.

In what follows we will derive a suite of priors on the continuum of informativeness that are more
informed than the improper Jeffreys prior for location parameters (32) and less knowledgeable than the
“sure thing” prior (39). It will be shown that the corresponding evidences, as a consequence, will be
less conservative than the evidence (34) in its limit of B → ∞, and less liberal than the maximum
likelihood evidence (41).

7. A Proper Ignorance Prior

We now proceed to construct a more informed, proper (i.e., non-zero) inverse normalizing
“constant” C for the prior (10). By way of (7) and (14), we have for a N ×m predictor matrix X of rank
m that

β =
(

XTX
)−1

XT (y− e) =
(

XTX
)−1

XTz, (44)

where
z = y− e, (45)

and e ∼ MN
(
0, σ2I

)
, (8). Closer inspection of (44) shows us that the parameter space of β is

constrained by the difference vector z.
For the special case where the predictor matrix X is an N × 1 vector x we have that

β =
xTz
xTx

=
‖x‖ ‖z‖
‖x‖2 cos φ, (46)

where φ is the angle between the predictor vector x and the difference vector z. Given that
−1 ≤ cos φ ≤ 1, we may by way of (46) put definite bounds on β:

− max ‖z‖
‖x‖ ≤ β ≤ max ‖z‖

‖x‖ . (47)

So, if we assign a uniform distribution to the regression coefficient β, then this uniform distribution is
defined on a line-piece of length 2 max ‖z‖ / ‖x‖. It follows that for the case of just the one regression
coefficient, the prior (10) is

p ( β | x, max ‖z‖ , I) =
‖x‖

2 max ‖z‖ (48)

where (48) is understood to be defined on the interval (47) which is centered at the origin.
In order to generalize (48) to the general multivariate case, we first must generalize (47) to its

multivariate case. This may be done as follows [4]. Let X be a N ×m predictor matrix consisting of m
independent vectors xj. The vectors xj, because of their independence, then will span a m-dimensional
subspace Sm. It follows, trivially, that we may decompose z into a part that lies inside of this subspace
and a part that lies outside, say,

z = ẑ + n, (49)
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where ẑ is the part of z that is projected on Sm and n is the part of z that is orthogonal to Sm.
The orthogonality of n to Sm implies that

xT
j n = 0, (50)

for j = 1, . . . , m, whereas the fact that ẑ is a projection on Sm implies that

ẑ =
m

∑
j=1

xj β j, (51)

where, by construction, (49), (50), and the assumed independence of the xj,

β j =
xT

j z

xT
j xj

=
xT

j (ẑ + n)

xT
j xj

=
xT

j ẑ

xT
j xj

=
‖ẑ‖∥∥xj
∥∥ cos φj. (52)

Now, because of the independence of the xj we have that

xT
i xj = 0, (53)

for i 6= j. So, if we take the norm of (51) we find

‖ẑ‖2 =

∥∥∥∥∥ m

∑
j=1

xj β j

∥∥∥∥∥
2

= ‖ẑ‖2
m

∑
j=1

cos2 φj. (54)

It follows from (54) that the angles φj in (52) must obey the constraint

m

∑
j=1

cos2 φj = 1. (55)

Combining (52) and (55), we see that the regression coefficients β j must lie on the surface of an
m-variate ellipsoid centered at the origin and with axes which have respective lengths of

rj =
‖ẑ‖∥∥xj
∥∥ . (56)

Since
‖ẑ‖ ≤ ‖z‖ ≤ max ‖z‖ , (57)

the axes (56) may be maximized through our prior knowledge of the maximal length of of the outcome
variable z:

max rj =
max ‖z‖∥∥xj

∥∥ . (58)

It follows that the regression coefficients β j are constrained to lie in the m-variate ellipsoid that is
centered at the origin and has axes of length (58). If we substitute (58) into the identity for the volume
of an m-variate ellipsoid

V =
πm/2

Γ [(m + 2)/2]

m

∏
j=1

rj, (59)

we find that the parameter space of β has a maximal prior volume of

V =
πm/2

Γ [(m + 2)/2]
(max ‖z‖)m

∏m
j=1
∥∥xj
∥∥ . (60)
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Now, let X ≡ [x1 · · · xm]. Then for orthogonal predictors xj the product of the norms is equivalent
to the square root of the determinant of XTX, that is,

m

∏
j=1

∥∥xj
∥∥ =

∣∣∣XTX
∣∣∣1/2

, (61)

which is also the volume of the parallelepiped defined by the vectors xj. If the predictor matrix X is
non-orthogonal, then we may use a Gram–Schmidt process to transform X to the orthogonal matrix X̃,
say, where, because of invariance of the volume of a parallelepiped under orthogonalization,

∣∣∣X̃TX̃
∣∣∣1/2

=
∣∣∣XTX

∣∣∣1/2
. (62)

So, by way of (60), (61), and (62), it follows that (47) generalizes to the statement that for general
(i.e., non-orthogonal) N ×m predictor matrices X the regression coefficient vectors β are constrained
to lie in an m-dimensional ellipsoid which is centered on the origin and has a volume of

V =
πm/2

Γ [(m + 2) /2]
(max ‖z‖)m

|XTX|1/2 . (63)

And the inverse of this volume gives us the corresponding multivariate generalization of the uniform
prior (48):

p (β |X, max ‖z‖ , I) =
Γ [(m + 2) /2]

πm/2

∣∣XTX
∣∣1/2

(max ‖z‖)m , (64)

where (64) is understood to be defined on some ellipsoid having volume (63) and a centroid located at
the origin.

Because of the triangle inequality [10], we have that

‖y− e‖ ≤ ‖y‖+ ‖e‖ . (65)

From (45) and (65), it follows trivially that

max ‖z‖ ≤ max ‖y‖+ max ‖e‖ . (66)

As to the first term in the right-hand of (66), let max |y| be a prior assessment of the maximum absolute
value of the dependent variable y. Then we may assign the following simple bound on the length of
the vector y:

max ‖y‖ =
√

N max |y| . (67)

As to the second term in the right-hand of (66), the error vector e has known multivariate probability
distribution (8). If we rewrite the elements in e as a function of its norm ‖e‖ and the angles
α1, . . . , αN−1 [6]
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e1 = ‖e‖ cos α1 cos α2 cos α3 · · · cos αN−q cos αN−q+1 · · · cos αN−3 cos αN−2 cos αN−1

e2 = ‖e‖ cos α1 cos α2 cos α3 · · · cos αN−q cos αN−q+1 · · · cos αN−3 cos αN−2 sin αN−1

e3 = ‖e‖ cos α1 cos α2 cos α3 · · · cos αN−q cos αN−q+1 · · · cos αN−3 sin αN−2

...

eq = ‖e‖ cos α1 cos α2 cos α3 · · · cos αN−q sin αN−q+1 (68)
...

eN−2 = ‖e‖ cos α1 cos α2 sin α3

eN−1 = ‖e‖ cos α1 sin α2

eN = ‖e‖ sin α1,

where 0 < ‖e‖ < ∞, −π/2 < αi < π/2, for i = 1, 2, . . . , N − 2, and 0 < αN−1 < 2π, and which has as
its Jacobian

J = ‖e‖N−1 cosN−2 α1 cosN−3 α2 · · · cos αN−2, (69)

then it may be checked that the polar transformation (68) gives, as it should,

eTe = e2
1 + e2

2 + · · ·+ e2
N = ‖e‖2 . (70)

So, by way of (69) and (70), we may map (8) from a Cartesian to a polar coordinate system. This gives
the transformed probability distribution

p (‖e‖ , α1, α2, . . . , αN−1| σ) =
‖e‖N−1

(2πσ2)
N/2 exp

(
−‖e‖

2

2σ2

)
cosN−2 α1 cosN−3 α2 · · · cos αN−2. (71)

Using the identities ∫ π/2

π/2
cosN−i−1 αi dαi =

Γ [(N − i) /2]
Γ [(N − i− 1) /2 + 1]

, (72)

for i = 1, . . . , N − 2, and ∫ 2π

0
dαN−1 = 2π, (73)

we may integrate (71) over the N − 1 nuisance variables αi and, so, obtain the univariate probability
distribution of the norm ‖e‖,

p (‖e‖ | σ, I) =
2 ‖e‖N−1

(2σ2)
N/2 Γ (N/2)

exp

(
−‖e‖

2

2σ2

)
, (74)

which has a mean

E (‖e‖ | σ, I) =
√

2 Γ [(N + 1) /2]
Γ (N/2)

σ ≈
√

N − 1 σ (75)

and a standard deviation

std (‖e‖ | σ, I) =

√√√√N −
{√

2 Γ [(N + 1) /2]
Γ (N/2)

}2

σ ≈ σ√
2

. (76)

By way of (75) and (76), we may set a probabilistic bound on max ‖e‖ in (66), that is, we may let
max ‖e‖ be the k-sigma upper bound

max ‖e‖ = U B (‖e‖) = E (‖e‖ | σ, I) + k std (‖e‖ | σ, I) ≈
(√

N − 1 +
k√
2

)
σ. (77)
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In what follows, we will assume sample sizes N > 1 and, consequently, treat the right-hand approximation
in (77) as an equality.

By way of (64), (66), (67), and (77), we then obtain the proper ignorance prior [2]

p (β |X, max |y| , k, σ, I) =
Γ [(m + 2) /2]

∣∣XTX
∣∣1/2

πm/2
[√

N max |y|+
(√

N − 1 + k√
2

)
σ
]m , (78)

where, as in (64), it is understood that (78) is defined on some ellipsoid which has the origin as its
centroid. The proper ignorance prior simplifies to

p (β |X, max |y| , k, σ, I) ≈
(

σ

max |y|+ σ

)m ( 1
N

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 , (79)

for k <<
√

2N, where k is some sigma-level for the upper bound (77).

8. A More Informed Manor’s Prior

If apart from the maximum absolute value max |y| we also have prior knowledge about the
minimum and maximum values of y, then we may rewrite (7) as

min y + max y
2

1 +

(
y− min y + max y

2
1
)
= Xβ + e, (80)

where 1 is a vector of ones and (min y + max y) /2 is the center of the interval [min y, max y]. Let

c =
xT
[

1
2 (min y + max y) 1

]
xTx

and w =

(
y− min y + max y

2
1
)
− e. (81)

Then (47) becomes

c− max ‖w‖
‖x‖ ≤ β ≤ c +

max ‖w‖
‖x‖ . (82)

It follows that for the case of just one regression coefficient, the prior (10) is given as

p ( β | x, max ‖w‖ , I) =
‖x‖

2 max ‖w‖ , (83)

where (83) is understood to be defined on the interval (82) which is centered at c, (81). Let

c =
min y + max y

2

(
XTX

)−1
XT1. (84)

Then, for the case where X is a N × m predictor matrix, (82) generalizes to the statement that β is
constrained to lie in an m-dimensional ellipsoid which has a centroid c and a volume [4]

V =
πm/2

Γ [(m + 2) /2]
(max ‖w‖)m

|XTX|1/2 . (85)

The inverse of this volume gives us the corresponding multivariate generalization of the uniform
prior (83):

p (β |X, max ‖w‖ , I) =
Γ [(m + 2) /2]

πm/2

∣∣XTX
∣∣1/2

(max ‖w‖)m . (86)
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Since (min y + max y) /2 is the center of the interval [min y, max y] which has a range of
(max y−min y), we have that

max
∥∥∥∥y− min y + max y

2
1
∥∥∥∥ =
√

N
max y−min y

2
. (87)

So it follows, (45), (65), (66), (77), (81), and (87), that

max ‖w‖ =
√

N
max y−min y

2
+

(√
N − 1 +

k√
2

)
σ. (88)

Substituting (88) into (86), we obtain the more informed Manor’s prior [2]

p (β |X, min y, max y, k, σ, I) =
Γ [(m + 2) /2]

∣∣XTX
∣∣1/2

πm/2
[√

N max y−min y
2 +

(√
N − 1 + k√

2

)
σ
]m , (89)

where it is understood that (89) is defined on some ellipsoid which has as its centroid c, (84). Manor’s
prior simplifies to

p (β |X, min y, max y, k, σ, I) ≈
(

σ
max y−min y

2 + σ

)m (
1
N

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 , (90)

for k <<
√

2N, where k is some sigma-level for the upper bound (77).

9. An Even More Informed Neeley’s Prior

Alternatively, if we have prior knowledge about the mean ν and the variance ϕ2 of the dependent
variable y, then, based on that information alone, by way of a maximum entropy argument [11], which
also lets us assign (8) to the error vector e in (7), we may assign a normal distribution as an informative
prior to this dependent variable; that is,

y ∼ MN
(

ν1, ϕ2I
)

. (91)

Let
u = y− ν1. (92)

By way of (8), (91), (92), and the fact that the mean and variance of a sum of stochastics are the sum of,
respectively, the means and variances of those stochastics [12], we then have

u ∼ MN
[
0,
(

ϕ2 + σ2
)

I
]

. (93)

Since e and u both have a zero mean vector and a diagonal covariance matrix, (8) and (93), it follows
from (77) that

max ‖u‖ = U B (‖u‖) ≈
(√

N − 1 +
k√
2

) √
ϕ2 + σ2. (94)

In what follows, we will assume sample sizes N > 1 and, consequently, treat the right-hand
approximation in (94) as an equality. Substituting (94) into (86), we obtain the even more informed
Neeley’s prior [2]

p (β |X, ϕ, k, σ, I) =
Γ [(m + 2) /2]

∣∣XTX
∣∣1/2

πm/2
[(√

N − 1 + k√
2

)√
ϕ2 + σ2

]m , (95)
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where it is understood, as in (89), that (95) is defined on some ellipsoid, which, however, now has a
centroid located at

c =
(

XTX
)−1

XT (ν1) . (96)

Neeley’s prior simplifies to

p (β |X, ϕ, k, σ, I) ≈
(

σ√
ϕ2 + σ2

)m (
1
N

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 , (97)

for k <<
√

2N, where k is some sigma-level for the upper bound (77).

10. The Parsimonious Constantineau’s Prior

By way of (7) and (14), we may, in principle, come to the inequality

β =
(

XTX
)−1

XT (y− e) = β̂−
(

XTX
)−1

XTe, (98)

where e ∼ MN
(
0, σ2I

)
, (8). So for the special case of an N × 1 predictor vector x, we have that

β = β̂ +
xTe
xTx

= β̂ + cos φ
‖x‖ ‖e‖
‖x‖2 , (99)

where φ is the angle between the predictor vector x and the error vector e. Given that −1 ≤ cos φ ≤ 1,
we may by way of (77) and (99) put the following bounds on β:

β̂−

(√
N − 1 + k√

2

)
σ

‖x‖ ≤ β ≤ β̂ +

(√
N − 1 + k√

2

)
σ

‖x‖ . (100)

For the case where X is a N×m predictor matrix, (100) generalizes to the statement that β is constrained
to lie in an m-dimensional ellipsoid which is centered on β̂ and has a volume of

V =
πm/2

Γ [(m + 2) /2]

[(√
N − 1 + k√

2

)
σ
]m

|XTX|1/2 . (101)

The inverse of this volume gives us the parsimonious Constantineau’s prior [2]

p (β |X, k, σ, I, S) =
Γ [(m + 2) /2]

∣∣XTX
∣∣1/2

πm/2
[(√

N − 1 + k√
2

)
σ
]m , (102)

where S is the stipulation
S ≡ “centroid prior located at β̂.” (103)

This prior simplifies to

p (β |X, k, σ, I, S) ≈
(

1
N

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 , (104)

for k <<
√

2N, where k is some sigma-level for the upper bound (77).
Constantineau’s prior (102) is the most parsimonious of the proposed priors, as it has the

smallest k-sigma parameter space volume V. But it will materialize later on that there is an even
more parsimonious “stipulation prior” already out there, be it only by implication.
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11. The Coverage of the Proposed Priors

In order to demonstrate that (16) tends to hold as an equality for the proposed proper uniform
priors, we only need to show that (16) does so for Constantineau’s prior (102), as this prior is the most
parsimonious of the proposed priors. That is, we will need to show that the second right-hand term
of (15), for all intents and purposes, evaluates to 1 when integrated over Dβ, the domain implied
by (101): ∫

Dβ

∣∣XTX
∣∣1/2

(2πσ2)
m/2 exp

[
− 1

2σ2

(
β− β̂

)T
XTX

(
β− β̂

)]
dβ→ 1. (105)

Let XK = X̃ be a transformation of the predictor matrix X such that the columns in X̃ are orthogonal,
or, equivalently, X̃TX̃ is diagonal. Then (105) may be evaluated by way of the transformation

β = K (γ− γ̂) + β̂, (106)

which has a Jacobian of |K|. Because of the fact that [6]

|K|
∣∣∣XTX

∣∣∣1/2
=
∣∣∣KT

(
XTX

)
K
∣∣∣1/2

=
∣∣∣X̃TX̃

∣∣∣1/2
(107)

and the orthogonality of X̃ together with (61), we may rewrite the integrand in (105) for the
transformation (106) as

|K|
∣∣XTX

∣∣1/2

(2πσ2)
m/2 exp

[
− 1

2σ2 (γ− γ̂)T X̃TX̃ (γ− γ̂)

]
=

m

∏
j=1

∥∥x̃j
∥∥

√
2πσ2

exp

[
−
∥∥x̃j
∥∥2

2σ2

(
γj − γ̂j

)2
]

. (108)

Also, if we go from X to the orthogonal X̃ in (108), then the prior (102) undergoes (by construction) a
corresponding transformation, (61),

p
(

β | X̃, σ, I, S̃
)
=

Γ [(m + 2) /2]
∣∣X̃TX̃

∣∣1/2

πm/2
[(√

N − 1 + k√
2

)
σ
]m =

Γ [(m + 2) /2]
πm/2

m

∏
j=1

∥∥x̃j
∥∥(√

N − 1 + k√
2

)
σ

, (109)

where k is the sigma-level of the upper bound of the length of the error vector, (77), and S̃ is the
transformed stipulation

S̃ ≡ “centroid prior located at γ̂.” (110)

Because of the orthogonality of the x̃j, the fact that (109) is the inverse of the volume of the prior
accessible parameter space, and the fact that this volume is in the form of an ellipsoid with axes of
length (59)

rj =

(√
N − 1 + k√

2

)
σ∥∥x̃j

∥∥ , (111)

it follows that the rotated parameter space (106) is defined by the ellipsoid

(γ1 − γ̂1)
2

σ2/ ‖x̃1‖2 +
(γ2 − γ̂2)

2

σ2/ ‖x̃2‖2 + · · ·+ (γm − γ̂m)
2

σ2/ ‖x̃m‖2 =

(√
N − 1 +

k√
2

)2
. (112)

The transformation
γj = ηj

σ∥∥x̃j
∥∥ + γ̂j, (113)

for j = 1, 2, . . . , m, has a Jacobian of

J =
m

∏
j=1

σ∥∥x̃j
∥∥ . (114)
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By way of (106), (108), (113), and (114), we find for the integral in (105) that

∫
Dβ

∣∣XTX
∣∣1/2

(2πσ2)
m/2 exp

[
− 1

2σ2

(
β− β̂

)T
XTX

(
β− β̂

)]
dβ =

∫
Dη

1

(2π)m/2 exp
(
−ηTη

2

)
dη, (115)

where the parameter space Dη is defined as a sphere which has a radius
(√

N − 1 + k√
2

)
and is

centered at the origin, (112) and (113):

η2
1 + η2

2 + · · ·+ η2
m =

(√
N − 1 +

k√
2

)2
. (116)

By way of the polar transformation (68) and steps (69) through (73), we find that the right-hand side
of (115) evaluates as

∫ √N−1+ k√
2

0

2 ‖η‖m−1

2m/2 Γ (m/2)
exp

(
−‖η‖

2

2

)
d ‖η‖ = 1−

Γ

[
m
2 ,

(√
N−1+ k√

2

)2

2

]
Γ
(m

2
) , (117)

where Γ (a, b) and Γ (a) are the incomplete and the ordinary (Euler) gamma functions, respectively:

Γ (a, b) =
∫ ∞

b
ta−1 exp (−t) dt and Γ (a) = Γ (a, 0) . (118)

Substituting (117) into (115), we find that requirement (105) translates to the equivalent requirement

1−
Γ

[
m
2 ,

(√
N−1+ k√

2

)2

2

]
Γ
(m

2
) → 1. (119)

And it may be checked (numerically) that this requirement holds for k = 6, (77), even in the (extreme)
limit case where the number of predictors m tends to the sample size N. Moreover, it may be
checked, by setting k = 0, that it is the k/

√
2 term in Constantineau’s prior (102) which ensures that

requirement (119) holds for the limit case where m tends to N.

12. What is the Data?

Before we go on, we now will discuss two questions that need addressing. The first question is
whether or not the predictor matrix X is part of the data. The second question is whether or not the
stipulation (103) makes the proposed parsimonious Constantineau’s prior empirical or not.

In answer to the first question, in Bayesian regression analysis the predictor variables in X are
assumed to be [6]: “fixed non-stochastic variables,” or, alternatively, “random variables distributed
independently of the e, with a pdf not [italics by Zellner himself] involving the parameters β j and
σ.” Stated differently, the likelihood p (y| σ, X, β, M) is a probability of the response vector y, and
not of the predictor matrix X. Following this line of reasoning, the predictor matrix X should not be
considered to be part of the data. Rather, X is part of the prior problem structure, in that for a given
predictor matrix X a corresponding response vector y is obtained in the data gathering phase. So,
where in [4] (i.e., Part I of this research) it was proposed that in order to construct a parsimonious prior
for regression coefficients one needed to assign a minimal value to the determinant of XTX based on
the prior information at hand, a non-trivial task. It was argued in [2] (i.e., Part II) that the predictor
matrix X is not a part of the data and, consequently, may be used for the construction of proper priors.

In answer to the second question, if “we adopt the posture of the scrupulous fair judge who insists
that fairness in comparing models requires that each is delivering the best performance of which it
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is capable, by giving each the best possible prior probability for its parameters” [11], then we may
defend the use of the cheap and cheerful prior (102), with its stipulation (103), as being the prior that
represents some limit of parsimony, which is not influenced by our state of ignorance regarding the
dependent variable y. However, if we “consider it necessary to be cruel realists and judge each model
taking into account the prior information we actually have pertaining to it, that is, we penalize a
model if we do not have the best possible prior information about the dependent variable y, although
that is not really a fault of the model itself” [11], then we will be forced to revert to the more solemn
priors (78), (89), and (95).

13. The Corresponding Evidences

By way of (10), we may substitute (78) into (16), and so obtain the evidence value of the likelihood
model M and prior information I, conditional on σ:

p (y | k, σ, X, max |y| , M, I) ≈ 2m/2 Γ[(m+2)/2][√
N
(

max|y|
σ +1+ k√

2N

)]m
1

(2πσ2)
N/2 exp

[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]

. (120)

If σ is unknown, then, as both a mathematical and a modeling convenience (see discussion of Section 5),
we may assign the improper Jeffreys prior for scaling parameters (18):

p (σ| I) = A
σ

, (121)

where A is some normalizing constant, to the unknown σ in the evidence (120), in order to integrate
with respect to this unknown parameter:

p (y| k, X, M, I) =
∫

p (σ, y| k, X, M, I) dσ =
∫

p (σ| I) p (y| k, σ, X, M, I) dσ, (122)

where, (120) and (121),

p (σ, y| k, X, max |y| , M, I) ≈ 2m/2 Γ[(m+2)/2][√
N
(

max|y|
σ +1+ k√

2N

)]m
A

(2π)N/2σN+1
exp

[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]

. (123)

We may conveniently factorize (123) as,

p (σ, y| k, X, max |y| , M, I) ≈ 2m/2 Γ[(m + 2) /2][√
N
(

max|y|
σ + 1 + k√

2N

)]m
1

‖y− ŷ‖N
A Γ(N/2)

2πN/2

(124)

× 2
Γ(N/2)

(
‖y− ŷ‖2

2

)N/2
1

σN+1 exp
[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]

.

The last term in (124) evaluates to 1 when integrated over σ, as it has the form of an inverted gamma
distribution [6]. Also, the last term in (124) will tend to a Dirac delta distribution as N → ∞, [9]; that is,

2
Γ(N/2)

(
‖y− ŷ‖2

2

)N/2
1

σN+1 exp
[
− 1

2σ2 (y− ŷ)T (y− ŷ)
]
→ δ

(
σ− ‖y− ŷ‖√

N

)
. (125)
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So, by way of (125), the property (40), and the factorization (124), we have that the evidence (122)
evaluates as

p (y| k, X, max |y| , M, I) ∝

 1 + k√
2N√

N max|y|
‖y−ŷ‖ + 1 + k√

2N


m (

2√
2N + k

)m
Γ
(

m + 2
2

)
1

‖y− ŷ‖N , (126)

where k is the upper-bound sigma level of the maximum length of the error vector max ‖e‖, (77). If we
assume that k <<

√
2N, then the evidence (126) simplifies to

p (y| k, X, max |y| , M, I) ∝

(√
N max |y|
‖y− ŷ‖ + 1

)−m (
2
N

)m/2
Γ
(

m + 2
2

)
1

‖y− ŷ‖N . (127)

Likewise, if we substitute (89), (95), and (102) into (16), integrate over σ, and assume k <<
√

2N,
we obtain the respective approximate evidence values:

p (y| k, X, min y, max y, M, I) ∝

(√
N max y−min y

2
‖y− ŷ‖ + 1

)−m (
2
N

)m/2
Γ
(

m + 2
2

)
1

‖y− ŷ‖N , (128)

and

p (y| k, X, ϕ, M, I) ∝

(
Nϕ2

‖y− ŷ‖2 + 1

)−m/2 (
2
N

)m/2
Γ
(

m + 2
2

)
1

‖y− ŷ‖N , (129)

and

p (y| k, X, M, I, S) ∝
(

2
N

)m
Γ
(

m + 2
2

)
1

‖y− ŷ‖N , (130)

where the “∝” symbol is used to absorb the common factors A Γ(N/2) /
(

2πN/2
)

, which are shared
by all the competing regression models and which cancel out as the posterior probabilities of these
models are computed.

The above evidences can be deconstructed into a goodness of fit factor, which is also the implied
evidence (41) of the “sure thing” prior (39):

Goodness of Fit =
1

‖y− ŷ‖N , (131)

and an Occam factor which penalizes the shrinkage of the posterior accessible parameter space of β

relative to the prior accessible space. Now, all Occam factors are a monotonic decreasing function in the
number of predictors m. But only the Occam factors of the “cruelly realistic” evidences (127)–(129) have
terms which are dependent upon our state of prior knowledge regarding the dependent variable y.

If in the construction of the priors (79), (90), or (97) we make prior value assignments that
grossly overestimate the maximum absolute value, range, and standard deviation, respectively, of the
dependent variable y, then the Occam factors in the corresponding evidences, (127)–(129), stand
ready to punish us for making consequent prior parameter space assignments that are too voluminous.
Whereas, if we make prior value assignments that grossly underestimate these aspects of the dependent
variable y, then the Occam factors of the cruelly realistic evidences (127)–(129) will tend to the Occam
factor of the “scrupulously fair” evidence (130), as the cruelly realistic evidences, as a consequence,
tend to the scrupulously fair evidence.
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For prior value assignments that approximate the underlying ‘true’ values of the maximum
absolute value, range, and standard deviation, respectively, of the dependent variable y, the Occam
factors of the evidences (127)–(129) tend to the inequality:

Occam Factor ≤ 2−m/2
(

2
N

)m
Γ
(

m + 2
2

)
, (132)

seeing that for accurate prior value assignments we have that, (125),

√
N max |y|
‖y− ŷ‖ ≥

√
N (max y−min y) /2

‖y− ŷ‖ >

√
N ϕ

‖y− ŷ‖ ≥
√

N σ

‖y− ŷ‖ ≈ 1, (133)

where ϕ is the prior standard deviation of y which is estimated by the root mean square error of a
simple intercept-only regression model and σ is the prior model error which is estimated by the root
mean square error of the full regression model.

Note that equality will hold in (132) only for the evidence (129) of an intercept-only regression
model in combination with an accurate prior value assignment for ϕ, because only then do we have
that ϕ is approximated by ‖y− ŷ‖ /

√
N.

14. Connecting the Derived Evidences with the BIC and the AIC

In order to get our bearings for the proposed priors and their consequent evidences, we will
connect the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) to
these evidences.

The BIC is given as [13]
BIC = m log N + 2N log ‖y− ŷ‖ , (134)

where, given any two estimated models, the model with the lower value of BIC is the one to be
preferred. The BIC has an implied evidence of

p (y|X, BIC, S) ∝ exp
(
−1

2
BIC

)
=

(
1
N

)m/2 1

‖y− ŷ‖N , (135)

where S is the stipulation (103)

S ≡ “centroid prior located at β̂.”

and where we assume that the factor A Γ(N/2) /
(

2πN/2
)

has been absorbed in the proportionality

sign. For k <<
√

2N, the BIC evidence (135) differs from the Constantineau’s evidence (130) by an
approximate factor

p (y| k, X, M, I, S)
p (y|X, BIC, S)

≈ 2m/2 Γ
(

m + 2
2

)
. (136)

Let cBIC be the factor by which the lengths of the axes of the parameter space of the implied BIC prior
differs from the lengths of the axes of the parameter space of Constantineau’s prior (102). Then we
have that

p (y|X, BIC, S) =
1

cm
BIC

p (y| k, X, M, I, S) , (137)

as the lengths of the prior ellipsoid parameter spaces factor inversely into their corresponding
evidences. Combining (136) and (137), and making use of the Stirling approximation

log Γ
(

m + 2
2

)
=

m
2

log
m
2
− m

2
+ O

(√
m
)

, (138)
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we find that the axes of the implied BIC prior tend to be longer by a factor

cBIC ≈
[

2m/2 Γ
(

m + 2
2

)]1/m
≈
(m

e1

)1/2
. (139)

than the axes of Constantineau’s prior. It follows that the implied BIC prior is approximately given as,
(104) and (139),

p (β |X, σ, BIC, S) ≈
(

e1

m

)m/2 ( 1
N

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 . (140)

And it may be checked that the requirement (105) holds for this implied prior, as we have that the
equivalent requirement (119),

1−
Γ
(

m
2 , e−1mN

2

)
Γ
(m

2
) = 1, (141)

holds for N ≥ m ≥ 3, where it is understood that in a regression analysis the number of parameters m
may never exceed the sample size N.

The AIC is given as [13]
AIC = 2m + 2N log ‖y− ŷ‖ , (142)

where, given any two estimated models, the model with the lower value of AIC is the one to be
preferred. The AIC has an implied evidence of

p (y|X, AIC, S) ∝ exp
(
−1

2
AIC

)
= e−m 1

‖y− ŷ‖N , (143)

where S is the stipulation (103). For k <<
√

2N, the AIC evidence (143) differs from Constantineau’s
evidence (130) by an approximate factor

p (y|X, M, I, S)
p (y|X, AIC, S)

≈ em
(

2
N

)m/2
Γ
(

m + 2
2

)
. (144)

Let cAIC be the factor by which the lengths of the axes of the parameter space of the implied BIC prior
differs from the lengths of the axes of the parameter space of Constantineau’s prior (102). Then we
have that, (137),

p (y|X, AIC, S) =
1

cm
AIC

p (y|X, M, I, S) . (145)

Combining (144) and (145), and making use of the Stirling approximation (138), we find that the axes
of the implied AIC prior tend to be shorter by a factor

cAIC ≈
[

em
(

2
N

)m/2
Γ
(

m + 2
2

)]1/m

≈
(

e1m
N

)1/2

(146)

than the axes of Constantineau’s prior. It follows that the implied AIC prior is approximately given as,
(104) and (146),

p (β |X, σ, AIC, S) ≈
(

1
e1m

)m/2
Γ
(

m + 2
2

) ∣∣XTX
∣∣1/2

(π σ2)
m/2 . (147)

Now, if we look at the coverage of the AIC prior (147), then we find that, (119),

1−
Γ
[

m
2 , e1m

2

]
Γ
(m

2
) = 1, (148)
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even as m→ 1. Moreover, it would seem that the second argument of the incomplete gamma function
in (148) is the threshold level below which, for a given first argument of m/2, the requirement (147) no
longer holds for general m, as we have for m→ ∞ that, on the one hand,

1−
Γ
[m

2 , m
2
]

Γ
(m

2
) → 0.5 (149)

and, on the other hand,

1−
Γ
(

m
2 , e1m

2

)
Γ
(m

2
) → 1. (150)

Stated differently, it would seem that it is the implied AIC prior (147) that is optimally parsimonious,
rather than Constantineau’s prior (102), as this AIC prior may very well be the uniform proper prior
which has the smallest possible parameter space for which requirement (105) will always hold.

We summarize, of the three “stipulation priors”, (102), (140), and (147), the BIC prior is the most
conservative in that it has an evidence that penalizes the severest for the number of parameters m,
followed by Constantineau’s prior, which, though parsimonious, is not the optimally parsimonious
prior, as was initially thought in part II of this research [2]. This honor may very well go to the AIC
prior, should it turn out that the value of e1m/2 in the second argument of (148) is indeed the exact
threshold point above which (119) will always hold.

15. The Corresponding Regression Model

If we combine the prior (18) of the unknown σ and the respective priors of the regression
coefficients β, (78), (89), (95), (102), (140), and (147), with the likelihood model (9), and integrate
with respect to the unknown σ, we obtain the posterior of the unknown βs, (21) through (28):

p (β| y, X, M, I) =
Γ[(N + m) /2]

Γ[(N) /2] πm/2

∣∣∣ 1
N s2 XTX

∣∣∣1/2

[
1 +

(
β− β̂

)T ( 1
N s2 XTX

) (
β− β̂

)](N+m)/2
, (151)

where
s2 =

1
N
‖y− ŷ‖2 . (152)

Stated differently, as the normalizing constant C of (10) in the priors (78), (89), (95), (102), (140),
and (147), is not so much a constant as it is a function of σ:

C (σ) ∝
1

σm , (153)

we have that the degrees of freedom of the multivariate Student-t distribution (151) and, consequently,
the sample error variance (152), are always N, irrespective of the number of predictors m, hence the
“seemingly” interjection following (29).

The posterior (151) has a mean of β̂ =
(
XTX

)−1 XTy, (14), a covariance matrix of
(
XTX/s2)−1,

(152), and a corresponding predictive probability distribution for ŷ, given a vector m× 1 vector of
predictor values x, [6]:

p ( ŷ| x, y, X, M, I) =
Γ[(N + 1) /2]
Γ(N/2)

√
π

√
h

N s2[
1 + h

N s2

(
ŷ− xT β̂

)2
](N+1)/2

, (154)
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where
h = 1− xT

(
XTX + xxT

)−1
x, (155)

which is in the univariate Student-t form and has expected value, (14), and standard deviation, (152),

E(ŷ) = xT β̂ and std(ŷ) = s
√

N
N − 2

(
1 + xT (XTX)

−1 x
)

. (156)

16. Discussion

This research into proper uniform priors was inspired by our research into spline models [5,14].
Spline models may have hundreds of regression coefficients. So, in using these models in an actual
data-analysis, one is forced to think about the most suitable bounds of the proper non-informative
priors of the unknown regression parameters. Not because this will give us better parameter estimates,
but simply because taking a proper prior with overly large bounds will severely punish the larger
regression models.

Grappling with the problem of defining a parsimonious proper prior for regression coefficients,
it was quickly realized that the proposed priors should include the square root of

∣∣XTX
∣∣, so that

this term could cancel out in the evidence derivations, since this term is not invariant for otherwise
equivalent B- and C-spline regression analysis formulations (in which pairs of triangles in the B-spline
analysis were forced to connect with continuity orders equal to the polynomial orders in order to
merge these paired triangles into squares.) Moreover, it was found that dropping the square root of∣∣XTX

∣∣ in an ad-hoc fashion from the regression analysis evidences proposed in [6,7] gives satisfactory
results, in terms of (spline) regression model selections that commit neither gross under- nor gross
over-fitting. So, the first impetus of this research was the desire to find a principled argument by
which we would be allowed to drop the square root of

∣∣XTX
∣∣ from the evidence, a term which was

problematic in that it is non-invariant under certain transformations of the predictor variables and
which seemed to be not that essential for a successful model selection.

Apart from the need to include the square root of
∣∣XTX

∣∣ in the proper priors, or, equivalently,
the need to drop this term from the evidences, it was also realized that regression coefficients are
bounded by certain aspects of the predictor matrix X and the dependent variable vector y. This second
realization led to the finding that the prior accessible space of regression coefficients is ellipsoid in
form, which then provided us in the first part of this research [4] with the sought for rational of the
inclusion of the square root of

∣∣XTX
∣∣ in the proper priors.

Now, in the first part of this research it was implicitly assumed that the predictor matrix X is part
of the data, which forced us to make a prior estimate of the (scalar) value of the square root of

∣∣XTX
∣∣.

This estimated value then would be weighted by the actual observed value of the square root of
∣∣XTX

∣∣.
But as this prior estimation is a non-trivial task [4], we were forced to think on how to justify the use of
the actual observed values of the square root of

∣∣XTX
∣∣, rather than the prior estimates of these values.

This then led us to the second part of this research [2], in which it was observed that X may very well
in practicality be obtained during the data-gathering phase, but that X formally is not part of the data,
as it admits no likelihood function in ordinary regression analysis. Also, in the second part of this
research there was presented a suite of proper uniform priors for the regression coefficients proper β,
rather than, as was realized in hindsight, a single proper uniform prior for the estimated regression
coefficients β̂ given in [4].

It was found in the second part of this research that if the actual observed value of the square root
of
∣∣XTX

∣∣ is used in the construction of the proper prior for regression coefficients, then the user only
needs to assign prior values to either the maximum absolute value, or the minimum and maximum, or
the standard deviation of the dependent variable y, in order to construct his cruelly realistic priors.
Alternatively, if the user is willing to accept empirical overtones in his prior, by way of the stipulation
that the proper uniform prior is to be centered at the to be estimated regression coefficients β̂, the need
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for prior value assignments to the characteristics of the dependent variable y may be circumvented, as
we construct Constantineau’s scrupulously fair stipulation prior.

In the third part of this research it has now been checked analytically that the accessible parameter
space of the in [2] proposed priors cover the true values of β with a probability that tends to one. It has
also been found that the implied AIC prior is a viable stipulation prior, as its accessible parameter
space covers the true values of β with a probability one. Moreover, it may very well be that the
AIC stipulation prior is optimally parsimonious as it may represent the inverse of the smallest prior
volume which covers the true value of β with a probability one, when centered at β̂. It follows that
Constantineau’s stipulation prior takes the middle position in terms of conservativeness, as the implied
BIC stipulation prior is more conservative in terms of the penalizing for the number of parameters m,
whereas the implied AIC stipulation prior is more liberal.

Also, there are given, in Appendix A below, two Monte Carlo studies on the performance of
the discussed priors, in terms of their implied evidences, in C-spline regression model selection
problems. It is found in these studies that, depending on the accuracy of the prior assessments of the
characteristics of the dependent variable y, the priors that were proposed in the second part of this
research fill in the space between the BIC and AIC on a continuum of conservativeness, in terms of the
number of parameters chosen.
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Appendix A. Two Monte Carlo Studies

We now will use the proposed evidences (127)–(130), together with the implied BIC and AIC
evidences, (135) and (143), respectively, and the “sure thing” evidence (41), for two Monte Carlo
studies which involve two-dimensional C-spline regression models. But before we do so, we first will
give a short introduction to spline models.

In ordinary polynomial regression we have that the more non-linear the target function f (x, y)
is, the higher the order of the polynomial basis d needs to be, in order to adequately capture that
non-linearity [15]:

f (x, y) =
d

∑
i=0

d

∑
j=0

β̂ijxiyj + e, (A1)

where e ∼ N
(
0, σ2).

The polynomial model (A1) has m = (d + 1)2 free parameters. There is a limit, however, on the
order d that can be used in a polynomial regression analysis, as the solution will tend to degenerate
from some polynomial order dcrit. onward, as the inverse of B̃T

P B̃P, where B̃P is the N ×m polynomial
predictor matrix, becomes ever more ill-conditioned with increasing polynomial order d. This limit on
the polynomial order d translates directly to a limit on the number of parameters m at our disposal for
capturing the non-linearity in the target function.

One way to circumvent the problem of the bounded number of free parameters m is to use a spline
model. In spline models one partitions the original domain in sub-domains and on these sub-domains
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piecewise polynomials of order d like, for example, (A1) are fitted under the constraint that they
should connect with rth order continuity on their sub-domain boundaries. The power of spline models
lies in the fact that even the most non-linear of functions f (x, y) will tend to become linear on its
sub-domains as the size of the sub-domains tends to zero. In B-spline models the sub-domains are
taken to be triangles/tetrahedra [14,16], whereas in C-spline models the sub-domains are taken to be
squares/cubes [5]; see Appendix B for a discussion of C-splines.

Since in a spline regression analysis piecewise polynomials are fitted to each of the sub-domains
of the given partition, we have that splines models, like neural networks [17], allow for highly flexible
models with large m. This is why, whenever there is the potential for measurement errors in the data,
Bayesian model selection is needed to protect against the problem of over-fitting.

In closing, note that the results of the following Monte Carlo studies are presented in terms of
evidences, rather than in terms of the priors from which they were derived. This is because the choice
for a particular proper uniform prior in regression analysis problems translates directly to a choice for
a particular evidence that is to be used in the model selection phase, (5) or (6).

Appendix A.1. Monte Carlo Study 1

In the first Monte Carlo study we sample from the target function

f (x, y) = sin
[
π
(

x2 + 2y2
)]

, for 0 ≤ x, y ≤ 1, (A2)

which is shown in Figure A1. The sampling in this first study is done with sample sizes N = 5000 and
N = 10,000, and with Gaussian noise levels of σn = 0, 1/2, 1, and 2. The evidences must choose for
each of these conditions amongst 42 models with 4 ≤ m ≤ 484 parameters.

Figure A1. Target function (A2).

In Figure A2 some representative examples of large size data sets are shown for the different noise
levels σn.

For N = 5000 it is found, Table A1, that the Ignorance, Manor, and BIC evidences are the most
conservative of all the viable evidences in terms of the number of parameters m of the respective spline
models. The Neeley and Constantineau evidences are slightly less conservative, as they choose for
σn = 2 a model that is one order less conservative in terms of the number of parameters m, relatively
to the Ignorance, Manor, and BIC evidences. The AIC evidence takes the high ground in that it is
consistently less conservative in terms of the number of parameters m, relatively to the Ignorance,
Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure thing” evidence just chooses the
largest model available, thus, consistently (grossly) over-fitting the data. Also, it may be noted that
in the absence of noise (i.e., σn = 0) all the evidences are in agreement in taking the model with the
largest possible number of parameters; i.e., the model with a 7-by-7 partitioning, a polynomial order of
d = 3, and a continuity order of r = 0.
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In Figures A3–A6, the fitted C-spline models are given per evidence (group), starting with the
“sure thing” evidence and in descending order of liberalness in terms of the number of parameters m.
In Figure A6 there is a possible instance of under-fitting for a noise level of σn = 2 (i.e., fourth column)
by the model which is picked by the Ignorance, Manor, and BIC evidences.

Table A1. C-spline models (geometry g, polynomial order d, continuity order r) and number of
parameters m that were chosen by the discussed evidences, for N = 5000 and under Gaussian noise
levels σn = 0, 1/2, 1, and 2.

σn = 0 σn = 1/2 σn = 1 σn = 2

Evidences Model 1 m Model 2 m Model 3 m Model 4 m

“Sure thing” (41) (7, 3, 0) 484 (7, 3, 0) 484 (7, 3, 0) 484 (7, 3, 0) 484
AIC (143) (7, 3, 0) 484 (5, 2, 1) 49 (2, 3, 1) 36 (2, 3, 1) 36
Neeley (127), Constantineau (130) (7, 3, 0) 484 (2, 3, 1) 36 (2, 3, 2) 25 (3, 2, 1) 25
Ignorance (127), Manor (127), BIC (135) (7, 3, 0) 484 (2, 3, 1) 36 (2, 3, 2) 25 (3, 1, 0) 16

1 Data estimates: max |y| = 1.00, min y = −1.00, max y = 1.00, and ϕ = 0.67; 2 Data estimates: max |y| = 2.71,
min y = −2.71, max y = 2.38, and ϕ = 0.85; 3 Data estimates: max |y| = 4.32, min y = −4.32, max y = 4.13, and
ϕ = 1.21; 4 Data estimates: max |y| = 7.28, min y = −6.72, max y = 7.28, and ϕ = 2.11.

In order to give the reader a more concrete sense of the discussed evidences, we give for the
Gaussian noise level of σ = 1 the full output of the Bayesian model selection analysis in Table A2.
It may be noted in these tables that the highest “sure thing” evidence must necessarily correspond
with the lowest sample error standard deviation s, or, equivalently, the smallest sample error variance
s2, since we have that this sample error variance, (152),

s2 =
1
N
‖y− ŷ‖2 =

1
N

N

∑
i=1

(yi − ŷi)
2 (A3)

is an inverse root of the “sure thing” evidence (41). Likewise, let the sample variance be given as

s2
0 =

1
N
‖y− 1 ȳ‖2 =

1
N

N

∑
i=1

(yi − y)2 , (A4)

where y is the sample mean

y =
1
N

(
1Ty

)
=

1
N

N

∑
i=1

yi, (A5)

then we have that the highest “sure thing” evidence must necessarily correspond with the highest
R-square value, since we have that,

R2 = 1− s2

s2
0

. (A6)

Stated differently, model selection based on R-square values is equivalent to model selection based on
“sure thing” evidences (41).



Entropy 2017, 19, 250 26 of 56

Figure A2. Noisy data sampled from target function (A2). Columns correspond with noise levels
σn = 0, 1/2, 1, and 2, respectively. Rows correspond with noisy data, noisy data minus true target
value, and cross sections of the target function and noisy data.
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Figure A3. Sample size N = 5000 and C-spline models of target function (A2) are picked by the “sure
thing” evidence (41) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1,
and 2, respectively. Rows correspond with spline model, residual of spline model relative to target
function, and cross sections of spline model (blue) and target function (black).
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Figure A4. Sample size N = 5000 and C-spline models of target function (A2) are picked by the AIC
evidence (143) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1, and 2,
respectively. Rows correspond with spline model, residual of spline model relative to target function,
and cross sections of spline model (blue) and target function (black).
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Figure A5. Sample size N = 5000 and C-spline models of target function (A2) are picked by the Neeley
and the Constantineau evidences, (129) and (130), for different noise levels. Columns correspond with
noise levels σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model, residual of spline
model relative to target function, and cross sections of spline model (blue) and target function (black).
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Figure A6. Sample size N = 5000 and C-spline models of target function (A2) are picked by the
Ignorance, Manor, and BIC evidences, (135), (127), and (128), for different noise levels. Columns
correspond with noise levels σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model,
residual of spline model relative to target function, and cross sections of spline model (blue) and target
function (black).
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Table A2. Output model selection analysis for data sampled from target function (A2), sample size N = 5000, and Gaussian error of σe = 1; given are (internally)
ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline
model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

1 −21,383 1 −21,383 1 −21,353 1 −21,341 1 −21,371 13 −21,290 30 −21,265 30 0.99 30 0.32 25 2 3 2
2 −21,385 2 −21,385 2 −21,355 3 −21,344 2 −21,373 17 −21,292 31 −21,267 31 0.99 31 0.32 25 3 2 1
3 −21,403 3 −21,403 3 −21,359 2 −21,343 3 −21,392 1 −21,275 25 −21,239 25 0.99 25 0.33 36 2 3 1
4 −21,408 4 −21,407 4 −21,364 4 −21,348 4 −21,396 2 −21,279 27 −21,243 27 0.99 27 0.33 36 4 2 1
5 −21,410 5 −21,409 5 −21,366 5 −21,350 5 −21,398 4 −21,281 28 −21,245 28 0.99 28 0.33 36 3 3 2
6 −21,411 6 −21,411 7 −21,381 9 −21,369 6 −21,399 23 −21,318 32 −21,293 32 1.00 32 0.32 25 2 2 0
7 −21,412 7 −21,411 6 −21,368 6 −21,351 7 −21,400 6 −21,283 29 −21,247 29 0.99 29 0.33 36 5 1 0
8 −21,415 8 −21,415 8 −21,385 12 −21,373 8 −21,403 24 −21,322 33 −21,297 33 1.00 33 0.32 25 4 1 0
9 −21,449 9 −21,448 9 −21,389 7 −21,366 9 −21,440 3 −21,280 21 −21,231 21 0.99 21 0.33 49 2 3 0
10 −21,451 10 −21,450 10 −21,391 8 −21,369 10 −21,442 5 −21,282 22 −21,233 22 0.99 22 0.33 49 4 3 2
11 −21,452 11 −21,452 11 −21,393 10 −21,370 11 −21,443 8 −21,284 23 −21,235 23 0.99 23 0.33 49 5 2 1
12 −21,453 12 −21,452 12 −21,393 11 −21,370 12 −21,444 9 −21,284 24 −21,235 24 0.99 24 0.33 49 3 2 0
13 −21,459 13 −21,458 13 −21,399 13 −21,377 13 −21,450 16 −21,290 26 −21,241 26 0.99 26 0.33 49 6 1 0
14 −21,496 14 −21,495 14 −21,417 14 −21,388 14 −21,492 7 −21,283 17 −21,219 17 0.99 17 0.34 64 6 2 1
15 −21,498 15 −21,496 15 −21,419 15 −21,390 15 −21,494 10 −21,285 18 −21,221 18 0.99 18 0.34 64 3 3 1
16 −21,502 16 −21,501 16 −21,423 16 −21,394 16 −21,498 11 −21,289 19 −21,225 19 0.99 19 0.34 64 5 3 2
17 −21,502 17 −21,501 17 −21,424 17 −21,394 17 −21,498 12 −21,289 20 −21,225 20 0.99 20 0.34 64 7 1 0
18 −21,508 20 −21,508 23 −21,489 27 −21,482 20 −21,498 34 −21,446 36 −21,430 34 1.03 36 0.28 16 1 3 0
19 −21,508 19 −21,508 22 −21,489 26 −21,482 19 −21,498 33 −21,446 35 -21,430 35 1.03 35 0.28 16 1 3 1
20 −21,508 18 −21,508 21 −21,489 25 −21,482 18 −21,498 32 −21,446 34 −21,430 36 1.03 34 0.28 16 1 3 2
21 −21,509 21 −21,508 24 −21,489 28 −21,482 21 −21,498 35 −21,446 37 −21,430 37 1.03 37 0.28 16 2 2 1
22 −21,523 22 −21,523 28 −21,504 29 −21,497 22 −21,513 36 −21,461 38 −21,445 38 1.03 38 0.27 16 3 1 0
23 −21,550 23 −21,549 18 −21,451 18 −21,414 23 −21,554 14 −21,290 13 −21,209 13 0.98 13 0.34 81 7 2 1
24 −21,550 24 −21,549 19 −21,451 19 −21,414 24 −21,554 15 −21,290 14 −21,209 14 0.98 14 0.34 81 4 2 0
25 −21,559 25 −21,558 20 −21,460 20 −21,423 25 −21,563 18 −21,299 16 −21,218 16 0.99 16 0.34 81 6 3 2
26 −21,613 26 −21,611 25 −21,491 21 −21,445 26 −21,628 19 −21,302 11 −21,202 11 0.98 11 0.34 100 3 3 0
27 −21,620 27 −21,618 26 −21,497 22 −21,451 27 −21,634 21 −21,308 12 −21,208 12 0.98 12 0.34 100 4 3 1
28 −21,622 28 −21,621 27 −21,500 23 −21,454 28 −21,637 22 −21,311 15 −21,211 15 0.98 15 0.34 100 7 3 2
29 −21,663 29 −21,662 33 −21,652 35 −21,648 29 −21,655 39 −21,626 39 −21,617 39 1.07 39 0.22 9 2 1 0
30 −21,674 30 −21,671 29 −21,525 24 −21,469 30 −21,702 20 −21,308 9 −21,187 9 0.98 9 0.35 121 5 2 0
31 −21,714 32 −21,714 37 −21,704 39 −21,700 32 −21,707 41 −21,678 41 −21,669 40 1.08 41 0.21 9 1 2 0
32 −21,714 31 −21,714 36 −21,704 38 −21,700 31 −21,707 40 −21,678 40 −21,669 41 1.08 40 0.21 9 1 2 1
33 −21,756 33 −21,753 30 −21,580 30 −21,513 33 −21,802 26 −21,333 10 −21,189 10 0.98 10 0.34 144 5 3 1
34 −21,816 34 −21,813 31 −21,609 31 −21,530 34 −21,882 25 −21,332 5 −21,163 5 0.97 5 0.35 169 6 2 0
35 −21,829 35 −21,826 32 −21,622 32 −21,543 35 −21,895 27 −21,344 7 −21,175 7 0.98 7 0.35 169 4 3 0
36 −21,919 36 −21,916 34 −21,679 34 −21,588 36 −22,010 29 −21,372 8 −21,176 8 0.98 8 0.35 196 6 3 1
37 −21,963 37 −21,959 35 −21,686 33 −21,580 38 −22,080 28 −21,347 3 −21,122 3 0.97 3 0.36 225 7 2 0
38 −22,066 38 −22,066 41 −22,061 42 −22,060 37 −22,062 42 −22,049 42 −22,045 42 1.16 42 0.08 4 1 1 0
39 −22,085 39 −22,081 38 −21,771 36 −21,651 39 −22,236 30 −21,402 4 −21,146 4 0.97 4 0.36 256 5 3 0
40 −22,105 40 −22,101 39 −21,792 37 −21,672 40 −22,257 31 −21,423 6 −21,167 6 0.98 6 0.35 256 7 3 1
41 −22,378 41 −22,371 40 −21,934 40 −21,764 41 −22,650 37 −21,473 2 −21,112 2 0.96 2 0.36 361 6 3 0
42 −22,712 42 −22,704 42 −22,117 41 −21,887 42 −23,145 38 −21,567 1 −21,083 1 0.96 1 0.37 484 7 3 0
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For N = 10,000 the same pattern can be discerned as for N = 5000, Table A3. The Ignorance,
Manor, and BIC evidences are the most conservative of all the viable evidences in terms of the number
of parameters m of the respective spline models. The Neeley and Constantineau evidences are slightly
less conservative, as they choose for σn = 1/2 a model that is one order less conservative in terms of
the number of parameters m, relatively to the Ignorance, Manor, and BIC evidences. The AIC evidence
takes the high ground in that it is consistently less conservative in terms of the number of parameters
m, relatively to the Ignorance, Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure
thing” evidence just chooses the largest model available, thus, consistently (grossly) over-fitting the
data. And it may again be noted that in the absence of noise (i.e., σn = 0) all the evidences are in
agreement in taking the model with the largest possible number of parameters.

In Figures A7–A10, the fitted C-spline models are given per evidence (group), starting with the
“sure thing” evidence and in descending order of liberalness in terms of the number of parameters m.
In Figure A8 there is a possible instance of over-fitting for a noise level σn = 1 (i.e., column 3) by the
model which is picked by the AIC evidence. Also, again in order to give the reader a more concrete
sense of the discussed evidences, we give for the Gaussian noise level of σ = 1 the full output of the
Bayesian model selection analysis in Table A4.

Table A3. C-spline models (geometry g, polynomial order d, continuity order r) and number of
parameters m that were chosen by the discussed evidences, for N = 10, 000 and under Gaussian noise
levels σn = 0, 1/2, 1, and 2.

σn = 0 σn = 1/2 σn = 1 σn = 2

Evidences Model 1 m Model 2 m Model 3 m Model 4 m

“Sure thing” (41) (7, 3, 0) 484 (7, 3, 0) 484 (7, 3, 0) 484 (7, 3, 0) 484
AIC (143) (7, 3, 0) 484 (3, 3, 1) 64 (2, 3, 0) 49 (3, 3, 2) 36
Neeley (127), Constantineau (130) (7, 3, 0) 484 (4, 3, 2) 49 (2, 3, 1) 36 (2, 3, 2) 25
Ignorance (127), Manor (127), BIC (135) (7, 3, 0) 484 (3, 3, 2) 36 (2, 3, 1) 36 (2, 3, 2) 25

1 Data estimates: max |y| = 1.00, min y = −1.00, max y = 1.00, and ϕ = 0.67; 2 Data estimates: max |y| = 2.89,
min y = −2.89, max y = 2.65, and ϕ = 0.84; 3 Data estimates: max |y| = 4.33, min y = −4.39, max y = 4.43,
and ϕ = 1.20; 4 Data estimates: max |y| = 10.14, min y = −10.14, max y = 7.76, and ϕ = 2.11.

In closing, note that for both N = 5000 and N = 10, 000 the cruelly realistic evidences (127)–(129),
have been helped by estimating max |y|, min y, max y, and ϕ directly from the observed dependent
variable y. So, if we penalize the computed evidences with a multiplication factor of (2/3)m, in order
to compensate (see Section 5 of [3]) for the non-conservativeness of the data estimates of max |y|, min y,
max y, and ϕ, it is found for N = 10,000 and σn = 1/2 that the Neely evidence will become one order of
magnitude more conservative, as it picks the same model as the Ignorance, Manor, and BIC evidences,
while at the same time we have that for N = 10,000 and σn = 1 the Ignorance and Manor evidences
become one order of magnitude more conservative, thus, leaving the BIC evidence behind, as they
choose the C-spline model (2, 3, 2), which has m = 25 parameters.
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Figure A7. Sample size N = 10,000 and C-spline models of target function (A2) are picked by the “sure
thing” evidence (41) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1,
and 2, respectively. Rows correspond with spline model, residual of spline model relative to target
function, and cross sections of spline model (blue) and target function (black).
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Figure A8. Sample size N = 10,000 and C-spline models of target function (A2) are picked by the AIC
evidence (143) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1, and 2,
respectively. Rows correspond with spline model, residual of spline model relative to target function,
and cross sections of spline model (blue) and target function (black).
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Figure A9. Sample size N = 10,000 and C-spline models of target function (A2) are picked by the Neeley
and the Constantineau evidences, (129) and (130), for different noise levels. Columns correspond with
noise levels σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model, residual of spline
model relative to target function, and cross sections of spline model (blue) and target function (black).
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Figure A10. Sample size N = 10,000 and C-spline models of target function (A2) are picked by the
Ignorance, Manor, and Bayesian Information Criterion (BIC) evidences, (135), (127), and (128), for
different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1, and 2, respectively. Rows
correspond with spline model, residual of spline model relative to target function, and cross sections of
spline model (blue) and target function (black).
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Table A4. Output model selection analysis for data sampled from target function (A2), sample size N = 10,000, and Gaussian error of σe = 1; given are (internally)
ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline
model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

1 −46,177 1 −46,176 1 −46,132 1 −46,115 1 −46,164 4 −46,035 26 −45,999 26 0.99 26 0.32 36 2 3 1
2 −46,179 2 −46,179 4 −46,148 5 −46,137 2 −46,167 21 −46,076 30 −46,051 30 1.00 30 0.31 25 2 3 2
3 −46,181 3 −46,181 5 −46,150 8 −46,138 3 −46,168 22 −46,078 31 −46,053 31 1.00 31 0.31 25 3 2 1
4 −46,182 4 −46,182 2 −46,137 2 −46,121 4 −46,169 10 −46,040 27 −46,004 27 1.00 27 0.32 36 4 2 1
5 −46,186 5 −46,186 3 −46,141 3 −46,125 5 −46,174 12 −46,044 28 −46,008 28 1.00 28 0.32 36 3 3 2
6 −46,203 6 −46,203 6 −46,158 10 −46,142 6 −46,191 16 −46,061 29 −46,025 29 1.00 29 0.31 36 5 1 0
7 −46,220 7 −46,219 7 −46,159 4 −46,137 7 −46,210 1 −46,033 21 −45,984 21 0.99 21 0.32 49 2 3 0
8 −46,220 8 −46,220 8 −46,159 6 −46,137 8 −46,210 2 −46,034 22 −45,985 22 0.99 22 0.32 49 4 3 2
9 −46,221 9 −46,221 9 −46,160 7 −46,138 9 −46,211 3 −46,034 23 −45,985 23 0.99 23 0.32 49 5 2 1
10 −46,223 10 −46,223 10 −46,162 9 −46,140 10 −46,214 5 −46,037 24 −45,988 24 0.99 24 0.32 49 3 2 0
11 −46,226 11 −46,225 11 −46,164 11 −46,142 11 −46,216 8 −46,039 25 −45,990 25 0.99 25 0.32 49 6 1 0
12 −46,237 12 −46,237 16 −46,206 16 −46,195 12 −46,225 27 −46,135 32 −46,110 32 1.01 32 0.30 25 2 2 0
13 −46,239 13 −46,239 17 −46,208 17 −46,197 13 −46,226 28 −46,136 33 −46,111 33 1.01 33 0.30 25 4 1 0
14 −46,274 14 −46,274 12 −46,194 12 −46,165 14 −46,269 6 −46,038 17 −45,974 17 0.99 17 0.32 64 5 3 2
15 −46,274 15 −46,274 13 −46,194 13 −46,165 15 −46,269 7 −46,038 18 −45,974 18 0.99 18 0.32 64 6 2 1
16 −46,275 16 −46,275 14 −46,195 14 −46,166 16 −46,270 9 −46,039 19 −45,975 19 0.99 19 0.32 64 3 3 1
17 −46,279 17 −46,278 15 −46,199 15 −46,170 17 −46,274 11 −46,043 20 −45,979 20 0.99 20 0.32 64 7 1 0
18 −46,335 18 −46,335 18 −46,234 18 −46,197 18 −46,338 13 −46,046 13 −45,965 13 0.99 13 0.32 81 7 2 1
19 −46,337 19 −46,337 19 −46,237 19 −46,200 19 −46,340 14 −46,048 15 −45,967 15 0.99 15 0.32 81 4 2 0
20 −46,340 20 −46,339 20 −46,239 20 −46,202 20 −46,342 15 −46,050 16 −45,969 16 0.99 16 0.32 81 6 3 2
21 −46,409 21 −46,409 21 −46,285 21 −46,239 21 −46,422 17 −46,062 11 −45,962 11 0.99 11 0.32 100 3 3 0
22 −46,410 22 −46,409 22 −46,285 22 −46,240 22 −46,423 18 −46,062 12 −45,962 12 0.99 12 0.32 100 4 3 1
23 −46,413 23 −46,412 23 −46,288 23 −46,243 23 −46,426 19 −46,066 14 −45,966 14 0.99 14 0.32 100 7 3 2
24 −46,479 26 −46,479 30 −46,459 32 −46,452 26 −46,468 36 −46,410 36 −46,394 34 1.03 36 0.26 16 1 3 0
25 −46,479 25 −46,479 29 −46,459 31 −46,452 25 −46,468 35 −46,410 35 −46,394 35 1.03 35 0.26 16 1 3 1
26 −46,479 24 −46,479 28 −46,459 30 −46,452 24 −46,468 34 −46,410 34 −46,394 36 1.03 34 0.26 16 1 3 2
27 −46,479 27 −46,479 24 −46,328 24 −46,274 29 −46,506 20 −46,070 10 −45,949 10 0.99 10 0.32 121 5 2 0
28 −46,482 28 −46,482 31 −46,462 33 −46,456 27 −46,472 37 −46,414 37 −46,398 37 1.04 37 0.26 16 2 2 1
29 −46,500 29 −46,499 32 −46,480 34 −46,473 28 −46,489 38 −46,431 38 −46,415 38 1.04 38 0.26 16 3 1 0
30 −46,566 30 −46,565 25 −46,386 25 −46,321 30 −46,610 23 −46,090 9 −45,946 9 0.99 9 0.32 144 5 3 1
31 −46,636 31 −46,635 26 −46,425 26 −46,348 31 −46,700 24 −46,091 5 −45,922 5 0.99 5 0.33 169 6 2 0
32 −46,647 32 −46,647 27 −46,437 27 −46,360 32 −46,712 25 −46,103 7 −45,934 7 0.99 7 0.33 169 4 3 0
33 −46,756 33 −46,755 33 −46,512 28 −46,423 36 −46,845 29 −46,139 8 −45,943 8 0.99 8 0.32 196 6 3 1
34 −46,758 34 −46,758 37 −46,747 38 −46,744 33 −46,751 39 −46,718 39 −46,709 39 1.07 39 0.21 9 2 1 0
35 −46,817 35 −46,817 34 −46,537 29 −46,434 37 −46,934 26 −46,123 3 −45,898 3 0.98 3 0.33 225 7 2 0
36 −46,846 37 −46,846 40 −46,835 41 −46,831 35 −46,839 41 −46,806 41 −46,797 40 1.08 41 0.20 9 1 2 0
37 −46,846 36 −46,846 39 −46,835 40 −46,831 34 −46,839 40 −46,806 40 −46,797 41 1.08 40 0.20 9 1 2 1
38 −46,939 38 −46,938 35 −46,620 35 −46,503 38 −47,088 30 −46,165 4 −45,909 4 0.99 4 0.33 256 5 3 0
39 −46,955 39 −46,954 36 −46,636 36 −46,520 39 −47,105 31 −46,182 6 −45,926 6 0.99 6 0.33 256 7 3 1
40 −47,261 40 −47,259 38 −46,810 37 −46,644 41 −47,530 32 −46,229 2 −45,868 2 0.98 2 0.33 361 6 3 0
41 −47,521 41 −47,521 42 −47,516 42 −47,515 40 −47,517 42 −47,502 42 −47,498 42 1.16 42 0.08 4 1 1 0
42 −47,648 42 −47,646 41 −47,044 39 −46,821 42 −48,079 33 −46,334 1 −45,850 1 0.98 1 0.34 484 7 3 0
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Appendix A.2. Monte Carlo Study 2

In the second Monte Carlo study we sample from the target function

f (x, y) = sin
[
π
(

x2 + 2y2
)]

, for 0 ≤ x, y ≤ 1.5, (A7)

which is shown in Figure A11. The sampling in this second study is done with sample size N = 15,000,
with Gaussian noise levels of σn = 0, 1/2, 1, and 2, and multiplication factors of 1 and 10, respectively,
for the data estimates of max |y|, min y, max y, and ϕ. The evidences must now choose amongst
78 models with 4 ≤ m ≤ 1600 parameters.

Figure A11. Target function (A7).

In Figure A12 some representative examples of large size data sets are shown for the different
noise levels σn.

For a multiplication factor of 1, or, equivalently, a straightforward data-estimate of the
characteristics of the dependent variable y, it is found, Table A5, that the Ignorance, Manor, Neeley, and
BIC evidences become conservative in the absence of measurement error (i.e., σn = 0), as they choose a
model with m = 625 parameters, rather than the model with the maximum number of parameters
m = 1600 which is preferred by the Constantineau, AIC, and “sure thing” evidences. Stated differently,
the penalizing of an increase of ∆m = 975 parameters by the Occam factors the Ignorance, Manor,
Neeley, and BIC evidences outweighs the gains in goodness of fit of said ∆m = 975 parameters.

Apart from this deviation, we have that the pattern of model choices is roughly the same as
observed in the first Monte Carlo study. The Ignorance, Manor, and BIC evidences are the most
conservative of all the viable evidences in terms of the number of parameters m of the respective spline
models. The Neeley and Constantineau evidences are slightly less conservative, as they choose both
for σn = 1 and σn = 2 a model that is one order less conservative in terms of the number of parameters
m, relatively to the Ignorance, Manor, and BIC evidences. The AIC evidence takes the high ground
in that it is consistently less conservative in terms of the number of parameters m, relatively to the
Ignorance, Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure thing” evidence just
chooses the largest model available, thus, consistently (grossly) over-fitting the data.

In Figures A13–A17, the fitted C-spline models are given per evidence (group), starting with the
“sure thing” evidence and in descending order of liberalness in terms of the number of parameters m.
In Figure A17 there is a possible instance of under-fitting for a noise level σn = 2 (i.e., column 4) by the
model which is picked by the Ignorance, Manor, and BIC evidences.
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Table A5. C-spline models (geometry g, polynomial order d, continuity order r) and number of
parameters m that were chosen by the discussed evidences, for N = 15, 000 under Gaussian noise
levels σn = 0, 1/2, 1, and 2, and a multiplication factor of 1 for the estimates of the characteristics of the
dependent variable y.

σn = 0 σn = 1/2 σn = 1 σn = 2

Evidences Model 1 m Model 2 m Model 3 m Model 4 m

“Sure thing” (41) (13, 3, 0) 1600 (13, 3, 0) 1600 (13, 3, 0) 1600 (13, 3, 0) 1600
AIC (143) (13, 3, 0) 1600 (6, 3, 1) 196 (5, 3, 1) 144 (9, 2, 1) 121
Constantineau (130) (13, 3, 0) 1600 (5, 3, 1) 144 (8, 3, 2) 121 (4, 3, 1) 100
Neeley (127) (8, 3, 0) 625 (5, 3, 1) 144 (8, 3, 2) 121 (4, 3, 1) 100
Ignorance (127), Manor (127),

BIC (135) (8, 3, 0) 625 (5, 3, 1) 144 (4, 3, 1) 100 (3, 3, 1) 64
1 Data estimates times 1: max |y| = 1.00, min y = −1.00, max y = 1.00, and ϕ = 0.70; 2 Data estimates
times 1: max |y| = 2.75, min y = −2.72, max y = 2.75, and ϕ = 0.86; 3 Data estimates times 1: max |y| = 5.01,
min y = −5.01, max y = 4.73, and ϕ = 1.22; 4 Data estimates times 1: max |y| = 8.15, min y = −7.76,
max y = 8.15, and ϕ = 2.12.

It is found, Table A6, that for a multiplication factor of 10 for the data estimates of max |y|, min y,
max y, and ϕ, and a Gaussian noise level of σn = 1/2 the Ignorance and Manor evidences become more
conservative than the BIC. Also, for Gaussian noise levels of σn = 1 and σn = 2 the Neely evidence
becomes just as conservative as the BIC.

In Figures A18 and A19, the fitted C-spline models are given for the Neeley evidence and the
Ignorance and Manor evidences, respectively. In Figure A19 there is a possible instance of slight
under-fitting for a noise level σn = 1/2 (i.e., column 2) by the model which is picked by the Ignorance
and Manor evidences.

Table A6. C-spline models (geometry g, polynomial order d, continuity order r) and number of
parameters m that were chosen by the discussed evidences, for N = 15, 000, under Gaussian noise
levels σn = 0, 1/2, 1, and 2, and a multiplication factor of 10 for the estimates of the characteristics of
the dependent variable y.

σn = 0 σn = 1/2 σn = 1 σn = 2

Evidences Model 1 m Model 2 m Model 3 m Model 4 m

“Sure thing” (41) (13, 3, 0) 1600 (13, 3, 0) 1600 (13, 3, 0) 1600 (13, 3, 0) 1600
AIC (143) (13, 3, 0) 1600 (6, 3, 1) 196 (5, 3, 1) 144 (9, 2, 1) 121
Constantineau (130) (13, 3, 0) 1600 (5, 3, 1) 144 (8, 3, 2) 121 (4, 3, 1) 100
Neeley (127) (8, 3, 0) 625 (5, 3, 1) 144 (4, 3, 1) 100 (3, 3, 1) 64
BIC (135) (8, 3, 0) 625 (5, 3, 1) 144 (4, 3, 1) 100 (3, 3, 1) 64
Ignorance (127), Manor (127) (8, 3, 0) 625 (8, 3, 2) 121 (4, 3, 1) 100 (3, 3, 1) 64
1 Data estimates times 10: max |y| = 10.0, min y = −10.0, max y = 10.0, and ϕ = 7.0; 2 Data estimates
times 10: max |y| = 27.5, min y = −27.2, max y = 27.5, and ϕ = 8.6; 3 Data estimates times 10: max |y| = 50.1,
min y = −50.1, max y = 47.3, and ϕ = 12.2; 4 Data estimates times 10: max |y| = 81.5, min y = −77.6,
max y = 81.5, and ϕ = 21.2.

The full outputs of the Bayesian model selection analyses of Tables A5 and A6 for the Gaussian
noise level of σ = 1 are given in Tables A7–A10, respectively.



Entropy 2017, 19, 250 40 of 56

Figure A12. Noisy data sampled from target function (A2). Columns correspond with noise levels
σn = 0, 1/2, 1, and 2, respectively. Rows correspond with noisy data, noisy data minus true target
value, and cross sections of the target function and noisy data.
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Figure A13. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the “sure
thing” evidence (41) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1,
and 2, respectively. Rows correspond with spline model, residual of spline model relative to target
function, and cross sections of spline model (blue) and target function (black).
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Figure A14. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the AIC
evidence (143) for different noise levels. Columns correspond with noise levels σn = 0, 1/2, 1, and 2,
respectively. Rows correspond with spline model, residual of spline model relative to target function,
and cross sections of spline model (blue) and target function (black).
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Figure A15. Sample size N = 15,000 and C-spline models of target function (A7) are picked by
the Constantineau evidence (130) for different noise levels. Columns correspond with noise levels
σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model, residual of spline model
relative to target function, and cross sections of spline model (blue) and target function (black).



Entropy 2017, 19, 250 44 of 56

Figure A16. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the
Neeley evidence (129) for different noise levels and for a straightforward data estimate of ϕ. Columns
correspond with noise levels σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model,
residual of spline model relative to target function, and cross sections of spline model (blue) and target
function (black).
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Figure A17. Sample size N = 15,000 and C-spline models of target function (A7) are picked by
the Ignorance, Manor, and BIC evidences, (135), (127), and (128), for different noise levels and for
straightforward data estimates of max |y|, min y, and max y. Columns correspond with noise levels
σn = 0, 1/2, 1, and 2, respectively. Rows correspond with spline model, residual of spline model
relative to target function, and cross sections of spline model (blue) and target function (black).
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Table A7. First half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of σe = 1, and
straightforward data estimates of max |y|, min y, max y, and ϕ; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard
deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

1 −72,645 1 −72,642 3 −72,511 5 −72,465 1 −72,649 23 −72,268 44 −72,168 44 1.00 44 0.32 100 4 3 1
2 −72,656 2 −72,653 1 −72,493 1 −72,438 3 −72,671 7 −72,210 39 −72,089 39 1.00 39 0.33 121 8 3 2
3 −72,660 3 −72,657 2 −72,498 2 −72,443 4 −72,675 9 −72,215 41 −72,094 41 1.00 41 0.33 121 9 2 1
4 −72,665 4 −72,663 7 −72,532 9 −72,486 2 −72,670 27 −72,289 45 −72,189 45 1.00 45 0.32 100 7 3 2
5 −72,692 5 −72,689 6 −72,530 6 −72,475 6 −72,708 20 −72,247 42 −72,126 42 1.00 42 0.32 121 5 2 0
6 −72,692 6 −72,690 10 −72,558 13 −72,513 5 −72,696 30 −72,316 46 −72,216 46 1.01 46 0.32 100 8 2 1
7 −72,706 7 −72,703 4 −72,513 3 −72,447 10 −72,736 1 −72,188 33 −72,044 33 1.00 33 0.33 144 5 3 1
8 −72,711 8 −72,708 5 −72,518 4 −72,452 12 −72,741 3 −72,193 34 −72,049 34 1.00 34 0.33 144 10 2 1
9 −72,718 9 −72,716 9 −72,556 12 −72,502 9 −72,734 24 −72,273 43 −72,152 43 1.00 43 0.32 121 10 1 0
10 −72,722 10 −72,720 19 −72,613 25 −72,577 7 −72,717 37 −72,409 49 −72,328 49 1.01 49 0.31 81 4 2 0
11 −72,729 11 −72,728 21 −72,621 26 −72,585 8 −72,725 38 −72,417 50 −72,336 50 1.01 50 0.31 81 8 1 0
12 −72,734 12 −72,731 15 −72,600 20 −72,555 11 −72,738 32 −72,357 47 −72,257 47 1.01 47 0.31 100 9 1 0
13 −72,736 13 −72,733 8 −72,543 7 −72,478 15 −72,767 11 −72,218 38 −72,074 38 1.00 38 0.33 144 9 3 2
14 −72,738 14 −72,735 17 −72,604 21 −72,559 13 −72,742 33 −72,362 48 −72,262 48 1.01 48 0.31 100 3 3 0
15 −72,752 15 −72,749 11 −72,559 10 −72,494 16 −72,783 14 −72,234 40 −72,090 40 1.00 40 0.33 144 11 1 0
16 −72,768 16 −72,767 25 −72,660 28 −72,624 14 −72,765 40 −72,456 51 −72,375 51 1.02 51 0.30 81 7 2 1
17 −72,787 17 −72,783 12 −72,561 8 −72,483 17 −72,835 2 −72,192 27 −72,023 27 0.99 27 0.33 169 11 2 1
18 −72,798 18 −72,794 13 −72,572 11 −72,494 20 −72,847 5 −72,203 31 −72,034 31 0.99 31 0.33 169 6 2 0
19 −72,821 19 −72,817 14 −72,594 14 −72,517 22 −72,869 13 −72,226 35 −72,057 35 1.00 35 0.33 169 10 3 2
20 −72,830 20 −72,826 16 −72,603 16 −72,526 23 −72,878 15 −72,234 36 −72,065 36 1.00 36 0.33 169 12 1 0
21 −72,832 21 −72,828 18 −72,605 17 −72,528 24 −72,880 17 −72,237 37 −72,068 37 1.00 37 0.33 169 4 3 0
22 −72,847 22 −72,845 29 −72,739 33 −72,703 18 −72,843 44 −72,535 52 −72,454 52 1.02 52 0.29 81 6 3 2
23 −72,853 23 −72,852 32 −72,768 34 −72,740 19 −72,844 46 −72,600 53 −72,536 53 1.03 53 0.29 64 3 3 1
24 −72,859 24 −72,858 33 −72,774 35 −72,746 21 −72,849 47 −72,606 54 −72,542 54 1.03 54 0.29 64 7 1 0
25 −72,876 25 −72,872 20 −72,613 15 −72,523 26 −72,946 4 −72,200 25 −72,004 25 0.99 25 0.34 196 12 2 1
26 −72,890 26 −72,886 22 −72,628 18 −72,538 27 −72,960 8 −72,214 26 −72,018 26 0.99 26 0.33 196 6 3 1
27 −72,902 27 −72,897 23 −72,639 19 −72,549 28 −72,972 12 −72,225 29 −72,029 29 0.99 29 0.33 196 13 1 0
28 −72,913 29 −72,912 36 −72,828 39 −72,800 25 −72,904 49 −72,660 55 −72,596 55 1.03 55 0.28 64 6 2 1
29 −72,913 28 −72,909 24 −72,650 22 −72,561 29 −72,983 18 −72,237 32 −72,041 32 0.99 32 0.33 196 11 3 2
30 −72,969 30 −72,963 26 −72,667 23 −72,563 30 −73,063 6 −72,207 20 −71,982 20 0.99 20 0.34 225 7 2 0
31 −72,977 31 −72,971 27 −72,675 24 −72,571 31 −73,072 10 −72,215 23 −71,990 23 0.99 23 0.34 225 13 2 1
32 −73,019 32 −73,014 28 −72,717 27 −72,614 33 −73,114 22 −72,257 30 −72,032 30 0.99 30 0.33 225 12 3 2
33 −73,091 33 −73,085 30 −72,747 29 −72,630 34 −73,215 19 −72,240 21 −71,984 21 0.99 21 0.34 256 5 3 0
34 −73,099 34 −73,098 40 −73,014 42 −72,987 32 −73,090 53 −72,847 56 −72,783 56 1.05 56 0.26 64 5 3 2
35 −73,106 35 −73,101 31 −72,763 30 −72,646 35 −73,231 21 −72,256 24 −72,000 24 0.99 24 0.34 256 7 3 1
36 −73,133 36 −73,127 34 −72,790 32 −72,672 38 −73,258 25 −72,283 28 −72,027 28 0.99 28 0.33 256 13 3 2
37 −73,179 37 −73,173 35 −72,791 31 −72,658 40 −73,336 16 −72,235 14 −71,946 14 0.99 14 0.34 289 8 2 0
38 −73,250 38 −73,249 43 −73,185 47 −73,165 36 −73,238 55 −73,051 57 −73,002 57 1.06 57 0.24 49 6 1 0
39 −73,263 39 −73,262 44 −73,198 48 −73,178 37 −73,251 56 −73,064 58 −73,015 58 1.06 58 0.24 49 5 2 1
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Table A8. Second half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of σe = 1, and
straightforward data estimates of max |y|, min y, max y, and ϕ; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard
deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

40 −73,274 40 −73,273 45 −73,209 50 −73,189 39 −73,262 57 −73,076 59 −73,027 59 1.06 59 0.24 49 3 2 0
41 −73,351 41 −73,344 37 −72,917 36 −72,768 43 −73,546 29 −72,312 22 −71,988 22 0.99 22 0.34 324 8 3 1
42 −73,389 42 −73,387 49 −73,324 53 −73,303 41 −73,377 59 −73,190 60 −73,141 60 1.07 60 0.23 49 2 3 0
43 −73,399 43 −73,398 50 −73,335 54 −73,314 42 −73,388 60 −73,201 61 −73,152 61 1.07 61 0.23 49 4 3 2
44 −73,425 44 −73,416 38 −72,940 37 −72,773 44 −73,659 26 −72,284 12 −71,923 12 0.99 12 0.34 361 9 2 0
45 −73,449 45 −73,440 39 −72,964 38 −72,798 45 −73,684 28 −72,309 15 −71,948 15 0.99 15 0.34 361 6 3 0
46 −73,621 46 −73,612 41 −73,085 41 −72,900 47 −73,902 34 −72,379 19 −71,979 19 0.99 19 0.34 400 9 3 1
47 −73,680 47 −73,670 42 −73,088 40 −72,883 52 −74,009 31 −72,330 9 −71,889 9 0.98 9 0.35 441 10 2 0
48 −73,787 48 −73,786 56 −73,739 59 −73,725 46 −73,774 62 −73,637 62 −73,601 62 1.10 62 0.18 36 5 1 0
49 −73,866 49 −73,855 46 −73,216 43 −72,992 56 −74,250 36 −72,407 11 −71,923 11 0.99 11 0.34 484 7 3 0
50 −73,912 50 −73,901 48 −73,263 45 −73,040 57 −74,298 39 −72,454 18 −71,970 18 0.99 18 0.34 484 10 3 1
51 −73,959 52 −73,958 59 −73,911 61 −73,897 48 −73,946 63 −73,809 63 −73,773 63 1.12 63 0.16 36 2 3 1
52 −73,959 53 −73,958 60 −73,926 62 −73,916 49 −73,946 64 −73,851 65 −73,826 65 1.12 65 0.15 25 2 2 0
53 −73,967 51 −73,955 47 −73,257 44 −73,011 58 −74,409 35 −72,394 7 −71,865 7 0.98 7 0.35 529 11 2 0
54 −73,980 54 −73,980 61 −73,947 63 −73,938 50 −73,968 66 −73,872 66 −73,847 66 1.12 66 0.15 25 4 1 0
55 −74,001 55 −74,000 62 −73,954 64 −73,940 51 −73,989 65 −73,852 64 −73,816 64 1.12 64 0.15 36 4 2 1
56 −74,105 56 −74,105 63 −74,058 65 −74,044 53 −74,093 67 −73,956 67 −73,920 67 1.13 67 0.14 36 3 3 2
57 −74,193 57 −74,192 65 −74,160 67 −74,151 54 −74,180 68 −74,085 68 −74,060 68 1.14 68 0.13 25 3 2 1
58 −74,221 58 −74,208 52 −73,448 49 −73,183 64 −74,729 45 −72,536 17 −71,960 17 0.99 17 0.34 576 11 3 1
59 −74,247 59 −74,247 66 −74,215 68 −74,205 55 −74,235 69 −74,140 69 −74,115 69 1.14 69 0.12 25 2 3 2
60 −74,279 60 −74,265 51 −73,440 46 −73,149 68 −74,852 41 −72,472 6 −718,47 6 0.98 6 0.35 625 12 2 0
61 −74,320 61 −74,306 53 −73,481 51 −73,191 69 −74,894 42 −72,514 10 −71,889 10 0.98 10 0.35 625 8 3 0
62 −74,430 62 −74,430 67 −74,410 70 −74,404 59 −74,420 70 −74,359 70 −74,343 70 1.16 70 0.09 16 2 2 1
63 −74,462 65 −74,462 71 −74,441 73 −74,435 62 −74,452 73 −74,391 73 −74,375 71 1.16 73 0.09 16 1 3 0
64 −74,462 64 −74,462 70 −74,441 72 −74,435 61 −74,452 72 −74,391 72 −74,375 72 1.16 72 0.09 16 1 3 1
65 −74,462 63 −74,462 69 −74,441 71 −74,435 60 −74,452 71 −74,391 71 −74,375 73 1.16 71 0.09 16 1 3 2
66 −74,476 66 −74,475 72 −74,455 74 −74,449 63 −74,465 74 −74,404 74 −74,388 74 1.16 74 0.09 16 3 1 0
67 −74,551 67 −74,535 55 −73,644 55 −73,332 71 −75,200 48 −72,626 16 −71,950 16 0.99 16 0.34 676 12 3 1
68 −74,578 68 −74,561 54 −73,598 52 −73,257 72 −75,299 43 −72,523 3 −71,794 3 0.98 3 0.35 729 13 2 0
69 −74,781 69 −74,781 74 −74,770 75 −74,766 65 −74,773 75 −74,739 75 −74,730 75 1.19 75 0.04 9 2 1 0
70 −74,845 72 −74,845 76 −74,834 77 −74,830 67 −74,837 77 −74,803 77 −74,794 76 1.20 77 0.04 9 1 2 0
71 −74,845 71 −74,845 75 −74,834 76 −74,830 66 −74,837 76 −74,803 76 −74,794 77 1.20 76 0.04 9 1 2 1
72 −74,849 70 −74,831 57 −73,796 56 −73,433 73 −75,657 50 −72,672 8 −71,888 8 0.98 8 0.35 784 9 3 0
73 −74,903 73 −74,885 58 −73,851 57 −73,489 74 −75,714 51 −72,728 13 −71,944 13 0.99 13 0.34 784 13 3 1
74 −74,932 74 −74,932 77 −74,927 78 −74,926 70 −74,928 78 −74,913 78 −74,909 78 1.20 78 0.02 4 1 1 0
75 −75,377 75 −75,355 64 −74,086 58 −73,638 75 −76,462 52 −72,802 5 −71,841 5 0.98 5 0.35 961 10 3 0
76 −75,965 76 −75,938 68 −74,412 60 −73,872 76 −77,375 54 −72,973 4 −71,817 4 0.98 4 0.35 1156 11 3 0
77 −76,591 77 −76,560 73 −74,751 66 −74,111 77 −78,374 58 −73,161 2 −71,792 2 0.98 2 0.35 1369 12 3 0
78 −77,238 78 −77,201 78 −75,086 69 −74,335 78 −79,441 61 −73,349 1 −71,749 1 0.98 1 0.36 1600 13 3 0
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Figure A18. Sample size N = 15, 000 and C-spline models of target function (A7) are picked by
the Neeley evidence (129), for different noise levels and for a multiplication by a factor 10 of the
data estimate of ϕ. Columns correspond with noise levels σn = 0, 1/2, 1, and 2, respectively. Rows
correspond with spline model, residual of spline model relative to target function, and cross sections of
spline model (blue) and target function (black).
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Figure A19. Sample size N = 15, 000 and C-spline models of target function (A7) are picked by the
Ignorance and Manorevidences, (127) and (128), for different noise levels and for a multiplication by
a factor 10 of max |y|, max y, and min y. Columns correspond with noise levels σn = 0, 1/2, 1, and 2,
respectively. Rows correspond with spline model, residual of spline model relative to target function,
and cross sections of spline model (blue) and target function (black).
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Table A9. First half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of σe = 1, and times 10
data estimates of max |y|, min y, max y, and ϕ; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low
to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

1 −72,859 1 −72,856 1 −72,715 5 −72,465 1 −72,649 23 −72,268 44 −72,168 44 1.00 44 0.32 100 4 3 1
2 −72,879 2 −72,877 2 −72,736 9 −72,486 2 −72,670 27 −72,289 45 −72,189 45 1.00 45 0.32 100 7 3 2
3 −72,895 3 −72,893 7 −72,779 25 −72,577 7 −72,717 37 −72,409 49 −72,328 49 1.01 49 0.31 81 4 2 0
4 −72,903 4 −72,900 8 −72,787 26 −72,585 8 −72,725 38 −72,417 50 −72,336 50 1.01 50 0.31 81 8 1 0
5 −72,906 5 −72,903 5 −72,763 13 −72,513 5 −72,696 30 −72,316 46 −72,216 46 1.01 46 0.32 100 8 2 1
6 −72,915 6 −72,911 3 −72,741 1 −72,438 3 −72,671 7 −72,210 39 −72,089 39 1.00 39 0.33 121 8 3 2
7 −72,919 7 −72,916 4 −72,746 2 −72,443 4 −72,675 9 −72,215 41 −72,094 41 1.00 41 0.33 121 9 2 1
8 −72,942 8 −72,939 14 −72,826 28 −72,624 14 −72,765 40 −72,456 51 −-72,375 51 1.02 51 0.30 81 7 2 1
9 −72,948 9 −72,945 10 −72,804 20 −72,555 11 −72,738 32 −72,357 47 −72,257 47 1.01 47 0.31 100 9 1 0

10 −72,951 10 −72,948 6 −72,778 6 −72,475 6 −72,708 20 −72,247 42 −72,126 42 1.00 42 0.32 121 5 2 0
11 −72,952 11 −72,949 11 −72,809 21 −72,559 13 −72,742 33 −72,362 48 −72,262 48 1.01 48 0.31 100 3 3 0
12 −72,977 12 −72,974 9 −72,804 12 −72,502 9 −72,734 24 −72,273 43 −72,152 43 1.00 43 0.32 121 10 1 0
13 −72,990 13 −72,988 17 −72,898 34 −72,740 19 −72,844 46 −72,600 53 −72,536 53 1.03 53 0.29 64 3 3 1
14 −72,996 14 −72,994 19 −72,904 35 −72,746 21 −72,849 47 −72,606 54 −72,542 54 1.03 54 0.29 64 7 1 0
15 −73,015 15 −73,011 12 −72,809 3 −72,447 10 −72,736 1 −72,188 33 −72,044 33 1.00 33 0.33 144 5 3 1
16 −73,019 16 −73,015 13 −72,813 4 −72,452 12 −72,741 3 −72,193 34 −72,049 34 1.00 34 0.33 144 10 2 1
17 −73,020 17 −73,018 18 −72,904 33 −72,703 18 −72,843 44 −72,535 52 −72,454 52 1.02 52 0.29 81 6 3 2
18 −73,045 18 −73,041 15 −72,839 7 −72,478 15 −72,767 11 −72,218 38 −72,074 38 1.00 38 0.33 144 9 3 2
19 −73,050 19 −73,048 25 −72,958 39 −72,800 25 −72,904 49 −72,660 55 −72,596 55 1.03 55 0.28 64 6 2 1
20 −73,060 20 −73,057 16 −72,854 10 −72,494 16 −72,783 14 −72,234 40 −72,090 40 1.00 40 0.33 144 11 1 0
21 −73,149 21 −73,145 20 −72,907 8 −72,483 17 −72,835 2 −72,192 27 −72,023 27 0.99 27 0.33 169 11 2 1
22 −73,160 22 −73,156 21 −72,918 11 −72,494 20 −72,847 5 −72,203 31 −72,034 31 0.99 31 0.33 169 6 2 0
23 −73,183 23 −73,178 22 −72,941 14 −72,517 22 −72,869 13 −72,226 35 −72,057 35 1.00 35 0.33 169 10 3 2
24 −73,191 24 −73,187 23 −72,949 16 −72,526 23 −72,878 15 −72,234 36 −72,065 36 1.00 36 0.33 169 12 1 0
25 −73,193 25 −73,189 24 −72,951 17 −72,528 24 −72,880 17 −72,237 37 −72,068 37 1.00 37 0.33 169 4 3 0
26 −73,236 26 −73,234 32 −73,144 42 −72,987 32 −73,090 53 −72,847 56 −72,783 56 1.05 56 0.26 64 5 3 2
27 −73,296 27 −73,291 26 −73,016 15 −72,523 26 −72,946 4 −72,200 25 −72,004 25 0.99 25 0.34 196 12 2 1
28 −73,310 28 −73,305 27 −73,030 18 −72,538 27 −72,960 8 −72,214 26 −72,018 26 0.99 26 0.33 196 6 3 1
29 −73,322 29 −73,316 28 −73,041 19 −72,549 28 −72,972 12 −72,225 29 −72,029 29 0.99 29 0.33 196 13 1 0
30 −73,333 30 −73,328 29 −73,052 22 −72,561 29 −72,983 18 −72,237 32 −72,041 32 0.99 32 0.33 196 11 3 2
31 −73,354 31 −73,353 35 −73,284 47 −73,165 36 −73,238 55 −73,051 57 −73,002 57 1.06 57 0.24 49 6 1 0
32 −73,367 32 −73,366 37 −73,297 48 −73,178 37 −73,251 56 −73,064 58 −73,015 58 1.06 58 0.24 49 5 2 1
33 −73,379 33 −73,377 38 −73,308 50 −73,189 39 −73,262 57 −73,076 59 −73,027 59 1.06 59 0.24 49 3 2 0
34 −73,450 34 −73,444 30 −73,128 23 −72,563 30 −73,063 6 −72,207 20 −71,982 20 0.99 20 0.34 225 7 2 0
35 −73,459 35 −73,452 31 −73,137 24 −72,571 31 −73,072 10 −72,215 23 −71,990 23 0.99 23 0.34 225 13 2 1
36 −73,493 36 −73,492 41 −73,423 53 −73,303 41 −73,377 59 −73,190 60 −73,141 60 1.07 60 0.23 49 2 3 0
37 −73,501 37 −73,495 33 −73,179 27 −72,614 33 −73,114 22 −72,257 30 −72,032 30 0.99 30 0.33 225 12 3 2
38 −73,504 38 −73,502 42 −73,433 54 −73,314 42 −73,388 60 −73,201 61 −73,152 61 1.07 61 0.23 49 4 3 2
39 −73,639 39 −73,632 34 −73,273 29 −72,630 34 −73,215 19 −72,240 21 −71,984 21 0.99 21 0.34 256 5 3 0
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Table A10. Second half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of σe = 1, and
times 10 data estimates of max |y|, min y, max y, and ϕ; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations
(from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).

Ignorance Manor Neeley Constantineau BIC AIC “Sure Thing” Error Std R-Square m Model Specs

40 −73,655 40 −73,648 36 −73,288 30 −72,646 35 −73,231 21 −72,256 24 −72,000 24 0.99 24 0.34 256 7 3 1
41 −73,681 41 −73,674 39 −73,315 32 −72,672 38 −73,258 25 −72,283 28 −72,027 28 0.99 28 0.33 256 13 3 2
42 −73,798 42 −73,790 40 -73,385 31 −72,658 40 −73,336 16 −72,235 14 −71,946 14 0.99 14 0.34 289 8 2 0
43 −73,863 43 −73,862 46 −73,811 59 −73,725 46 −73,774 62 −73,637 62 −73,601 62 1.10 62 0.18 36 5 1 0
44 −74,012 44 −74,011 48 −73,976 62 −73,916 49 −73,946 64 −73,851 64 −73,826 64 1.12 64 0.15 25 2 2 0
45 −74,033 45 −74,033 51 −73,997 63 −73,938 50 −73,968 65 −73,872 65 −73,847 65 1.12 65 0.15 25 4 1 0
46 −74,035 46 −74,034 49 −73,983 61 −73,897 48 −73,946 63 −73,809 63 −73,773 63 1.12 63 0.16 36 2 3 1
47 −74,045 47 −74,036 43 −73,582 36 −72,768 43 −73,546 29 −72,312 22 −71,988 22 0.99 22 0.34 324 8 3 1
48 −74,154 48 −74,153 52 −74,103 64 −74,017 52 −74,066 66 −73,929 66 −73,893 66 1.13 66 0.15 36 4 2 1
49 −74,198 49 −74,188 44 −73,681 37 −72,773 44 −73,659 26 −72,284 12 −71,923 12 0.99 12 0.34 361 9 2 0
50 −74,222 50 −74,212 45 −73,705 38 −72,798 45 −73,684 28 −72,309 15 −71,948 15 0.99 15 0.34 361 6 3 0
51 −74,246 51 −74,245 54 −74,210 67 −74,151 54 −74,180 68 −74,085 68 −74,060 68 1.14 68 0.13 25 3 2 1
52 −74,257 52 −74,256 53 −74,206 66 −74,120 53 −74,169 67 −74,032 67 −73,996 67 1.13 67 0.13 36 3 3 2
53 −74,300 53 −74,299 57 −74,264 68 −74,205 55 −74,235 69 −74,140 69 −74,115 69 1.14 69 0.12 25 2 3 2
54 −74,464 54 −74,464 59 −74,441 70 −74,404 59 −74,420 70 −74,359 70 −74,343 70 1.16 70 0.09 16 2 2 1
55 −74,478 55 −74,467 47 −73,905 41 −72,900 47 −73,902 34 −72,379 19 −71,979 19 0.99 19 0.34 400 9 3 1
56 −74,496 58 −74,496 62 −74,473 73 −74,435 62 −74,452 73 −74,391 73 −74,375 71 1.16 73 0.09 16 1 3 0
57 −74,496 57 −74,496 61 −74,473 72 −74,435 61 −74,452 72 −74,391 72 −74,375 72 1.16 72 0.09 16 1 3 1
58 −74,496 56 −74,496 60 −74,473 71 −74,435 60 −74,452 71 −74,391 71 −74,375 73 1.16 71 0.09 16 1 3 2
59 −74,509 59 −74,509 63 −74,487 74 −74,449 63 −74,465 74 −74,404 74 −74,388 74 1.16 74 0.09 16 3 1 0
60 −74,625 60 −74,613 50 −73,994 40 −72,883 51 −74,009 31 −72,330 9 −71,889 9 0.98 9 0.35 441 10 2 0
61 −74,800 61 −74,800 67 −74,787 75 −74,766 65 −74,773 75 −74,739 75 −74,730 75 1.19 75 0.04 9 2 1 0
62 −74,864 63 −74,864 69 −74,851 77 −74,830 67 −74,837 77 −74,803 77 −74,794 76 1.20 77 0.04 9 1 2 0
63 −74,864 62 −74,864 68 −74,851 76 −74,830 66 −74,837 76 −74,803 76 −74,794 77 1.20 76 0.04 9 1 2 1
64 −74,903 64 −74,890 55 −74,210 43 −72,992 56 −74,250 36 −72,407 11 −71,923 11 0.99 11 0.34 484 7 3 0
65 −74,941 66 −74,941 70 −74,935 78 −74,926 70 −74,928 78 −74,913 78 −74,909 78 1.20 78 0.02 4 1 1 0
66 −74,949 65 −74,935 56 −74,256 45 −73,040 57 −74,298 39 −72,454 18 −71,970 18 0.99 18 0.34 484 10 3 1
67 −75,101 67 −75,086 58 −74,344 44 −73,011 58 −74,409 35 −72,394 7 −71,865 7 0.98 7 0.35 529 11 2 0
68 −75,455 68 −75,439 64 −74,630 49 −73,183 64 −74,729 45 −72,536 17 −71,960 17 0.99 17 0.34 576 11 3 1
69 −75,619 69 −75,602 65 −74,724 46 −73,149 68 −74,852 41 −72,472 6 −71,847 6 0.98 6 0.35 625 12 2 0
70 −75,659 70 −75,642 66 −74,765 51 −73,191 69 −74,894 42 −72,514 10 −71,889 10 0.98 10 0.35 625 8 3 0
71 −75,999 71 −75,980 71 −75,031 55 −73,332 71 −75,200 48 −72,626 16 −71,950 16 0.99 16 0.34 676 12 3 1
72 −76,141 72 −76,121 72 −75,097 52 −73,257 72 −75,299 43 −72,523 3 −71,794 3 0.98 3 0.35 729 13 2 0
73 −76,529 73 −76,508 73 −75,407 56 −73,433 73 −75,657 50 −72,672 8 −71,888 8 0.98 8 0.35 784 9 3 0
74 −76,583 74 −76,561 74 −75,461 57 −73,489 74 −75,714 51 −72,728 13 −71,944 13 0.99 13 0.34 784 13 3 1
75 −77,436 75 −77,410 75 −76,061 58 −73,638 75 −76,462 52 −72,802 5 −71,841 5 0.98 5 0.35 961 10 3 0
76 −78,443 76 −78,412 76 −76,789 60 −73,872 76 −77,375 54 −72,973 4 −71,817 4 0.98 4 0.35 1156 11 3 0
77 −79,526 77 −79,489 77 −77,567 65 −74,111 77 −78,374 58 −73,161 2 −71,792 2 0.98 2 0.35 1369 12 3 0
78 −80,668 78 −80,625 78 −78,379 69 −74,335 78 −79,441 61 −73,349 1 −71,749 1 0.98 1 0.36 1600 13 3 0
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Appendix B. Introducing C-Splines

Appendix B.1. A Simple Trivariate C-Spline Model

If we have predictors from a three dimensional domain (x, y, z), where 0 ≤ x, y, z ≤ 1, and a
corresponding dependent variable v, then the simplest non-trivial spline model is the model which
partitions the cube of the three dimensional domain in 2× 2× 2 = 8 sub-cubes, has polynomial order 1
with no interactions, that is,

f (x, y, z) = 1 + x + y + z, (A8)

and continuity of order 0 (i.e., piecewise polynomials themselves need to connect, but not their
derivatives.) It is found that this particular spline model corresponds with the C-spline basis BC [5]:

B(u)
C (x, y, z) =



(1 x− 0.5 x− 0.5 y− 0.5 y− 0.5 z− 0.5 z− 0.5) , u = 1,
(1 0 x− 0.5 y− 0.5 y− 0.5 z− 0.5 z− 0.5) , u = 2,
(1 x− 0.5 x− 0.5 0 y− 0.5 z− 0.5 z− 0.5) , u = 3,
(1 0 x− 0.5 0 y− 0.5 z− 0.5 z− 0.5) , u = 4,
(1 x− 0.5 x− 0.5 y− 0.5 y− 0.5 0 z− 0.5) , u = 5,
(1 0 x− 0.5 y− 0.5 y− 0.5 0 z− 0.5) , u = 6,
(1 x− 0.5 x− 0.5 0 y− 0.5 0 z− 0.5) , u = 7,
(1 0 x− 0.5 0 y− 0.5 0 z− 0.5) , u = 8.

(A9)

where each of the rows u correspond with a particular sub-domain in 0 ≤ x, y, z ≤ 1.
Let i, j, and k be the x-, y-, and z-axis sub-domain coordinates, respectively. Then we have that the

row number u of BC is the following function of the sub-domain coordinates

u (i, j, k) = i + (j− 1) 2 + (k− 1) 4, (A10)

where the coordinates (i, j, k) for a given sub-domain can be found as

i (x) =

{
1, x ≤ 0.5,

2, x > 0.5,
j (y) =

{
1, y ≤ 0.5,

2, y > 0.5,
k (z) =

{
1, z ≤ 0.5,

2, z > 0.5.
(A11)

Now, if we have a data set with sample size N, then we may go iteratively through this data
set, as we determine for each entry in the predictor matrix (xn, yn, zn) the corresponding coordinates
(in, jn, kn), by way of (A11):

(in, jn, kn) = [i (xn) , j (yn) , k (zn)]

These coordinates then map to the row un, by way of (A10):

un = u (in, jn, kn) .

We then substitute the values (xn, yn, zn) into the vector B(un)
C (x, y, z), which gives us

B(un)
C (xn, yn, zn). Finally, we set the nth row of the spline predictor matrix B̃C to

B̃(n)
C = B(un)

C (xn, yn, zn) .

As we follow this procedure for n = 1, . . . , N, we end up with a N × 7 spline predictor matrix B̃C.
If we regress this spline predictor matrix on the dependent variable vector v, we obtain the spline
regression coefficients

β̂ =
(

B̃T
C B̃C

)−1
B̃T

Cv. (A12)
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If we combine the functions (A10) and (A11), so as to obtain the sub-domain number directly as a
function of x, y, and z,

q (x, y, z) = u [i (x) , j (y) , k (z)] , (A13)

then the C-spline model on the domain 0 ≤ x, y, z ≤ 1 for the expected value (156), with a 2-by-2-by-2
geometry, a polynomial order 1 with no interactions, and continuity order 0 may be written down as
the inner product, (A9) and (A12),

f (x, y, z) = B(q(x,y,z))
C (x, y, z) · β̂. (A14)

In Figure A20 we give a demonstration of the spline equivalent (A14) of the polynomial (A8), by way
of the spline basis (A9), where we (arbitrarily and as a reference for the reader) let

β̂ = (3.22574,−6.50497, 0.378211,−4.29487, 3.68232, 3.41941,−3.1923) .

Figure A20. Example of the trivariate C-spline model for (A8), for z = 0.5, y = 0.5, and x = 0.5, respectively.

Note that 8 trivariate piecewise polynomials of order 1 with no interactions ordinarily would
make for m = 8× 4 = 32 parameters, whereas just the one trivariate piecewise polynomial (A8) over the
total unpartitioned domain makes for m = 4 parameters. Seeing that (A9) consists of m = 7 parameters,
it follows that the constraint for connectedness of the polynomials has incurred a cost of

32− 7 = 25

free parameters relative to the unconstrained case, or, alternatively, a gain of

7− 4 = 3

free parameters relative to the case where one polynomial is defined over the whole of the domain.

Appendix B.2. Enforcing Connectivity

The sub-domains

D1 : 0.5 < x, y ≤ 1 and 0 ≤ z ≤ 0.5,

D2 : 0.5 < x, y ≤ 1 and 0.5 < z ≤ 1,

connect at z = 0.5. The sub-domains D1 and D2 are associated with the sub-domain numbers
q (x, y, z) = 4 and q (x, y, z) = 8, respectively, (A13). It follows that D1 and D2 have corresponding
C-spline basis vectors (A9)

B(4)
C (x, y, z) = (1 0 x− 0.5 0 y− 0.5 z− 0.5 z− 0.5)

and
B(8)

C (x, y, z) = (1 0 x− 0.5 0 y− 0.5 0 z− 0.5) .
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If we approach the z-boundary of the 4th and the 8th sub-domain, or, equivalent, if we let z→ 0.5 in
the domains D1 and D2, from below and above, respectively, then it may be checked that the above
C-spline basis vectors converge to the same vector:

lim
z→0.5−

B(4)
C (x, y, z) = (1 0 x− 0.5 0 y− 0.5 0− 0−)

and
lim

z→0.5+
B(8)

C (x, y, z) = (1 0 x− 0.5 0 y− 0.5 0 0+) .

It follows that the C-spline model (A14) will connect at the z-boundary of the sub-domains D1 and D2,
for any regression coefficient vector β̂, as the z-boundary is crossed from below and the inner product
goes from

B(4)
C
(
x, y, 0.5−

)
· β̂

to
B(8)

C
(
x, y, 0.5+

)
· β̂,

and vise versa. It may be checked that this holds for all possible boundary crossings in the domain
0 ≤ x, y, z ≤ 1. Stated differently, the C-spline model (A14) enforces the piecewise polynomials to
connect at their domain boundaries by way of its C-spline basis (A9).

Appendix B.3. Adding Polynomial Interaction and Power Terms

Now, the C-spline model (A14) enforces the piecewise polynomials to connect at their domain
boundaries by way of its C-spline basis (A9). So, it follows that any product of the columns in (A9)
must also enforce this connectedness; to be more specific, if we want to introduce an interaction
between x and y, then we just need to multiply the two x-columns with the two y-columns of (A9) in
the following manner:

xy =



(x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5)
0 · (y− 0.5) 0 · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5)
(x− 0.5) · 0 (x− 0.5) · (y− 0.5) (x− 0.5) · 0 (x− 0.5) · (y− 0.5)

0 · 0 0 · (y− 0.5) (x− 0.5) · 0 (x− 0.5) · (y− 0.5)
(x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5)

0 · (y− 0.5) 0 · (y− 0.5) (x− 0.5) · (y− 0.5) (x− 0.5) · (y− 0.5)
(x− 0.5) · 0 (x− 0.5) · (y− 0.5) (x− 0.5) · 0 (x− 0.5) · (y− 0.5)

0 · 0 0 · (y− 0.5) (x− 0.5) · 0 (x− 0.5) · (y− 0.5)



=



(x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5)
0 0 (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5)
0 (x− 0.5) (y− 0.5) 0 (x− 0.5) (y− 0.5)
0 0 0 (x− 0.5) (y− 0.5)

(x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5)
0 0 (x− 0.5) (y− 0.5) (x− 0.5) (y− 0.5)
0 (x− 0.5) (y− 0.5) 0 (x− 0.5) (y− 0.5)
0 0 0 (x− 0.5) (y− 0.5)
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or, equivalently, as any linear combination of columns also will adhere to the constraint of connectivity,

xy =



(x− 0.5) (y− 0.5) 0 0 0
0 (x− 0.5) (y− 0.5) 0 0
0 0 (x− 0.5) (y− 0.5) 0
0 0 0 (x− 0.5) (y− 0.5)

(x− 0.5) (y− 0.5) 0 0 0
0 (x− 0.5) (y− 0.5) 0 0
0 0 (x− 0.5) (y− 0.5) 0
0 0 0 (x− 0.5) (y− 0.5)


(A15)

And it may be checked that the addition of these columns to the spline basis (A9) will still result in
an enforcement of the constraint of connectedness. (Similarly, one may also row reduce the spline
basis (A9), should one wish to do so.)

By way of induction, it follows that the number of columns in the introduction of the spline
polynomials interactions xy, xz, yz, and xyz to (A8),

f (x, y, z) = 1 + x + y + z + xy + xz + yz + xyz, (A16)

will result in a spline basis which has

m = 7 + 22 + 22 + 22 + 23 = 27

free parameters. In Figure A21 we give a demonstration of the added flexibility of the spline
equivalent (A14) of the polynomial (A16) for a random β̂.

Figure A21. Example of the trivariate C-spline model for (A16), for z = 0.5, y = 0.5, and x = 0.5,
respectively.

Also, the term xk may be simply constructed as by taking the kth power of the two x-columns
with the two y-columns of (A9)

x2 =



(x− 0.5)2 (x− 0.5)2

0 (x− 0.5)2

(x− 0.5)2 (x− 0.5)2

0 (x− 0.5)2

(x− 0.5)2 (x− 0.5)2

0 (x− 0.5)2

(x− 0.5)2 (x− 0.5)2

0 (x− 0.5)2


It follows that the addition of x2, y2, and z2 and the subtraction of the term xyz to (A16)

f (x, y, z) = 1 + x + x2 + y + y2 + z + z2 + xy + xz + yz, (A17)
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will result in a spline basis which has

m = 27 + 2 + 2 + 2− 8 = 25

free parameters. In Figure A22 we give a demonstration of the added flexibility of the spline
equivalent (A14) of the polynomial (A17) for a random β̂.

Figure A22. Example of the trivariate C-spline model for (A17), for z = 0.5, y = 0.5, and x = 0.5, respectively.
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