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Abstract:



It is a relatively well-known fact that in problems of Bayesian model selection, improper priors should, in general, be avoided. In this paper we will derive and discuss a collection of four proper uniform priors which lie on an ascending scale of informativeness. It will turn out that these priors lead us to evidences that are closely associated with the implied evidence of the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC). All the discussed evidences are then used in two small Monte Carlo studies, wherein for different sample sizes and noise levels the evidences are used to select between competing C-spline regression models. Also, there is given, for illustrative purposes, an outline on how to construct simple trivariate C-spline regression models. In regards to the length of this paper, only one half of this paper consists of theory and derivations, the other half consists of graphs and outputs of the two Monte Carlo studies.
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1. Introduction


Using informational consistency requirements, Jaynes [1] derived the form of maximal non-informative priors for location parameters, that is, regression coefficients, to be uniform. However, this does not tell us what the limits of these uniform probability distributions should be, that is, what particular uniform distribution to use. If we are faced with a parameter estimation problem, then these limits of the uniform prior are irrelevant, as we may scale the product of the improper uniform prior and the likelihood to one, which gives us a properly normalized posterior for our regression coefficients. However, if we are faced with a problem of model selection, then the volume covered by the uniform prior is an integral part of the evidence which is used to rank the various competing regression models.



In this paper we will give the four proper uniform priors originally derived in [2]. These priors lie on an ascending scale of informativeness. It will turn out, as we discuss the Bayesian Information Criterion (BIC), the Akaike Information Criterion (AIC), and the results of a small Monte Carlo study, that these priors lead us to evidences that are closely associated with the implied evidences of the BIC and the AIC, as these evidences fill in the space between and around the BIC and AIC on a continuum of conservativeness, in terms of the number of parameters of the chosen regression analysis models.



This paper is structured as follows. First we give an introduction to the evidence construct, that “too-often-ignored half of Bayesian inference” [3], as we give an outline on how to use these evidences in Bayesian model selection. Then we describe the normal multiple regression models for both known and unknown [image: there is no content]s, after which we specify the conditions under which improper priors become problematic for model selection. This specification brings us naturally to a continuum of informativeness on which priors of regression coefficients may be located. After these preliminaries, we proceed to give the derivations of the four proper uniform priors, originally derived in [2], by way of the results in [4], which are neither grossly ignorant nor grossly knowledgeable. Having checked the coverage of these priors, we address the question what constitutes data and what constitutes prior information. We then discuss the evidences that are associated with our proper priors, as we connect these evidences to the BIC and AIC reference procedures and give the posterior probability distribution of the unknown regression coefficients and the consequent predictive probability distribution that is associated with these proper priors. In Appendix A we report on two small Monte Carlo studies with the C-spline regression models, in order to give the reader a sense for all the discussed evidences. Also, a collection of three simple trivariate C-spline regression models will be discussed in Appendix B, in order to provide the reader with a low-level, hands-on introduction into C-splines [5].




2. The Evidence and Bayesian Model Selection


Bayesian probability theory has four fundamental constructs, namely, the prior, the likelihood, the posterior, and the evidence. These constructs are related in the following way:


[image: there is no content]



(1)




Most of us will be familiar with the prior, likelihood, and posterior. However, the evidence concept is less universally known, as most people come to Bayes by way of the more compact relationship [6]:


[image: there is no content]



(2)




which does not make any explicit mention of the evidence construct. In what follows, we will employ the correct, though notationally more cumbersome, relation (1), and forgo of the more compact, but incomplete, Bayesian shorthand (2). This is done so the reader may develop some feeling for the evidence construct, and how this construct relates to the other three Bayesian constructs (i.e., the prior, likelihood, and posterior.)



Let [image: there is no content] be the prior of some parameter [image: there is no content], where I is the prior information model of the unknown [image: there is no content]. Let [image: there is no content] be the probability of the data D conditional on the value of parameter [image: there is no content] and the likelihood model M which is used; the probability of the data is also known as the likelihood of the parameter [image: there is no content]. Let [image: there is no content] be the posterior distribution of the parameter [image: there is no content], conditional on the data D, the likelihood model M, and the prior information model I. Then


[image: there is no content]



(3)




where


[image: there is no content]



(4)




is the evidence, that is, the marginalized likelihood of both the likelihood model M and the prior information model I.



Now, if we have a set of likelihood models [image: there is no content] (e.g., a collection of regression models) we wish to choose from, and just the one prior information model I (e.g., an ignorance model), then we may do so by computing the evidence values [image: there is no content].



Let [image: there is no content] and [image: there is no content] be, respectively, the prior and posterior probability of the likelihood model [image: there is no content]. Then the posterior probability distribution of these likelihood models is given as


[image: there is no content]



(5)




For [image: there is no content] for [image: there is no content], the posterior probabilities (5) will reduce to the normalized evidence values:


[image: there is no content]



(6)




So, if we assign equal prior probabilities to our likelihood models [image: there is no content], then we may rank these models by way of their respective evidence values, where the model with the highest evidence value is the model which has the highest posterior probability of all the models that were taken into consideration [7,8].




3. The Normal Multiple Regression Model (Known Sigma)


Let the model M for the response vector [image: there is no content] be


[image: there is no content]



(7)




where X is some [image: there is no content] predictor matrix, [image: there is no content] is the [image: there is no content] vector with regression coefficients and [image: there is no content] is the [image: there is no content] error vector to which we assign a multivariate normal distribution, that is,


[image: there is no content]



(8)




or, equivalently, [image: there is no content], where [image: there is no content] is the [image: there is no content] identity matrix and [image: there is no content] is some known standard deviation. By way of a simple Jacobian transformation from [image: there is no content] to [image: there is no content] in (8), we then may obtain the likelihood function of the [image: there is no content]s:


[image: there is no content]



(9)




If we assign a uniform prior to the unknown regression coefficients [image: there is no content] [6]


pβI=C,β∈Dβ,



(10)




where C is a yet unspecified normalizing constant, I is the prior information regarding the unknown [image: there is no content]s which we have at our disposal, and [image: there is no content] is the prior domain of the [image: there is no content]s, then the probability distribution of both [image: there is no content] and [image: there is no content] is derived as


pβ,yσ,X,M,I=pβIpyσ,X,β,M=C2πσ2N/2exp−12σ2y−XβTy−Xβ.



(11)




By integrating the unknown [image: there is no content]s out of (11) over the prior domain [image: there is no content], we obtain the evidence of model M:


[image: there is no content]



(12)




The evidence (12) is used both to normalize (11) into a posterior distribution, (1), as well as to choose between competing regression models, (5) and (6). In order to evaluate the evidence (12), we rewrite (11) as [6]


[image: there is no content]



(13)




where


β^=XTX−1XTyandy^=Xβ^.



(14)




We then factor (13) as


pβ,yσ,X,M,I=CXTX1/22πσ2N−m/2exp−12σ2y−y^Ty−y^×XTX1/22πσ2m/2exp−12σ2β−β^TXTXβ−β^.



(15)




The last term in (15) is in the multivariate normal form [6], so it should evaluate to 1 when integrated over the [image: there is no content]s. Stated differently, for a prior domain [image: there is no content] which is centered correctly and ‘wide enough’, we have, by way of the factorization (15), that the evidence (12) tends to the equality


[image: there is no content]



(16)




By way of (13), (16) and the product rule (1), we obtain the posterior of the unknown [image: there is no content]s, [6]:


[image: there is no content]



(17)




This posterior of the unknown [image: there is no content]s has a mean of [image: there is no content], (14), and a covariance matrix of [image: there is no content].



In the parameter estimation problem, that is, the derivation of the posterior distribution (17), any reference to the normalizing constant C of the uniform prior (10) has fallen away. In contrast, in the model selection problem, that is, the derivation of the evidence (16), C is still present.



In closing, note that different [image: there is no content] predictor matrices [image: there is no content] correspond with different likelihood models [image: there is no content] in (5) and (6). It is to be understood that in what follows we will construct proper uniform priors for a generic likelihood model M which has a generic [image: there is no content] predictor matrix X, as we drop the sub-index j in both X and M in order to remove some of the notational clutter in our equations.




4. The Normal Multiple Regression Model (Unknown Sigma)


In case of unknown [image: there is no content], we may assign the Jeffreys prior for scaling parameters [6]:


[image: there is no content]



(18)




where A is some normalizing constant, to the unknown [image: there is no content] in (11), in order to lose this unknown nuisance parameter by way of integration:


[image: there is no content]



(19)




where (11) and (18),


pσIpβ,yσ,X,M,I=AC2πN/2σN+1exp−12σ2y−XβTy−Xβ.



(20)




We may conveniently factorize (20) as,


pσ,β,yX,M,I=AΓN/22πN/2Cy−XβTy−XβN/2×2ΓN/2y−XβTy−Xβ2N/21σN+1exp−12σ2y−XβTy−Xβ.



(21)




The last term in (21) evaluates to 1 when integrated over [image: there is no content], as it has the form of an inverted gamma distribution [6], from which it follows that


pβ,yX,M,I=AΓN/22πN/2Cy−XβTy−XβN/2,



(22)




By integrating the unknown [image: there is no content]s out of (22) over the prior domain [image: there is no content], we obtain the evidence of model M:


[image: there is no content]



(23)




In order to evaluate the evidence (23), we rewrite (22) as [6]


pβ,yX,M,I=AΓN/22πN/2Cy−y^Ty−y^+β−β^TXTXβ−β^N/2.



(24)




We then factor (24) as


pβ,yX,M,I=1XTX1/2Cy−y^N−mAΓN−m/22πN−m/2×ΓN/2ΓN−m/2XTX1/2πm/2y−y^N−my−y^2+β−β^TXTXβ−β^N/2,



(25)




where


[image: there is no content]



(26)




and where the last term in (25) is in the multivariate Student-t form [6]. So, for a prior domain [image: there is no content] which is centered correctly and “wide enough”, we have, by way of the factorization (25), that the evidence (23) tends to the equality


pyX,M,I=1XTX1/2Cy−y^N−mAΓN−m/22πN−m/2.



(27)




If we divide (24) by the evidence (27), we obtain, by way of the product rule (1), the posterior of the unknown [image: there is no content]s, [6]:


pβy,X,M,I=vv/2ΓN/21s2XTX1/2ΓN−m/2πm/2v+β−β^T1s2XTXβ−β^−N/2.



(28)




where


s2=1vy−y^2andv=N−m.



(29)




This posterior of the unknown [image: there is no content]s has a mean of [image: there is no content], (14), and a covariance matrix of [image: there is no content], (29).



Again, in the parameter estimation problem, that is, the derivation of the posterior distribution (28), any reference to the normalizing constant C of the uniform prior (10) has, seemingly, fallen away. In contrast, in the model selection problem, that is, the derivation of the evidence (27), C is still present.




5. The Problem with Improper Priors


In problems of model comparison between competing (regression) models one generally must take care not to use improper priors, be they uniform or not. Since improper priors may introduce inverse infinities in the evidence factors which do not cancel out if one proceeds to compute the posterior probabilities of the respective models [9]. We will demonstrate this fact and its consequences with a simple example in which we assign improper uniform priors to the respective regression coefficients.



Suppose that we want to compare two regression models:


M1:y=X1β1+e1andM2:y=X2β2+e2,



(30)




where [image: there is no content] is an [image: there is no content] predictor matrix and [image: there is no content] an [image: there is no content], with [image: there is no content], and where both [image: there is no content] and [image: there is no content] are multivariate normally distributed [image: there is no content], where [image: there is no content] is the [image: there is no content] identity matrix and [image: there is no content] is some known standard deviation, (8). Let the uniform prior of a regression coefficient be given as


pβjI=12B,for−B≤βj≤B,



(31)




for [image: there is no content]. If [image: there is no content], then (31) will tend to the improper Jeffreys prior for location parameters [6]:


pβjIdβj∝dβj,for−∞≤βj≤∞,



(32)




where “∝” is the proportionality sign that absorbs the normalizing constant [image: there is no content]. Let the uniform prior of m regression coefficients be given as, (31),


pβI=∏j=1mpβjI=12Bm,forβ∈Dβ,



(33)




where [image: there is no content] is an m-dimensional cube which is centered at the origin. Substituting (33) into (10), we find the evidences:


[image: there is no content]



(34)




for [image: there is no content], where (27)


Li=1XTX1/21y−y^N−mΓN−m/22πN−m/2,



(35)




and [image: there is no content] is the number of columns in the [image: there is no content] predictor matrix [image: there is no content], and [image: there is no content] is the regression model estimate (14)


β^i=XiTXi−1XiTyandy^i=Xiβ^i.



(36)




If we assign equal prior probabilities to [image: there is no content] and [image: there is no content], then we find posterior model probabilities, (6) and (34):


pM1σ,X1,y,I=L1L1+12Bm2−m1L2andpM2σ,X2,y,I=12Bm2−m1L2L1+12Bm2−m1L2,



(37)




as [image: there is no content], (30). So, if in (31) we let [image: there is no content], then the posterior model probabilities (37) will tend to


pM1σ,X1,y,I→L1L1=1andpM2σ,X2,y,I→0L1+0=0.



(38)




It can be seen that the assigning of an improper Jeffreys’ prior to location parameters (32) will make that the regression model with the least number of regression coefficients, or, equivalently, number of predictors, is automatically chosen over any model which has more regression coefficients.



Improper priors can introduce inverse infinities in the evidence factors, as [image: there is no content] in (37), which do not cancel out if one proceeds to compute the posterior probabilities of the respective models. However, if the parameter in question is shared by all the competing models, like, for example, the parameter [image: there is no content] in (1), then the inverse infinities will cancel out, like A cancels out in (37). This is why care must be taken to let the prior for the regression coefficients [image: there is no content], (10), be proper, while, at the same time, as both a mathematical and a modeling convenience, one may let the prior of [image: there is no content], (18), be improper.




6. A Continuum of Informativeness


The Jeffreys prior for location parameters (32),


pβjIdβj∝dβj,for−∞≤βj≤∞,








represents a limit of gross ignorance as we are even ignorant about the possible limits of the parameters [image: there is no content]. This gross ignorance leads to evidences that are extremely conservative in that they will always choose the regression model with least number of regression coefficients, (38).



An opposite limit of gross knowledgeableness is the empirical “sure thing” prior [3]:


pββ^,“surething”=δβ−β^,



(39)




where [image: there is no content] is the multivariate Dirac delta function for which we have


∫−∞∞δx−cfxdx=fc.



(40)




The evidence that corresponds with the “sure thing” prior may be derived as, (9), (14), (18), (26), (39), and (40):


pyX,β^,“surething”=∫0∞∫−∞∞pσ,β,yX,β^,“surething”dβdσ=∫0∞∫−∞∞pσIpββ^,“surething”pyσ,X,β,Mdβdσ∝1y−y^N,



(41)




where the “∝” symbol is used to absorb the factor AΓN/2/2πN/2.



Since an increase in the number of predictors m tends to decrease the length of the error vector [image: there is no content], with a limit length of zero as the number of predictors m tends to the sample size N:


y−y^→0,asm→N,



(42)




we have that, (41) and (42),


pyX,β^,“surething”→∞,asm→N.



(43)




So, the gross knowledgeableness of the “sure thing” prior leads to evidences that are extremely liberal in that they will tend to choose regression models which have the largest number of regression coefficients.



In what follows we will derive a suite of priors on the continuum of informativeness that are more informed than the improper Jeffreys prior for location parameters (32) and less knowledgeable than the “sure thing” prior (39). It will be shown that the corresponding evidences, as a consequence, will be less conservative than the evidence (34) in its limit of [image: there is no content], and less liberal than the maximum likelihood evidence (41).




7. A Proper Ignorance Prior


We now proceed to construct a more informed, proper (i.e., non-zero) inverse normalizing “constant” C for the prior (10). By way of (7) and (14), we have for a [image: there is no content] predictor matrix X of rank m that


[image: there is no content]



(44)




where


[image: there is no content]



(45)




and [image: there is no content], (8). Closer inspection of (44) shows us that the parameter space of [image: there is no content] is constrained by the difference vector [image: there is no content].



For the special case where the predictor matrix X is an [image: there is no content] vector [image: there is no content] we have that


[image: there is no content]



(46)




where [image: there is no content] is the angle between the predictor vector [image: there is no content] and the difference vector [image: there is no content]. Given that [image: there is no content], we may by way of (46) put definite bounds on [image: there is no content]:


[image: there is no content]



(47)




So, if we assign a uniform distribution to the regression coefficient [image: there is no content], then this uniform distribution is defined on a line-piece of length [image: there is no content]. It follows that for the case of just the one regression coefficient, the prior (10) is


pβx,maxz,I=x2maxz



(48)




where (48) is understood to be defined on the interval (47) which is centered at the origin.



In order to generalize (48) to the general multivariate case, we first must generalize (47) to its multivariate case. This may be done as follows [4]. Let X be a [image: there is no content] predictor matrix consisting of m independent vectors [image: there is no content]. The vectors [image: there is no content], because of their independence, then will span a m-dimensional subspace [image: there is no content]. It follows, trivially, that we may decompose [image: there is no content] into a part that lies inside of this subspace and a part that lies outside, say,


[image: there is no content]



(49)




where [image: there is no content] is the part of [image: there is no content] that is projected on [image: there is no content] and [image: there is no content] is the part of [image: there is no content] that is orthogonal to [image: there is no content]. The orthogonality of [image: there is no content] to [image: there is no content] implies that


[image: there is no content]



(50)




for [image: there is no content], whereas the fact that [image: there is no content] is a projection on [image: there is no content] implies that


z^=∑j=1mxjβj,



(51)




where, by construction, (49), (50), and the assumed independence of the [image: there is no content],


[image: there is no content]



(52)




Now, because of the independence of the [image: there is no content] we have that


[image: there is no content]



(53)




for [image: there is no content]. So, if we take the norm of (51) we find


z^2=∑j=1mxjβj2=z^2∑j=1mcos2ϕj.



(54)




It follows from (54) that the angles [image: there is no content] in (52) must obey the constraint


[image: there is no content]



(55)




Combining (52) and (55), we see that the regression coefficients [image: there is no content] must lie on the surface of an m-variate ellipsoid centered at the origin and with axes which have respective lengths of


[image: there is no content]



(56)







Since


[image: there is no content]



(57)




the axes (56) may be maximized through our prior knowledge of the maximal length of of the outcome variable [image: there is no content]:


[image: there is no content]



(58)




It follows that the regression coefficients [image: there is no content] are constrained to lie in the m-variate ellipsoid that is centered at the origin and has axes of length (58). If we substitute (58) into the identity for the volume of an m-variate ellipsoid


[image: there is no content]



(59)




we find that the parameter space of [image: there is no content] has a maximal prior volume of


[image: there is no content]



(60)







Now, let [image: there is no content]. Then for orthogonal predictors [image: there is no content] the product of the norms is equivalent to the square root of the determinant of [image: there is no content], that is,


[image: there is no content]



(61)




which is also the volume of the parallelepiped defined by the vectors [image: there is no content]. If the predictor matrix X is non-orthogonal, then we may use a Gram–Schmidt process to transform X to the orthogonal matrix [image: there is no content], say, where, because of invariance of the volume of a parallelepiped under orthogonalization,


[image: there is no content]



(62)







So, by way of (60), (61), and (62), it follows that (47) generalizes to the statement that for general (i.e., non-orthogonal) [image: there is no content] predictor matrices X the regression coefficient vectors [image: there is no content] are constrained to lie in an m-dimensional ellipsoid which is centered on the origin and has a volume of


[image: there is no content]



(63)




And the inverse of this volume gives us the corresponding multivariate generalization of the uniform prior (48):


pβX,maxz,I=Γm+2/2πm/2XTX1/2maxzm,



(64)




where (64) is understood to be defined on some ellipsoid having volume (63) and a centroid located at the origin.



Because of the triangle inequality [10], we have that


[image: there is no content]



(65)




From (45) and (65), it follows trivially that


[image: there is no content]



(66)




As to the first term in the right-hand of (66), let [image: there is no content] be a prior assessment of the maximum absolute value of the dependent variable y. Then we may assign the following simple bound on the length of the vector [image: there is no content]:


[image: there is no content]



(67)




As to the second term in the right-hand of (66), the error vector [image: there is no content] has known multivariate probability distribution (8). If we rewrite the elements in [image: there is no content] as a function of its norm [image: there is no content] and the angles [image: there is no content] [6]


e1=ecosα1cosα2cosα3⋯cosαN−qcosαN−q+1⋯cosαN−3cosαN−2cosαN−1e2=ecosα1cosα2cosα3⋯cosαN−qcosαN−q+1⋯cosαN−3cosαN−2sinαN−1e3=ecosα1cosα2cosα3⋯cosαN−qcosαN−q+1⋯cosαN−3sinαN−2⋮eq=ecosα1cosα2cosα3⋯cosαN−qsinαN−q+1⋮eN−2=ecosα1cosα2sinα3eN−1=ecosα1sinα2eN=esinα1,



(68)




where [image: there is no content], [image: there is no content], for [image: there is no content], and [image: there is no content], and which has as its Jacobian


[image: there is no content]



(69)




then it may be checked that the polar transformation (68) gives, as it should,


[image: there is no content]



(70)




So, by way of (69) and (70), we may map (8) from a Cartesian to a polar coordinate system. This gives the transformed probability distribution


[image: there is no content]



(71)




Using the identities


∫π/2π/2cosN−i−1αidαi=ΓN−i/2ΓN−i−1/2+1,



(72)




for [image: there is no content], and


[image: there is no content]



(73)




we may integrate (71) over the [image: there is no content] nuisance variables [image: there is no content] and, so, obtain the univariate probability distribution of the norm [image: there is no content],


peσ,I=2eN−12σ2N/2ΓN/2exp−e22σ2,



(74)




which has a mean


Eeσ,I=2ΓN+1/2ΓN/2σ≈N−1σ



(75)




and a standard deviation


stdeσ,I=N−2ΓN+1/2ΓN/22σ≈σ2.



(76)




By way of (75) and (76), we may set a probabilistic bound on [image: there is no content] in (66), that is, we may let [image: there is no content] be the k-sigma upper bound


maxe=UBe=Eeσ,I+kstdeσ,I≈N−1+k2σ.



(77)




In what follows, we will assume sample sizes [image: there is no content] and, consequently, treat the right-hand approximation in (77) as an equality.



By way of (64), (66), (67), and (77), we then obtain the proper ignorance prior [2]


pβX,maxy,k,σ,I=Γm+2/2XTX1/2πm/2Nmaxy+N−1+k2σm,



(78)




where, as in (64), it is understood that (78) is defined on some ellipsoid which has the origin as its centroid. The proper ignorance prior simplifies to


pβX,maxy,k,σ,I≈σmaxy+σm1Nm/2Γm+22XTX1/2πσ2m/2,



(79)




for [image: there is no content], where k is some sigma-level for the upper bound (77).




8. A More Informed Manor’s Prior


If apart from the maximum absolute value [image: there is no content] we also have prior knowledge about the minimum and maximum values of y, then we may rewrite (7) as


[image: there is no content]



(80)




where [image: there is no content] is a vector of ones and [image: there is no content] is the center of the interval [image: there is no content]. Let


c=xT12miny+maxy1xTxandw=y−miny+maxy21−e.



(81)




Then (47) becomes


[image: there is no content]



(82)




It follows that for the case of just one regression coefficient, the prior (10) is given as


pβx,maxw,I=x2maxw,



(83)




where(83) is understood to be defined on the interval (82) which is centered at c, (81). Let


[image: there is no content]



(84)




Then, for the case where X is a [image: there is no content] predictor matrix, (82) generalizes to the statement that [image: there is no content] is constrained to lie in an m-dimensional ellipsoid which has a centroid [image: there is no content] and a volume [4]


[image: there is no content]



(85)




The inverse of this volume gives us the corresponding multivariate generalization of the uniform prior (83):


pβX,maxw,I=Γm+2/2πm/2XTX1/2maxwm.



(86)




Since [image: there is no content] is the center of the interval [image: there is no content] which has a range of [image: there is no content], we have that


maxy−miny+maxy21=Nmaxy−miny2.



(87)




So it follows, (45), (65), (66), (77), (81), and (87), that


maxw=Nmaxy−miny2+N−1+k2σ.



(88)




Substituting (88) into (86), we obtain the more informed Manor’s prior [2]


pβX,miny,maxy,k,σ,I=Γm+2/2XTX1/2πm/2Nmaxy−miny2+N−1+k2σm,



(89)




where it is understood that (89) is defined on some ellipsoid which has as its centroid [image: there is no content], (84). Manor’s prior simplifies to


pβX,miny,maxy,k,σ,I≈σmaxy−miny2+σm1Nm/2Γm+22XTX1/2πσ2m/2,



(90)




for [image: there is no content], where k is some sigma-level for the upper bound (77).




9. An Even More Informed Neeley’s Prior


Alternatively, if we have prior knowledge about the mean [image: there is no content] and the variance [image: there is no content] of the dependent variable y, then, based on that information alone, by way of a maximum entropy argument [11], which also lets us assign (8) to the error vector [image: there is no content] in (7), we may assign a normal distribution as an informative prior to this dependent variable; that is,


[image: there is no content]



(91)




Let


[image: there is no content]



(92)




By way of (8), (91), (92), and the fact that the mean and variance of a sum of stochastics are the sum of, respectively, the means and variances of those stochastics [12], we then have


[image: there is no content]



(93)




Since [image: there is no content] and [image: there is no content] both have a zero mean vector and a diagonal covariance matrix, (8) and (93), it follows from (77) that


maxu=UBu≈N−1+k2φ2+σ2.



(94)




In what follows, we will assume sample sizes [image: there is no content] and, consequently, treat the right-hand approximation in (94) as an equality. Substituting (94) into (86), we obtain the even more informed Neeley’s prior [2]


pβX,φ,k,σ,I=Γm+2/2XTX1/2πm/2N−1+k2φ2+σ2m,



(95)




where it is understood, as in (89), that (95) is defined on some ellipsoid, which, however, now has a centroid located at


[image: there is no content]



(96)




Neeley’s prior simplifies to


pβX,φ,k,σ,I≈σφ2+σ2m1Nm/2Γm+22XTX1/2πσ2m/2,



(97)




for [image: there is no content], where k is some sigma-level for the upper bound (77).




10. The Parsimonious Constantineau’s Prior


By way of (7) and (14), we may, in principle, come to the inequality


[image: there is no content]



(98)




where [image: there is no content], (8). So for the special case of an [image: there is no content] predictor vector [image: there is no content], we have that


[image: there is no content]



(99)




where [image: there is no content] is the angle between the predictor vector [image: there is no content] and the error vector [image: there is no content]. Given that [image: there is no content], we may by way of (77) and (99) put the following bounds on [image: there is no content]:


β^−N−1+k2σx≤β≤β^+N−1+k2σx.



(100)




For the case where X is a [image: there is no content] predictor matrix, (100) generalizes to the statement that [image: there is no content] is constrained to lie in an m-dimensional ellipsoid which is centered on [image: there is no content] and has a volume of


V=πm/2Γm+2/2N−1+k2σmXTX1/2.



(101)




The inverse of this volume gives us the parsimonious Constantineau’s prior [2]


pβX,k,σ,I,S=Γm+2/2XTX1/2πm/2N−1+k2σm,



(102)




where S is the stipulation


S≡‘‘centroidpriorlocatedatβ^.’’



(103)




This prior simplifies to


pβX,k,σ,I,S≈1Nm/2Γm+22XTX1/2πσ2m/2,



(104)




for [image: there is no content], where k is some sigma-level for the upper bound (77).



Constantineau’s prior (102) is the most parsimonious of the proposed priors, as it has the smallest k-sigma parameter space volume V. But it will materialize later on that there is an even more parsimonious “stipulation prior” already out there, be it only by implication.




11. The Coverage of the Proposed Priors


In order to demonstrate that (16) tends to hold as an equality for the proposed proper uniform priors, we only need to show that (16) does so for Constantineau’s prior (102), as this prior is the most parsimonious of the proposed priors. That is, we will need to show that the second right-hand term of (15), for all intents and purposes, evaluates to 1 when integrated over [image: there is no content], the domain implied by (101):


[image: there is no content]



(105)







Let [image: there is no content] be a transformation of the predictor matrix X such that the columns in [image: there is no content] are orthogonal, or, equivalently, [image: there is no content] is diagonal. Then (105) may be evaluated by way of the transformation


[image: there is no content]



(106)




which has a Jacobian of [image: there is no content]. Because of the fact that [6]


[image: there is no content]



(107)




and the orthogonality of [image: there is no content] together with (61), we may rewrite the integrand in (105) for the transformation (106) as


[image: there is no content]



(108)




Also, if we go from X to the orthogonal [image: there is no content] in (108), then the prior (102) undergoes (by construction) a corresponding transformation, (61),


pβX˜,σ,I,S˜=Γm+2/2X˜TX˜1/2πm/2N−1+k2σm=Γm+2/2πm/2∏j=1mx˜jN−1+k2σ,



(109)




where k is the sigma-level of the upper bound of the length of the error vector, (77), and [image: there is no content] is the transformed stipulation


S˜≡‘‘centroidpriorlocatedatγ^.



(110)







Because of the orthogonality of the [image: there is no content], the fact that (109) is the inverse of the volume of the prior accessible parameter space, and the fact that this volume is in the form of an ellipsoid with axes of length (59)


rj=N−1+k2σx˜j,



(111)




it follows that the rotated parameter space (106) is defined by the ellipsoid


[image: there is no content]



(112)




The transformation


[image: there is no content]



(113)




for [image: there is no content], has a Jacobian of


[image: there is no content]



(114)




By way of (106), (108), (113), and (114), we find for the integral in (105) that


[image: there is no content]



(115)




where the parameter space [image: there is no content] is defined as a sphere which has a radius [image: there is no content] and is centered at the origin, (112) and (113):


[image: there is no content]



(116)




By way of the polar transformation (68) and steps (69) through (73), we find that the right-hand side of (115) evaluates as


∫0N−1+k22ηm−12m/2Γm/2exp−η22dη=1−Γm2,N−1+k222Γm2,



(117)




where [image: there is no content] and [image: there is no content] are the incomplete and the ordinary (Euler) gamma functions, respectively:


Γa,b=∫b∞ta−1exp−tdtandΓa=Γa,0.



(118)




Substituting (117) into (115), we find that requirement (105) translates to the equivalent requirement


[image: there is no content]



(119)




And it may be checked (numerically) that this requirement holds for [image: there is no content], (77), even in the (extreme) limit case where the number of predictors m tends to the sample size N. Moreover, it may be checked, by setting [image: there is no content], that it is the [image: there is no content] term in Constantineau’s prior (102) which ensures that requirement (119) holds for the limit case where m tends to N.




12. What is the Data?


Before we go on, we now will discuss two questions that need addressing. The first question is whether or not the predictor matrix X is part of the data. The second question is whether or not the stipulation (103) makes the proposed parsimonious Constantineau’s prior empirical or not.



In answer to the first question, in Bayesian regression analysis the predictor variables in X are assumed to be [6]: “fixed non-stochastic variables,” or, alternatively, “random variables distributed independently of the [image: there is no content], with a pdf not [italics by Zellner himself] involving the parameters [image: there is no content] and [image: there is no content].” Stated differently, the likelihood [image: there is no content] is a probability of the response vector [image: there is no content], and not of the predictor matrix X. Following this line of reasoning, the predictor matrix X should not be considered to be part of the data. Rather, X is part of the prior problem structure, in that for a given predictor matrix X a corresponding response vector [image: there is no content] is obtained in the data gathering phase. So, where in [4] (i.e., Part I of this research) it was proposed that in order to construct a parsimonious prior for regression coefficients one needed to assign a minimal value to the determinant of [image: there is no content] based on the prior information at hand, a non-trivial task. It was argued in [2] (i.e., Part II) that the predictor matrix X is not a part of the data and, consequently, may be used for the construction of proper priors.



In answer to the second question, if “we adopt the posture of the scrupulous fair judge who insists that fairness in comparing models requires that each is delivering the best performance of which it is capable, by giving each the best possible prior probability for its parameters” [11], then we may defend the use of the cheap and cheerful prior (102), with its stipulation (103), as being the prior that represents some limit of parsimony, which is not influenced by our state of ignorance regarding the dependent variable y. However, if we “consider it necessary to be cruel realists and judge each model taking into account the prior information we actually have pertaining to it, that is, we penalize a model if we do not have the best possible prior information about the dependent variable y, although that is not really a fault of the model itself” [11], then we will be forced to revert to the more solemn priors (78), (89), and (95).




13. The Corresponding Evidences


By way of (10), we may substitute (78) into (16), and so obtain the evidence value of the likelihood model M and prior information I, conditional on [image: there is no content]:


pyk,σ,X,maxy,M,I≈2m/2Γm+2/2Nmaxyσ+1+k2Nm12πσ2N/2exp−12σ2y−y^Ty−y^.



(120)




If [image: there is no content] is unknown, then, as both a mathematical and a modeling convenience (see discussion of Section 5), we may assign the improper Jeffreys prior for scaling parameters (18):


[image: there is no content]



(121)




where A is some normalizing constant, to the unknown [image: there is no content] in the evidence (120), in order to integrate with respect to this unknown parameter:


[image: there is no content]



(122)




where, (120) and (121),


pσ,yk,X,maxy,M,I≈2m/2Γm+2/2Nmaxyσ+1+k2NmA2πN/2σN+1exp−12σ2y−y^Ty−y^.



(123)




We may conveniently factorize (123) as,


pσ,yk,X,maxy,M,I≈2m/2Γm+2/2Nmaxyσ+1+k2Nm1y−y^NAΓN/22πN/2×2ΓN/2y−y^22N/21σN+1exp−12σ2y−y^Ty−y^.



(124)




The last term in (124) evaluates to 1 when integrated over [image: there is no content], as it has the form of an inverted gamma distribution [6]. Also, the last term in (124) will tend to a Dirac delta distribution as [image: there is no content], [9]; that is,


2ΓN/2y−y^22N/21σN+1exp−12σ2y−y^Ty−y^→δσ−y−y^N.



(125)




So, by way of (125), the property (40), and the factorization (124), we have that the evidence (122) evaluates as


pyk,X,maxy,M,I∝1+k2NNmaxyy−y^+1+k2Nm22N+kmΓm+221y−y^N,



(126)




where k is the upper-bound sigma level of the maximum length of the error vector [image: there is no content], (77). If we assume that [image: there is no content], then the evidence (126) simplifies to


pyk,X,maxy,M,I∝Nmaxyy−y^+1−m2Nm/2Γm+221y−y^N.



(127)







Likewise, if we substitute (89), (95), and (102) into (16), integrate over [image: there is no content], and assume [image: there is no content], we obtain the respective approximate evidence values:


pyk,X,miny,maxy,M,I∝Nmaxy−miny2y−y^+1−m2Nm/2Γm+221y−y^N,



(128)




and


pyk,X,φ,M,I∝Nφ2y−y^2+1−m/22Nm/2Γm+221y−y^N,



(129)




and


pyk,X,M,I,S∝2NmΓm+221y−y^N,



(130)




where the “∝” symbol is used to absorb the common factors AΓN/2/2πN/2, which are shared by all the competing regression models and which cancel out as the posterior probabilities of these models are computed.



The above evidences can be deconstructed into a goodness of fit factor, which is also the implied evidence (41) of the “sure thing” prior (39):


GoodnessofFit=1y−y^N,



(131)




and an Occam factor which penalizes the shrinkage of the posterior accessible parameter space of [image: there is no content] relative to the prior accessible space. Now, all Occam factors are a monotonic decreasing function in the number of predictors m. But only the Occam factors of the “cruelly realistic” evidences (127)–(129) have terms which are dependent upon our state of prior knowledge regarding the dependent variable y.



If in the construction of the priors (79), (90), or (97) we make prior value assignments that grossly overestimate the maximum absolute value, range, and standard deviation, respectively, of the dependent variable y, then the Occam factors in the corresponding evidences, (127)–(129), stand ready to punish us for making consequent prior parameter space assignments that are too voluminous. Whereas, if we make prior value assignments that grossly underestimate these aspects of the dependent variable y, then the Occam factors of the cruelly realistic evidences (127)–(129) will tend to the Occam factor of the “scrupulously fair” evidence (130), as the cruelly realistic evidences, as a consequence, tend to the scrupulously fair evidence.



For prior value assignments that approximate the underlying ‘true’ values of the maximum absolute value, range, and standard deviation, respectively, of the dependent variable y, the Occam factors of the evidences (127)–(129) tend to the inequality:


OccamFactor≤2−m/22NmΓm+22,



(132)




seeing that for accurate prior value assignments we have that, (125),


Nmaxyy−y^≥Nmaxy−miny/2y−y^>Nφy−y^≥Nσy−y^≈1,



(133)




where [image: there is no content] is the prior standard deviation of y which is estimated by the root mean square error of a simple intercept-only regression model and [image: there is no content] is the prior model error which is estimated by the root mean square error of the full regression model.



Note that equality will hold in (132) only for the evidence (129) of an intercept-only regression model in combination with an accurate prior value assignment for [image: there is no content], because only then do we have that [image: there is no content] is approximated by [image: there is no content].




14. Connecting the Derived Evidences with the BIC and the AIC


In order to get our bearings for the proposed priors and their consequent evidences, we will connect the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) to these evidences.



The BIC is given as [13]


[image: there is no content]



(134)




where, given any two estimated models, the model with the lower value of BIC is the one to be preferred. The BIC has an implied evidence of


[image: there is no content]



(135)




where S is the stipulation (103)


S≡‘‘centroidpriorlocatedatβ^.’’








and where we assume that the factor AΓN/2/2πN/2 has been absorbed in the proportionality sign. For [image: there is no content], the BIC evidence (135) differs from the Constantineau’s evidence (130) by an approximate factor


pyk,X,M,I,SpyX,BIC,S≈2m/2Γm+22.



(136)




Let [image: there is no content] be the factor by which the lengths of the axes of the parameter space of the implied BIC prior differs from the lengths of the axes of the parameter space of Constantineau’s prior (102). Then we have that


[image: there is no content]



(137)




as the lengths of the prior ellipsoid parameter spaces factor inversely into their corresponding evidences. Combining (136) and (137), and making use of the Stirling approximation


[image: there is no content]



(138)




we find that the axes of the implied BIC prior tend to be longer by a factor


cBIC≈2m/2Γm+221/m≈me11/2.



(139)




than the axes of Constantineau’s prior. It follows that the implied BIC prior is approximately given as, (104) and (139),


pβX,σ,BIC,S≈e1mm/21Nm/2Γm+22XTX1/2πσ2m/2.



(140)




And it may be checked that the requirement (105) holds for this implied prior, as we have that the equivalent requirement (119),


[image: there is no content]



(141)




holds for [image: there is no content], where it is understood that in a regression analysis the number of parameters m may never exceed the sample size N.



The AIC is given as [13]


[image: there is no content]



(142)




where, given any two estimated models, the model with the lower value of AIC is the one to be preferred. The AIC has an implied evidence of


[image: there is no content]



(143)




where S is the stipulation (103). For [image: there is no content], the AIC evidence (143) differs from Constantineau’s evidence (130) by an approximate factor


pyX,M,I,SpyX,AIC,S≈em2Nm/2Γm+22.



(144)




Let [image: there is no content] be the factor by which the lengths of the axes of the parameter space of the implied BIC prior differs from the lengths of the axes of the parameter space of Constantineau’s prior (102). Then we have that, (137),


[image: there is no content]



(145)




Combining (144) and (145), and making use of the Stirling approximation (138), we find that the axes of the implied AIC prior tend to be shorter by a factor


cAIC≈em2Nm/2Γm+221/m≈e1mN1/2



(146)




than the axes of Constantineau’s prior. It follows that the implied AIC prior is approximately given as, (104) and (146),


pβX,σ,AIC,S≈1e1mm/2Γm+22XTX1/2πσ2m/2.



(147)







Now, if we look at the coverage of the AIC prior (147), then we find that, (119),


[image: there is no content]



(148)




even as [image: there is no content]. Moreover, it would seem that the second argument of the incomplete gamma function in (148) is the threshold level below which, for a given first argument of [image: there is no content], the requirement (147) no longer holds for general m, as we have for [image: there is no content] that, on the one hand,


[image: there is no content]



(149)




and, on the other hand,


[image: there is no content]



(150)




Stated differently, it would seem that it is the implied AIC prior (147) that is optimally parsimonious, rather than Constantineau’s prior (102), as this AIC prior may very well be the uniform proper prior which has the smallest possible parameter space for which requirement (105) will always hold.



We summarize, of the three “stipulation priors”, (102), (140), and (147), the BIC prior is the most conservative in that it has an evidence that penalizes the severest for the number of parameters m, followed by Constantineau’s prior, which, though parsimonious, is not the optimally parsimonious prior, as was initially thought in part II of this research [2]. This honor may very well go to the AIC prior, should it turn out that the value of [image: there is no content] in the second argument of (148) is indeed the exact threshold point above which (119) will always hold.




15. The Corresponding Regression Model


If we combine the prior (18) of the unknown [image: there is no content] and the respective priors of the regression coefficients [image: there is no content], (78), (89), (95), (102), (140), and (147), with the likelihood model (9), and integrate with respect to the unknown [image: there is no content], we obtain the posterior of the unknown [image: there is no content]s, (21) through (28):


pβy,X,M,I=ΓN+m/2ΓN/2πm/21Ns2XTX1/21+β−β^T1Ns2XTXβ−β^N+m/2,



(151)




where


[image: there is no content]



(152)




Stated differently, as the normalizing constant C of (10) in the priors (78), (89), (95), (102), (140), and (147), is not so much a constant as it is a function of [image: there is no content]:


[image: there is no content]



(153)




we have that the degrees of freedom of the multivariate Student-t distribution (151) and, consequently, the sample error variance (152), are always N, irrespective of the number of predictors m, hence the “seemingly” interjection following (29).



The posterior (151) has a mean of [image: there is no content], (14), a covariance matrix of [image: there is no content], (152), and a corresponding predictive probability distribution for [image: there is no content], given a vector [image: there is no content] vector of predictor values [image: there is no content], [6]:


py^x,y,X,M,I=ΓN+1/2ΓN/2πhNs21+hNs2y^−xTβ^2N+1/2,



(154)




where


[image: there is no content]



(155)




which is in the univariate Student-t form and has expected value, (14), and standard deviation, (152),


Ey^=xTβ^andstdy^=sNN−21+xTXTX−1x.



(156)








16. Discussion


This research into proper uniform priors was inspired by our research into spline models [5,14]. Spline models may have hundreds of regression coefficients. So, in using these models in an actual data-analysis, one is forced to think about the most suitable bounds of the proper non-informative priors of the unknown regression parameters. Not because this will give us better parameter estimates, but simply because taking a proper prior with overly large bounds will severely punish the larger regression models.



Grappling with the problem of defining a parsimonious proper prior for regression coefficients, it was quickly realized that the proposed priors should include the square root of [image: there is no content], so that this term could cancel out in the evidence derivations, since this term is not invariant for otherwise equivalent B- and C-spline regression analysis formulations (in which pairs of triangles in the B-spline analysis were forced to connect with continuity orders equal to the polynomial orders in order to merge these paired triangles into squares.) Moreover, it was found that dropping the square root of [image: there is no content] in an ad-hoc fashion from the regression analysis evidences proposed in [6,7] gives satisfactory results, in terms of (spline) regression model selections that commit neither gross under- nor gross over-fitting. So, the first impetus of this research was the desire to find a principled argument by which we would be allowed to drop the square root of [image: there is no content] from the evidence, a term which was problematic in that it is non-invariant under certain transformations of the predictor variables and which seemed to be not that essential for a successful model selection.



Apart from the need to include the square root of [image: there is no content] in the proper priors, or, equivalently, the need to drop this term from the evidences, it was also realized that regression coefficients are bounded by certain aspects of the predictor matrix X and the dependent variable vector [image: there is no content]. This second realization led to the finding that the prior accessible space of regression coefficients is ellipsoid in form, which then provided us in the first part of this research [4] with the sought for rational of the inclusion of the square root of [image: there is no content] in the proper priors.



Now, in the first part of this research it was implicitly assumed that the predictor matrix X is part of the data, which forced us to make a prior estimate of the (scalar) value of the square root of [image: there is no content]. This estimated value then would be weighted by the actual observed value of the square root of [image: there is no content]. But as this prior estimation is a non-trivial task [4], we were forced to think on how to justify the use of the actual observed values of the square root of [image: there is no content], rather than the prior estimates of these values. This then led us to the second part of this research [2], in which it was observed that X may very well in practicality be obtained during the data-gathering phase, but that X formally is not part of the data, as it admits no likelihood function in ordinary regression analysis. Also, in the second part of this research there was presented a suite of proper uniform priors for the regression coefficients proper [image: there is no content], rather than, as was realized in hindsight, a single proper uniform prior for the estimated regression coefficients [image: there is no content] given in [4].



It was found in the second part of this research that if the actual observed value of the square root of [image: there is no content] is used in the construction of the proper prior for regression coefficients, then the user only needs to assign prior values to either the maximum absolute value, or the minimum and maximum, or the standard deviation of the dependent variable y, in order to construct his cruelly realistic priors. Alternatively, if the user is willing to accept empirical overtones in his prior, by way of the stipulation that the proper uniform prior is to be centered at the to be estimated regression coefficients [image: there is no content], the need for prior value assignments to the characteristics of the dependent variable y may be circumvented, as we construct Constantineau’s scrupulously fair stipulation prior.



In the third part of this research it has now been checked analytically that the accessible parameter space of the in [2] proposed priors cover the true values of [image: there is no content] with a probability that tends to one. It has also been found that the implied AIC prior is a viable stipulation prior, as its accessible parameter space covers the true values of [image: there is no content] with a probability one. Moreover, it may very well be that the AIC stipulation prior is optimally parsimonious as it may represent the inverse of the smallest prior volume which covers the true value of [image: there is no content] with a probability one, when centered at [image: there is no content]. It follows that Constantineau’s stipulation prior takes the middle position in terms of conservativeness, as the implied BIC stipulation prior is more conservative in terms of the penalizing for the number of parameters m, whereas the implied AIC stipulation prior is more liberal.



Also, there are given, in Appendix A below, two Monte Carlo studies on the performance of the discussed priors, in terms of their implied evidences, in C-spline regression model selection problems. It is found in these studies that, depending on the accuracy of the prior assessments of the characteristics of the dependent variable y, the priors that were proposed in the second part of this research fill in the space between the BIC and AIC on a continuum of conservativeness, in terms of the number of parameters chosen.
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Appendix A. Two Monte Carlo Studies


We now will use the proposed evidences (127)–(130), together with the implied BIC and AIC evidences, (135) and (143), respectively, and the “sure thing” evidence (41), for two Monte Carlo studies which involve two-dimensional C-spline regression models. But before we do so, we first will give a short introduction to spline models.



In ordinary polynomial regression we have that the more non-linear the target function [image: there is no content] is, the higher the order of the polynomial basis d needs to be, in order to adequately capture that non-linearity [15]:


[image: there is no content]



(A1)




where [image: there is no content].



The polynomial model (A1) has [image: there is no content] free parameters. There is a limit, however, on the order d that can be used in a polynomial regression analysis, as the solution will tend to degenerate from some polynomial order [image: there is no content] onward, as the inverse of [image: there is no content], where [image: there is no content] is the [image: there is no content] polynomial predictor matrix, becomes ever more ill-conditioned with increasing polynomial order d. This limit on the polynomial order d translates directly to a limit on the number of parameters m at our disposal for capturing the non-linearity in the target function.



One way to circumvent the problem of the bounded number of free parameters m is to use a spline model. In spline models one partitions the original domain in sub-domains and on these sub-domains piecewise polynomials of order d like, for example, (A1) are fitted under the constraint that they should connect with rth order continuity on their sub-domain boundaries. The power of spline models lies in the fact that even the most non-linear of functions [image: there is no content] will tend to become linear on its sub-domains as the size of the sub-domains tends to zero. In B-spline models the sub-domains are taken to be triangles/tetrahedra [14,16], whereas in C-spline models the sub-domains are taken to be squares/cubes [5]; see Appendix B for a discussion of C-splines.



Since in a spline regression analysis piecewise polynomials are fitted to each of the sub-domains of the given partition, we have that splines models, like neural networks [17], allow for highly flexible models with large m. This is why, whenever there is the potential for measurement errors in the data, Bayesian model selection is needed to protect against the problem of over-fitting.



In closing, note that the results of the following Monte Carlo studies are presented in terms of evidences, rather than in terms of the priors from which they were derived. This is because the choice for a particular proper uniform prior in regression analysis problems translates directly to a choice for a particular evidence that is to be used in the model selection phase, (5) or (6).



Appendix A.1. Monte Carlo Study 1


In the first Monte Carlo study we sample from the target function


fx,y=sinπx2+2y2,for0≤x,y≤1,



(A2)




which is shown in Figure A1. The sampling in this first study is done with sample sizes [image: there is no content] and N = 10,000, and with Gaussian noise levels of [image: there is no content], and 2. The evidences must choose for each of these conditions amongst 42 models with [image: there is no content] parameters.




Figure A1. Target function (A2).



[image: Entropy 19 00250 g001]






In Figure A2 some representative examples of large size data sets are shown for the different noise levels [image: there is no content].




Figure A2. Noisy data sampled from target function (A2). Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with noisy data, noisy data minus true target value, and cross sections of the target function and noisy data.



[image: Entropy 19 00250 g002]






For [image: there is no content] it is found, Table A1, that the Ignorance, Manor, and BIC evidences are the most conservative of all the viable evidences in terms of the number of parameters m of the respective spline models. The Neeley and Constantineau evidences are slightly less conservative, as they choose for [image: there is no content] a model that is one order less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, and BIC evidences. The AIC evidence takes the high ground in that it is consistently less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure thing” evidence just chooses the largest model available, thus, consistently (grossly) over-fitting the data. Also, it may be noted that in the absence of noise (i.e., [image: there is no content]) all the evidences are in agreement in taking the model with the largest possible number of parameters; i.e., the model with a 7-by-7 partitioning, a polynomial order of [image: there is no content], and a continuity order of [image: there is no content].





Table A1. C-spline models (geometry g, polynomial order d, continuity order r) and number of parameters m that were chosen by the discussed evidences, for [image: there is no content] and under Gaussian noise levels [image: there is no content], and 2.







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Evidences

	
Model 1

	
[image: there is no content]

	
Model 2

	
[image: there is no content]

	
Model 3

	
[image: there is no content]

	
Model 4

	
[image: there is no content]






	
“Sure thing” (41)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484




	
AIC (143)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
49

	
[image: there is no content]

	
36

	
[image: there is no content]

	
36




	
Neeley (127), Constantineau (130)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
36

	
[image: there is no content]

	
25

	
[image: there is no content]

	
25




	
Ignorance (127), Manor (127), BIC (135)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
36

	
[image: there is no content]

	
25

	
[image: there is no content]

	
16








1 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 2 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 3 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 4 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].








In Figure A3, Figure A4, Figure A5 and Figure A6, the fitted C-spline models are given per evidence (group), starting with the “sure thing” evidence and in descending order of liberalness in terms of the number of parameters m. In Figure A6 there is a possible instance of under-fitting for a noise level of [image: there is no content] (i.e., fourth column) by the model which is picked by the Ignorance, Manor, and BIC evidences.










Figure A3. Sample size [image: there is no content] and C-spline models of target function (A2) are picked by the “sure thing” evidence (41) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g003]





Figure A4. Sample size [image: there is no content] and C-spline models of target function (A2) are picked by the AIC evidence (143) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g004]





Figure A5. Sample size [image: there is no content] and C-spline models of target function (A2) are picked by the Neeley and the Constantineau evidences, (129) and (130), for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g005]





Figure A6. Sample size [image: there is no content] and C-spline models of target function (A2) are picked by the Ignorance, Manor, and BIC evidences, (135), (127), and (128), for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g006]






In order to give the reader a more concrete sense of the discussed evidences, we give for the Gaussian noise level of [image: there is no content] the full output of the Bayesian model selection analysis in Table A2. It may be noted in these tables that the highest “sure thing” evidence must necessarily correspond with the lowest sample error standard deviation s, or, equivalently, the smallest sample error variance [image: there is no content], since we have that this sample error variance, (152),


[image: there is no content]



(A3)




is an inverse root of the “sure thing” evidence (41). Likewise, let the sample variance be given as


s02=1Ny−1y¯2=1N∑i=1Nyi−y¯2,



(A4)




where [image: there is no content] is the sample mean


[image: there is no content]



(A5)




then we have that the highest “sure thing” evidence must necessarily correspond with the highest R-square value, since we have that,


[image: there is no content]



(A6)




Stated differently, model selection based on R-square values is equivalent to model selection based on “sure thing” evidences (41).





Table A2. Output model selection analysis for data sampled from target function (A2), sample size [image: there is no content], and Gaussian error of [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
1

	
−21,383

	
1

	
−21,383

	
1

	
−21,353

	
1

	
−21,341

	
1

	
−21,371

	
13

	
−21,290

	
30

	
−21,265

	
30

	
0.99

	
30

	
0.32

	
25

	
2

	
3

	
2




	
2

	
−21,385

	
2

	
−21,385

	
2

	
−21,355

	
3

	
−21,344

	
2

	
−21,373

	
17

	
−21,292

	
31

	
−21,267

	
31

	
0.99

	
31

	
0.32

	
25

	
3

	
2

	
1




	
3

	
−21,403

	
3

	
−21,403

	
3

	
−21,359

	
2

	
−21,343

	
3

	
−21,392

	
1

	
−21,275

	
25

	
−21,239

	
25

	
0.99

	
25

	
0.33

	
36

	
2

	
3

	
1




	
4

	
−21,408

	
4

	
−21,407

	
4

	
−21,364

	
4

	
−21,348

	
4

	
−21,396

	
2

	
−21,279

	
27

	
−21,243

	
27

	
0.99

	
27

	
0.33

	
36

	
4

	
2

	
1




	
5

	
−21,410

	
5

	
−21,409

	
5

	
−21,366

	
5

	
−21,350

	
5

	
−21,398

	
4

	
−21,281

	
28

	
−21,245

	
28

	
0.99

	
28

	
0.33

	
36

	
3

	
3

	
2




	
6

	
−21,411

	
6

	
−21,411

	
7

	
−21,381

	
9

	
−21,369

	
6

	
−21,399

	
23

	
−21,318

	
32

	
−21,293

	
32

	
1.00

	
32

	
0.32

	
25

	
2

	
2

	
0




	
7

	
−21,412

	
7

	
−21,411

	
6

	
−21,368

	
6

	
−21,351

	
7

	
−21,400

	
6

	
−21,283

	
29

	
−21,247

	
29

	
0.99

	
29

	
0.33

	
36

	
5

	
1

	
0




	
8

	
−21,415

	
8

	
−21,415

	
8

	
−21,385

	
12

	
−21,373

	
8

	
−21,403

	
24

	
−21,322

	
33

	
−21,297

	
33

	
1.00

	
33

	
0.32

	
25

	
4

	
1

	
0




	
9

	
−21,449

	
9

	
−21,448

	
9

	
−21,389

	
7

	
−21,366

	
9

	
−21,440

	
3

	
−21,280

	
21

	
−21,231

	
21

	
0.99

	
21

	
0.33

	
49

	
2

	
3

	
0




	
10

	
−21,451

	
10

	
−21,450

	
10

	
−21,391

	
8

	
−21,369

	
10

	
−21,442

	
5

	
−21,282

	
22

	
−21,233

	
22

	
0.99

	
22

	
0.33

	
49

	
4

	
3

	
2




	
11

	
−21,452

	
11

	
−21,452

	
11

	
−21,393

	
10

	
−21,370

	
11

	
−21,443

	
8

	
−21,284

	
23

	
−21,235

	
23

	
0.99

	
23

	
0.33

	
49

	
5

	
2

	
1




	
12

	
−21,453

	
12

	
−21,452

	
12

	
−21,393

	
11

	
−21,370

	
12

	
−21,444

	
9

	
−21,284

	
24

	
−21,235

	
24

	
0.99

	
24

	
0.33

	
49

	
3

	
2

	
0




	
13

	
−21,459

	
13

	
−21,458

	
13

	
−21,399

	
13

	
−21,377

	
13

	
−21,450

	
16

	
−21,290

	
26

	
−21,241

	
26

	
0.99

	
26

	
0.33

	
49

	
6

	
1

	
0




	
14

	
−21,496

	
14

	
−21,495

	
14

	
−21,417

	
14

	
−21,388

	
14

	
−21,492

	
7

	
−21,283

	
17

	
−21,219

	
17

	
0.99

	
17

	
0.34

	
64

	
6

	
2

	
1




	
15

	
−21,498

	
15

	
−21,496

	
15

	
−21,419

	
15

	
−21,390

	
15

	
−21,494

	
10

	
−21,285

	
18

	
−21,221

	
18

	
0.99

	
18

	
0.34

	
64

	
3

	
3

	
1




	
16

	
−21,502

	
16

	
−21,501

	
16

	
−21,423

	
16

	
−21,394

	
16

	
−21,498

	
11

	
−21,289

	
19

	
−21,225

	
19

	
0.99

	
19

	
0.34

	
64

	
5

	
3

	
2




	
17

	
−21,502

	
17

	
−21,501

	
17

	
−21,424

	
17

	
−21,394

	
17

	
−21,498

	
12

	
−21,289

	
20

	
−21,225

	
20

	
0.99

	
20

	
0.34

	
64

	
7

	
1

	
0




	
18

	
−21,508

	
20

	
−21,508

	
23

	
−21,489

	
27

	
−21,482

	
20

	
−21,498

	
34

	
−21,446

	
36

	
−21,430

	
34

	
1.03

	
36

	
0.28

	
16

	
1

	
3

	
0




	
19

	
−21,508

	
19

	
−21,508

	
22

	
−21,489

	
26

	
−21,482

	
19

	
−21,498

	
33

	
−21,446

	
35

	
-21,430

	
35

	
1.03

	
35

	
0.28

	
16

	
1

	
3

	
1




	
20

	
−21,508

	
18

	
−21,508

	
21

	
−21,489

	
25

	
−21,482

	
18

	
−21,498

	
32

	
−21,446

	
34

	
−21,430

	
36

	
1.03

	
34

	
0.28

	
16

	
1

	
3

	
2




	
21

	
−21,509

	
21

	
−21,508

	
24

	
−21,489

	
28

	
−21,482

	
21

	
−21,498

	
35

	
−21,446

	
37

	
−21,430

	
37

	
1.03

	
37

	
0.28

	
16

	
2

	
2

	
1




	
22

	
−21,523

	
22

	
−21,523

	
28

	
−21,504

	
29

	
−21,497

	
22

	
−21,513

	
36

	
−21,461

	
38

	
−21,445

	
38

	
1.03

	
38

	
0.27

	
16

	
3

	
1

	
0




	
23

	
−21,550

	
23

	
−21,549

	
18

	
−21,451

	
18

	
−21,414

	
23

	
−21,554

	
14

	
−21,290

	
13

	
−21,209

	
13

	
0.98

	
13

	
0.34

	
81

	
7

	
2

	
1




	
24

	
−21,550

	
24

	
−21,549

	
19

	
−21,451

	
19

	
−21,414

	
24

	
−21,554

	
15

	
−21,290

	
14

	
−21,209

	
14

	
0.98

	
14

	
0.34

	
81

	
4

	
2

	
0




	
25

	
−21,559

	
25

	
−21,558

	
20

	
−21,460

	
20

	
−21,423

	
25

	
−21,563

	
18

	
−21,299

	
16

	
−21,218

	
16

	
0.99

	
16

	
0.34

	
81

	
6

	
3

	
2




	
26

	
−21,613

	
26

	
−21,611

	
25

	
−21,491

	
21

	
−21,445

	
26

	
−21,628

	
19

	
−21,302

	
11

	
−21,202

	
11

	
0.98

	
11

	
0.34

	
100

	
3

	
3

	
0




	
27

	
−21,620

	
27

	
−21,618

	
26

	
−21,497

	
22

	
−21,451

	
27

	
−21,634

	
21

	
−21,308

	
12

	
−21,208

	
12

	
0.98

	
12

	
0.34

	
100

	
4

	
3

	
1




	
28

	
−21,622

	
28

	
−21,621

	
27

	
−21,500

	
23

	
−21,454

	
28

	
−21,637

	
22

	
−21,311

	
15

	
−21,211

	
15

	
0.98

	
15

	
0.34

	
100

	
7

	
3

	
2




	
29

	
−21,663

	
29

	
−21,662

	
33

	
−21,652

	
35

	
−21,648

	
29

	
−21,655

	
39

	
−21,626

	
39

	
−21,617

	
39

	
1.07

	
39

	
0.22

	
9

	
2

	
1

	
0




	
30

	
−21,674

	
30

	
−21,671

	
29

	
−21,525

	
24

	
−21,469

	
30

	
−21,702

	
20

	
−21,308

	
9

	
−21,187

	
9

	
0.98

	
9

	
0.35

	
121

	
5

	
2

	
0




	
31

	
−21,714

	
32

	
−21,714

	
37

	
−21,704

	
39

	
−21,700

	
32

	
−21,707

	
41

	
−21,678

	
41

	
−21,669

	
40

	
1.08

	
41

	
0.21

	
9

	
1

	
2

	
0




	
32

	
−21,714

	
31

	
−21,714

	
36

	
−21,704

	
38

	
−21,700

	
31

	
−21,707

	
40

	
−21,678

	
40

	
−21,669

	
41

	
1.08

	
40

	
0.21

	
9

	
1

	
2

	
1




	
33

	
−21,756

	
33

	
−21,753

	
30

	
−21,580

	
30

	
−21,513

	
33

	
−21,802

	
26

	
−21,333

	
10

	
−21,189

	
10

	
0.98

	
10

	
0.34

	
144

	
5

	
3

	
1




	
34

	
−21,816

	
34

	
−21,813

	
31

	
−21,609

	
31

	
−21,530

	
34

	
−21,882

	
25

	
−21,332

	
5

	
−21,163

	
5

	
0.97

	
5

	
0.35

	
169

	
6

	
2

	
0




	
35

	
−21,829

	
35

	
−21,826

	
32

	
−21,622

	
32

	
−21,543

	
35

	
−21,895

	
27

	
−21,344

	
7

	
−21,175

	
7

	
0.98

	
7

	
0.35

	
169

	
4

	
3

	
0




	
36

	
−21,919

	
36

	
−21,916

	
34

	
−21,679

	
34

	
−21,588

	
36

	
−22,010

	
29

	
−21,372

	
8

	
−21,176

	
8

	
0.98

	
8

	
0.35

	
196

	
6

	
3

	
1




	
37

	
−21,963

	
37

	
−21,959

	
35

	
−21,686

	
33

	
−21,580

	
38

	
−22,080

	
28

	
−21,347

	
3

	
−21,122

	
3

	
0.97

	
3

	
0.36

	
225

	
7

	
2

	
0




	
38

	
−22,066

	
38

	
−22,066

	
41

	
−22,061

	
42

	
−22,060

	
37

	
−22,062

	
42

	
−22,049

	
42

	
−22,045

	
42

	
1.16

	
42

	
0.08

	
4

	
1

	
1

	
0




	
39

	
−22,085

	
39

	
−22,081

	
38

	
−21,771

	
36

	
−21,651

	
39

	
−22,236

	
30

	
−21,402

	
4

	
−21,146

	
4

	
0.97

	
4

	
0.36

	
256

	
5

	
3

	
0




	
40

	
−22,105

	
40

	
−22,101

	
39

	
−21,792

	
37

	
−21,672

	
40

	
−22,257

	
31

	
−21,423

	
6

	
−21,167

	
6

	
0.98

	
6

	
0.35

	
256

	
7

	
3

	
1




	
41

	
−22,378

	
41

	
−22,371

	
40

	
−21,934

	
40

	
−21,764

	
41

	
−22,650

	
37

	
−21,473

	
2

	
−21,112

	
2

	
0.96

	
2

	
0.36

	
361

	
6

	
3

	
0




	
42

	
−22,712

	
42

	
−22,704

	
42

	
−22,117

	
41

	
−21,887

	
42

	
−23,145

	
38

	
−21,567

	
1

	
−21,083

	
1

	
0.96

	
1

	
0.37

	
484

	
7

	
3

	
0










For N = 10,000 the same pattern can be discerned as for [image: there is no content], Table A3. The Ignorance, Manor, and BIC evidences are the most conservative of all the viable evidences in terms of the number of parameters m of the respective spline models. The Neeley and Constantineau evidences are slightly less conservative, as they choose for [image: there is no content] a model that is one order less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, and BIC evidences. The AIC evidence takes the high ground in that it is consistently less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure thing” evidence just chooses the largest model available, thus, consistently (grossly) over-fitting the data. And it may again be noted that in the absence of noise (i.e., [image: there is no content]) all the evidences are in agreement in taking the model with the largest possible number of parameters.





Table A3. C-spline models (geometry g, polynomial order d, continuity order r) and number of parameters m that were chosen by the discussed evidences, for [image: there is no content] and under Gaussian noise levels [image: there is no content], and 2.







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Evidences

	
Model 1

	
[image: there is no content]

	
Model 2

	
[image: there is no content]

	
Model 3

	
[image: there is no content]

	
Model 4

	
[image: there is no content]






	
“Sure thing” (41)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484

	
[image: there is no content]

	
484




	
AIC (143)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
64

	
[image: there is no content]

	
49

	
[image: there is no content]

	
36




	
Neeley (127), Constantineau (130)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
49

	
[image: there is no content]

	
36

	
[image: there is no content]

	
25




	
Ignorance (127), Manor (127), BIC (135)

	
[image: there is no content]

	
484

	
[image: there is no content]

	
36

	
[image: there is no content]

	
36

	
[image: there is no content]

	
25








1 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 2 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 3 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 4 Data estimates: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].








In Figure A7, Figure A8, Figure A9 and Figure A10, the fitted C-spline models are given per evidence (group), starting with the “sure thing” evidence and in descending order of liberalness in terms of the number of parameters m. In Figure A8 there is a possible instance of over-fitting for a noise level [image: there is no content] (i.e., column 3) by the model which is picked by the AIC evidence. Also, again in order to give the reader a more concrete sense of the discussed evidences, we give for the Gaussian noise level of [image: there is no content] the full output of the Bayesian model selection analysis in Table A4.












Figure A7. Sample size [image: there is no content] 10,000 and C-spline models of target function (A2) are picked by the “sure thing” evidence (41) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g007]





Figure A8. Sample size [image: there is no content] 10,000 and C-spline models of target function (A2) are picked by the AIC evidence (143) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g008]





Figure A9. Sample size [image: there is no content] 10,000 and C-spline models of target function (A2) are picked by the Neeley and the Constantineau evidences, (129) and (130), for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g009]





Figure A10. Sample size N = 10,000 and C-spline models of target function (A2) are picked by the Ignorance, Manor, and Bayesian Information Criterion (BIC) evidences, (135), (127), and (128), for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g010]






Table A4. Output model selection analysis for data sampled from target function (A2), sample size N = 10,000, and Gaussian error of [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
1

	
−46,177

	
1

	
−46,176

	
1

	
−46,132

	
1

	
−46,115

	
1

	
−46,164

	
4

	
−46,035

	
26

	
−45,999

	
26

	
0.99

	
26

	
0.32

	
36

	
2

	
3

	
1




	
2

	
−46,179

	
2

	
−46,179

	
4

	
−46,148

	
5

	
−46,137

	
2

	
−46,167

	
21

	
−46,076

	
30

	
−46,051

	
30

	
1.00

	
30

	
0.31

	
25

	
2

	
3

	
2




	
3

	
−46,181

	
3

	
−46,181

	
5

	
−46,150

	
8

	
−46,138

	
3

	
−46,168

	
22

	
−46,078

	
31

	
−46,053

	
31

	
1.00

	
31

	
0.31

	
25

	
3

	
2

	
1




	
4

	
−46,182

	
4

	
−46,182

	
2

	
−46,137

	
2

	
−46,121

	
4

	
−46,169

	
10

	
−46,040

	
27

	
−46,004

	
27

	
1.00

	
27

	
0.32

	
36

	
4

	
2

	
1




	
5

	
−46,186

	
5

	
−46,186

	
3

	
−46,141

	
3

	
−46,125

	
5

	
−46,174

	
12

	
−46,044

	
28

	
−46,008

	
28

	
1.00

	
28

	
0.32

	
36

	
3

	
3

	
2




	
6

	
−46,203

	
6

	
−46,203

	
6

	
−46,158

	
10

	
−46,142

	
6

	
−46,191

	
16

	
−46,061

	
29

	
−46,025

	
29

	
1.00

	
29

	
0.31

	
36

	
5

	
1

	
0




	
7

	
−46,220

	
7

	
−46,219

	
7

	
−46,159

	
4

	
−46,137

	
7

	
−46,210

	
1

	
−46,033

	
21

	
−45,984

	
21

	
0.99

	
21

	
0.32

	
49

	
2

	
3

	
0




	
8

	
−46,220

	
8

	
−46,220

	
8

	
−46,159

	
6

	
−46,137

	
8

	
−46,210

	
2

	
−46,034

	
22

	
−45,985

	
22

	
0.99

	
22

	
0.32

	
49

	
4

	
3

	
2




	
9

	
−46,221

	
9

	
−46,221

	
9

	
−46,160

	
7

	
−46,138

	
9

	
−46,211

	
3

	
−46,034

	
23

	
−45,985

	
23

	
0.99

	
23

	
0.32

	
49

	
5

	
2

	
1




	
10

	
−46,223

	
10

	
−46,223

	
10

	
−46,162

	
9

	
−46,140

	
10

	
−46,214

	
5

	
−46,037

	
24

	
−45,988

	
24

	
0.99

	
24

	
0.32

	
49

	
3

	
2

	
0




	
11

	
−46,226

	
11

	
−46,225

	
11

	
−46,164

	
11

	
−46,142

	
11

	
−46,216

	
8

	
−46,039

	
25

	
−45,990

	
25

	
0.99

	
25

	
0.32

	
49

	
6

	
1

	
0




	
12

	
−46,237

	
12

	
−46,237

	
16

	
−46,206

	
16

	
−46,195

	
12

	
−46,225

	
27

	
−46,135

	
32

	
−46,110

	
32

	
1.01

	
32

	
0.30

	
25

	
2

	
2

	
0




	
13

	
−46,239

	
13

	
−46,239

	
17

	
−46,208

	
17

	
−46,197

	
13

	
−46,226

	
28

	
−46,136

	
33

	
−46,111

	
33

	
1.01

	
33

	
0.30

	
25

	
4

	
1

	
0




	
14

	
−46,274

	
14

	
−46,274

	
12

	
−46,194

	
12

	
−46,165

	
14

	
−46,269

	
6

	
−46,038

	
17

	
−45,974

	
17

	
0.99

	
17

	
0.32

	
64

	
5

	
3

	
2




	
15

	
−46,274

	
15

	
−46,274

	
13

	
−46,194

	
13

	
−46,165

	
15

	
−46,269

	
7

	
−46,038

	
18

	
−45,974

	
18

	
0.99

	
18

	
0.32

	
64

	
6

	
2

	
1




	
16

	
−46,275

	
16

	
−46,275

	
14

	
−46,195

	
14

	
−46,166

	
16

	
−46,270

	
9

	
−46,039

	
19

	
−45,975

	
19

	
0.99

	
19

	
0.32

	
64

	
3

	
3

	
1




	
17

	
−46,279

	
17

	
−46,278

	
15

	
−46,199

	
15

	
−46,170

	
17

	
−46,274

	
11

	
−46,043

	
20

	
−45,979

	
20

	
0.99

	
20

	
0.32

	
64

	
7

	
1

	
0




	
18

	
−46,335

	
18

	
−46,335

	
18

	
−46,234

	
18

	
−46,197

	
18

	
−46,338

	
13

	
−46,046

	
13

	
−45,965

	
13

	
0.99

	
13

	
0.32

	
81

	
7

	
2

	
1




	
19

	
−46,337

	
19

	
−46,337

	
19

	
−46,237

	
19

	
−46,200

	
19

	
−46,340

	
14

	
−46,048

	
15

	
−45,967

	
15

	
0.99

	
15

	
0.32

	
81

	
4

	
2

	
0




	
20

	
−46,340

	
20

	
−46,339

	
20

	
−46,239

	
20

	
−46,202

	
20

	
−46,342

	
15

	
−46,050

	
16

	
−45,969

	
16

	
0.99

	
16

	
0.32

	
81

	
6

	
3

	
2




	
21

	
−46,409

	
21

	
−46,409

	
21

	
−46,285

	
21

	
−46,239

	
21

	
−46,422

	
17

	
−46,062

	
11

	
−45,962

	
11

	
0.99

	
11

	
0.32

	
100

	
3

	
3

	
0




	
22

	
−46,410

	
22

	
−46,409

	
22

	
−46,285

	
22

	
−46,240

	
22

	
−46,423

	
18

	
−46,062

	
12

	
−45,962

	
12

	
0.99

	
12

	
0.32

	
100

	
4

	
3

	
1




	
23

	
−46,413

	
23

	
−46,412

	
23

	
−46,288

	
23

	
−46,243

	
23

	
−46,426

	
19

	
−46,066

	
14

	
−45,966

	
14

	
0.99

	
14

	
0.32

	
100

	
7

	
3

	
2




	
24

	
−46,479

	
26

	
−46,479

	
30

	
−46,459

	
32

	
−46,452

	
26

	
−46,468

	
36

	
−46,410

	
36

	
−46,394

	
34

	
1.03

	
36

	
0.26

	
16

	
1

	
3

	
0




	
25

	
−46,479

	
25

	
−46,479

	
29

	
−46,459

	
31

	
−46,452

	
25

	
−46,468

	
35

	
−46,410

	
35

	
−46,394

	
35

	
1.03

	
35

	
0.26

	
16

	
1

	
3

	
1




	
26

	
−46,479

	
24

	
−46,479

	
28

	
−46,459

	
30

	
−46,452

	
24

	
−46,468

	
34

	
−46,410

	
34

	
−46,394

	
36

	
1.03

	
34

	
0.26

	
16

	
1

	
3

	
2




	
27

	
−46,479

	
27

	
−46,479

	
24

	
−46,328

	
24

	
−46,274

	
29

	
−46,506

	
20

	
−46,070

	
10

	
−45,949

	
10

	
0.99

	
10

	
0.32

	
121

	
5

	
2

	
0




	
28

	
−46,482

	
28

	
−46,482

	
31

	
−46,462

	
33

	
−46,456

	
27

	
−46,472

	
37

	
−46,414

	
37

	
−46,398

	
37

	
1.04

	
37

	
0.26

	
16

	
2

	
2

	
1




	
29

	
−46,500

	
29

	
−46,499

	
32

	
−46,480

	
34

	
−46,473

	
28

	
−46,489

	
38

	
−46,431

	
38

	
−46,415

	
38

	
1.04

	
38

	
0.26

	
16

	
3

	
1

	
0




	
30

	
−46,566

	
30

	
−46,565

	
25

	
−46,386

	
25

	
−46,321

	
30

	
−46,610

	
23

	
−46,090

	
9

	
−45,946

	
9

	
0.99

	
9

	
0.32

	
144

	
5

	
3

	
1




	
31

	
−46,636

	
31

	
−46,635

	
26

	
−46,425

	
26

	
−46,348

	
31

	
−46,700

	
24

	
−46,091

	
5

	
−45,922

	
5

	
0.99

	
5

	
0.33

	
169

	
6

	
2

	
0




	
32

	
−46,647

	
32

	
−46,647

	
27

	
−46,437

	
27

	
−46,360

	
32

	
−46,712

	
25

	
−46,103

	
7

	
−45,934

	
7

	
0.99

	
7

	
0.33

	
169

	
4

	
3

	
0




	
33

	
−46,756

	
33

	
−46,755

	
33

	
−46,512

	
28

	
−46,423

	
36

	
−46,845

	
29

	
−46,139

	
8

	
−45,943

	
8

	
0.99

	
8

	
0.32

	
196

	
6

	
3

	
1




	
34

	
−46,758

	
34

	
−46,758

	
37

	
−46,747

	
38

	
−46,744

	
33

	
−46,751

	
39

	
−46,718

	
39

	
−46,709

	
39

	
1.07

	
39

	
0.21

	
9

	
2

	
1

	
0




	
35

	
−46,817

	
35

	
−46,817

	
34

	
−46,537

	
29

	
−46,434

	
37

	
−46,934

	
26

	
−46,123

	
3

	
−45,898

	
3

	
0.98

	
3

	
0.33

	
225

	
7

	
2

	
0




	
36

	
−46,846

	
37

	
−46,846

	
40

	
−46,835

	
41

	
−46,831

	
35

	
−46,839

	
41

	
−46,806

	
41

	
−46,797

	
40

	
1.08

	
41

	
0.20

	
9

	
1

	
2

	
0




	
37

	
−46,846

	
36

	
−46,846

	
39

	
−46,835

	
40

	
−46,831

	
34

	
−46,839

	
40

	
−46,806

	
40

	
−46,797

	
41

	
1.08

	
40

	
0.20

	
9

	
1

	
2

	
1




	
38

	
−46,939

	
38

	
−46,938

	
35

	
−46,620

	
35

	
−46,503

	
38

	
−47,088

	
30

	
−46,165

	
4

	
−45,909

	
4

	
0.99

	
4

	
0.33

	
256

	
5

	
3

	
0




	
39

	
−46,955

	
39

	
−46,954

	
36

	
−46,636

	
36

	
−46,520

	
39

	
−47,105

	
31

	
−46,182

	
6

	
−45,926

	
6

	
0.99

	
6

	
0.33

	
256

	
7

	
3

	
1




	
40

	
−47,261

	
40

	
−47,259

	
38

	
−46,810

	
37

	
−46,644

	
41

	
−47,530

	
32

	
−46,229

	
2

	
−45,868

	
2

	
0.98

	
2

	
0.33

	
361

	
6

	
3

	
0




	
41

	
−47,521

	
41

	
−47,521

	
42

	
−47,516

	
42

	
−47,515

	
40

	
−47,517

	
42

	
−47,502

	
42

	
−47,498

	
42

	
1.16

	
42

	
0.08

	
4

	
1

	
1

	
0




	
42

	
−47,648

	
42

	
−47,646

	
41

	
−47,044

	
39

	
−46,821

	
42

	
−48,079

	
33

	
−46,334

	
1

	
−45,850

	
1

	
0.98

	
1

	
0.34

	
484

	
7

	
3

	
0










In closing, note that for both [image: there is no content] and [image: there is no content] the cruelly realistic evidences (127)–(129), have been helped by estimating [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] directly from the observed dependent variable y. So, if we penalize the computed evidences with a multiplication factor of [image: there is no content], in order to compensate (see Section 5 of [3]) for the non-conservativeness of the data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], it is found for N = 10,000 and [image: there is no content] that the Neely evidence will become one order of magnitude more conservative, as it picks the same model as the Ignorance, Manor, and BIC evidences, while at the same time we have that for N = 10,000 and [image: there is no content] the Ignorance and Manor evidences become one order of magnitude more conservative, thus, leaving the BIC evidence behind, as they choose the C-spline model [image: there is no content], which has [image: there is no content] parameters.




Appendix A.2. Monte Carlo Study 2


In the second Monte Carlo study we sample from the target function


fx,y=sinπx2+2y2,for0≤x,y≤1.5,



(A7)




which is shown in Figure A11. The sampling in this second study is done with sample size N = 15,000, with Gaussian noise levels of [image: there is no content], and 2, and multiplication factors of 1 and 10, respectively, for the data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. The evidences must now choose amongst 78 models with [image: there is no content] parameters.




Figure A11. Target function (A7).



[image: Entropy 19 00250 g011]






In Figure A12 some representative examples of large size data sets are shown for the different noise levels [image: there is no content].




Figure A12. Noisy data sampled from target function (A2). Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with noisy data, noisy data minus true target value, and cross sections of the target function and noisy data.



[image: Entropy 19 00250 g012]






For a multiplication factor of 1, or, equivalently, a straightforward data-estimate of the characteristics of the dependent variable y, it is found, Table A5, that the Ignorance, Manor, Neeley, and BIC evidences become conservative in the absence of measurement error (i.e., [image: there is no content]), as they choose a model with [image: there is no content] parameters, rather than the model with the maximum number of parameters [image: there is no content] which is preferred by the Constantineau, AIC, and “sure thing” evidences. Stated differently, the penalizing of an increase of [image: there is no content] parameters by the Occam factors the Ignorance, Manor, Neeley, and BIC evidences outweighs the gains in goodness of fit of said [image: there is no content] parameters.





Table A5. C-spline models (geometry g, polynomial order d, continuity order r) and number of parameters m that were chosen by the discussed evidences, for [image: there is no content] under Gaussian noise levels [image: there is no content], and 2, and a multiplication factor of 1 for the estimates of the characteristics of the dependent variable y.







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Evidences

	
Model 1

	
[image: there is no content]

	
Model 2

	
[image: there is no content]

	
Model 3

	
[image: there is no content]

	
Model 4

	
[image: there is no content]






	
“Sure thing” (41)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600




	
AIC (143)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
196

	
[image: there is no content]

	
144

	
[image: there is no content]

	
121




	
Constantineau (130)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
144

	
[image: there is no content]

	
121

	
[image: there is no content]

	
100




	
Neeley (127)

	
[image: there is no content]

	
625

	
[image: there is no content]

	
144

	
[image: there is no content]

	
121

	
[image: there is no content]

	
100




	
Ignorance (127), Manor (127),

	

	

	

	

	

	

	




	
 BIC (135)

	
[image: there is no content]

	
625

	
[image: there is no content]

	
144

	
[image: there is no content]

	
100

	
[image: there is no content]

	
64








1 Data estimates times 1: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 2 Data estimates times 1: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 3 Data estimates times 1: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 4 Data estimates times 1: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].








Apart from this deviation, we have that the pattern of model choices is roughly the same as observed in the first Monte Carlo study. The Ignorance, Manor, and BIC evidences are the most conservative of all the viable evidences in terms of the number of parameters m of the respective spline models. The Neeley and Constantineau evidences are slightly less conservative, as they choose both for [image: there is no content] and [image: there is no content] a model that is one order less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, and BIC evidences. The AIC evidence takes the high ground in that it is consistently less conservative in terms of the number of parameters m, relatively to the Ignorance, Manor, Neeley, Constantineau, and BIC evidences. Finally, the “sure thing” evidence just chooses the largest model available, thus, consistently (grossly) over-fitting the data.



In Figure A13, Figure A14, Figure A15, Figure A16 and Figure A17, the fitted C-spline models are given per evidence (group), starting with the “sure thing” evidence and in descending order of liberalness in terms of the number of parameters m. In Figure A17 there is a possible instance of under-fitting for a noise level [image: there is no content] (i.e., column 4) by the model which is picked by the Ignorance, Manor, and BIC evidences.












Figure A13. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the “sure thing” evidence (41) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g013]





Figure A14. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the AIC evidence (143) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g014]





Figure A15. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the Constantineau evidence (130) for different noise levels. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g015]





Figure A16. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the Neeley evidence (129) for different noise levels and for a straightforward data estimate of [image: there is no content]. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g016]





Figure A17. Sample size N = 15,000 and C-spline models of target function (A7) are picked by the Ignorance, Manor, and BIC evidences, (135), (127), and (128), for different noise levels and for straightforward data estimates of [image: there is no content], [image: there is no content], and [image: there is no content]. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g017]






It is found, Table A6, that for a multiplication factor of 10 for the data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], and a Gaussian noise level of [image: there is no content] the Ignorance and Manor evidences become more conservative than the BIC. Also, for Gaussian noise levels of [image: there is no content] and [image: there is no content] the Neely evidence becomes just as conservative as the BIC.





Table A6. C-spline models (geometry g, polynomial order d, continuity order r) and number of parameters m that were chosen by the discussed evidences, for [image: there is no content], under Gaussian noise levels [image: there is no content], and 2, and a multiplication factor of 10 for the estimates of the characteristics of the dependent variable y.







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Evidences

	
Model 1

	
[image: there is no content]

	
Model 2

	
[image: there is no content]

	
Model 3

	
[image: there is no content]

	
Model 4

	
[image: there is no content]






	
“Sure thing” (41)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
1600




	
AIC (143)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
196

	
[image: there is no content]

	
144

	
[image: there is no content]

	
121




	
Constantineau (130)

	
[image: there is no content]

	
1600

	
[image: there is no content]

	
144

	
[image: there is no content]

	
121

	
[image: there is no content]

	
100




	
Neeley (127)

	
[image: there is no content]

	
625

	
[image: there is no content]

	
144

	
[image: there is no content]

	
100

	
[image: there is no content]

	
64




	
BIC (135)

	
[image: there is no content]

	
625

	
[image: there is no content]

	
144

	
[image: there is no content]

	
100

	
[image: there is no content]

	
64




	
Ignorance (127), Manor (127)

	
[image: there is no content]

	
625

	
[image: there is no content]

	
121

	
[image: there is no content]

	
100

	
[image: there is no content]

	
64








1 Data estimates times 10: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 2 Data estimates times 10: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 3 Data estimates times 10: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; 4 Data estimates times 10: [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].








In Figure A18 and Figure A19, the fitted C-spline models are given for the Neeley evidence and the Ignorance and Manor evidences, respectively. In Figure A19 there is a possible instance of slight under-fitting for a noise level [image: there is no content] (i.e., column 2) by the model which is picked by the Ignorance and Manor evidences.






Figure A18. Sample size [image: there is no content] and C-spline models of target function (A7) are picked by the Neeley evidence (129), for different noise levels and for a multiplication by a factor 10 of the data estimate of [image: there is no content]. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g018]





Figure A19. Sample size [image: there is no content] and C-spline models of target function (A7) are picked by the Ignorance and Manorevidences, (127) and (128), for different noise levels and for a multiplication by a factor 10 of [image: there is no content], [image: there is no content], and [image: there is no content]. Columns correspond with noise levels [image: there is no content], and 2, respectively. Rows correspond with spline model, residual of spline model relative to target function, and cross sections of spline model (blue) and target function (black).



[image: Entropy 19 00250 g019]






The full outputs of the Bayesian model selection analyses of Table A5 and Table A6 for the Gaussian noise level of [image: there is no content] are given in Table A7, Table A8, Table A9 and Table A10, respectively.






Table A8. Second half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of [image: there is no content], and straightforward data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
40

	
−73,274

	
40

	
−73,273

	
45

	
−73,209

	
50

	
−73,189

	
39

	
−73,262

	
57

	
−73,076

	
59

	
−73,027

	
59

	
1.06

	
59

	
0.24

	
49

	
3

	
2

	
0




	
41

	
−73,351

	
41

	
−73,344

	
37

	
−72,917

	
36

	
−72,768

	
43

	
−73,546

	
29

	
−72,312

	
22

	
−71,988

	
22

	
0.99

	
22

	
0.34

	
324

	
8

	
3

	
1




	
42

	
−73,389

	
42

	
−73,387

	
49

	
−73,324

	
53

	
−73,303

	
41

	
−73,377

	
59

	
−73,190

	
60

	
−73,141

	
60

	
1.07

	
60

	
0.23

	
49

	
2

	
3

	
0




	
43

	
−73,399

	
43

	
−73,398

	
50

	
−73,335

	
54

	
−73,314

	
42

	
−73,388

	
60

	
−73,201

	
61

	
−73,152

	
61

	
1.07

	
61

	
0.23

	
49

	
4

	
3

	
2




	
44

	
−73,425

	
44

	
−73,416

	
38

	
−72,940

	
37

	
−72,773

	
44

	
−73,659

	
26

	
−72,284

	
12

	
−71,923

	
12

	
0.99

	
12

	
0.34

	
361

	
9

	
2

	
0




	
45

	
−73,449

	
45

	
−73,440

	
39

	
−72,964

	
38

	
−72,798

	
45

	
−73,684

	
28

	
−72,309

	
15

	
−71,948

	
15

	
0.99

	
15

	
0.34

	
361

	
6

	
3

	
0




	
46

	
−73,621

	
46

	
−73,612

	
41

	
−73,085

	
41

	
−72,900

	
47

	
−73,902

	
34

	
−72,379

	
19

	
−71,979

	
19

	
0.99

	
19

	
0.34

	
400

	
9

	
3

	
1




	
47

	
−73,680

	
47

	
−73,670

	
42

	
−73,088

	
40

	
−72,883

	
52

	
−74,009

	
31

	
−72,330

	
9

	
−71,889

	
9

	
0.98

	
9

	
0.35

	
441

	
10

	
2

	
0




	
48

	
−73,787

	
48

	
−73,786

	
56

	
−73,739

	
59

	
−73,725

	
46

	
−73,774

	
62

	
−73,637

	
62

	
−73,601

	
62

	
1.10

	
62

	
0.18

	
36

	
5

	
1

	
0




	
49

	
−73,866

	
49

	
−73,855

	
46

	
−73,216

	
43

	
−72,992

	
56

	
−74,250

	
36

	
−72,407

	
11

	
−71,923

	
11

	
0.99

	
11

	
0.34

	
484

	
7

	
3

	
0




	
50

	
−73,912

	
50

	
−73,901

	
48

	
−73,263

	
45

	
−73,040

	
57

	
−74,298

	
39

	
−72,454

	
18

	
−71,970

	
18

	
0.99

	
18

	
0.34

	
484

	
10

	
3

	
1




	
51

	
−73,959

	
52

	
−73,958

	
59

	
−73,911

	
61

	
−73,897

	
48

	
−73,946

	
63

	
−73,809

	
63

	
−73,773

	
63

	
1.12

	
63

	
0.16

	
36

	
2

	
3

	
1




	
52

	
−73,959

	
53

	
−73,958

	
60

	
−73,926

	
62

	
−73,916

	
49

	
−73,946

	
64

	
−73,851

	
65

	
−73,826

	
65

	
1.12

	
65

	
0.15

	
25

	
2

	
2

	
0




	
53

	
−73,967

	
51

	
−73,955

	
47

	
−73,257

	
44

	
−73,011

	
58

	
−74,409

	
35

	
−72,394

	
7

	
−71,865

	
7

	
0.98

	
7

	
0.35

	
529

	
11

	
2

	
0




	
54

	
−73,980

	
54

	
−73,980

	
61

	
−73,947

	
63

	
−73,938

	
50

	
−73,968

	
66

	
−73,872

	
66

	
−73,847

	
66

	
1.12

	
66

	
0.15

	
25

	
4

	
1

	
0




	
55

	
−74,001

	
55

	
−74,000

	
62

	
−73,954

	
64

	
−73,940

	
51

	
−73,989

	
65

	
−73,852

	
64

	
−73,816

	
64

	
1.12

	
64

	
0.15

	
36

	
4

	
2

	
1




	
56

	
−74,105

	
56

	
−74,105

	
63

	
−74,058

	
65

	
−74,044

	
53

	
−74,093

	
67

	
−73,956

	
67

	
−73,920

	
67

	
1.13

	
67

	
0.14

	
36

	
3

	
3

	
2




	
57

	
−74,193

	
57

	
−74,192

	
65

	
−74,160

	
67

	
−74,151

	
54

	
−74,180

	
68

	
−74,085

	
68

	
−74,060

	
68

	
1.14

	
68

	
0.13

	
25

	
3

	
2

	
1




	
58

	
−74,221

	
58

	
−74,208

	
52

	
−73,448

	
49

	
−73,183

	
64

	
−74,729

	
45

	
−72,536

	
17

	
−71,960

	
17

	
0.99

	
17

	
0.34

	
576

	
11

	
3

	
1




	
59

	
−74,247

	
59

	
−74,247

	
66

	
−74,215

	
68

	
−74,205

	
55

	
−74,235

	
69

	
−74,140

	
69

	
−74,115

	
69

	
1.14

	
69

	
0.12

	
25

	
2

	
3

	
2




	
60

	
−74,279

	
60

	
−74,265

	
51

	
−73,440

	
46

	
−73,149

	
68

	
−74,852

	
41

	
−72,472

	
6

	
−718,47

	
6

	
0.98

	
6

	
0.35

	
625

	
12

	
2

	
0




	
61

	
−74,320

	
61

	
−74,306

	
53

	
−73,481

	
51

	
−73,191

	
69

	
−74,894

	
42

	
−72,514

	
10

	
−71,889

	
10

	
0.98

	
10

	
0.35

	
625

	
8

	
3

	
0




	
62

	
−74,430

	
62

	
−74,430

	
67

	
−74,410

	
70

	
−74,404

	
59

	
−74,420

	
70

	
−74,359

	
70

	
−74,343

	
70

	
1.16

	
70

	
0.09

	
16

	
2

	
2

	
1




	
63

	
−74,462

	
65

	
−74,462

	
71

	
−74,441

	
73

	
−74,435

	
62

	
−74,452

	
73

	
−74,391

	
73

	
−74,375

	
71

	
1.16

	
73

	
0.09

	
16

	
1

	
3

	
0




	
64

	
−74,462

	
64

	
−74,462

	
70

	
−74,441

	
72

	
−74,435

	
61

	
−74,452

	
72

	
−74,391

	
72

	
−74,375

	
72

	
1.16

	
72

	
0.09

	
16

	
1

	
3

	
1




	
65

	
−74,462

	
63

	
−74,462

	
69

	
−74,441

	
71

	
−74,435

	
60

	
−74,452

	
71

	
−74,391

	
71

	
−74,375

	
73

	
1.16

	
71

	
0.09

	
16

	
1

	
3

	
2




	
66

	
−74,476

	
66

	
−74,475

	
72

	
−74,455

	
74

	
−74,449

	
63

	
−74,465

	
74

	
−74,404

	
74

	
−74,388

	
74

	
1.16

	
74

	
0.09

	
16

	
3

	
1

	
0




	
67

	
−74,551

	
67

	
−74,535

	
55

	
−73,644

	
55

	
−73,332

	
71

	
−75,200

	
48

	
−72,626

	
16

	
−71,950

	
16

	
0.99

	
16

	
0.34

	
676

	
12

	
3

	
1




	
68

	
−74,578

	
68

	
−74,561

	
54

	
−73,598

	
52

	
−73,257

	
72

	
−75,299

	
43

	
−72,523

	
3

	
−71,794

	
3

	
0.98

	
3

	
0.35

	
729

	
13

	
2

	
0




	
69

	
−74,781

	
69

	
−74,781

	
74

	
−74,770

	
75

	
−74,766

	
65

	
−74,773

	
75

	
−74,739

	
75

	
−74,730

	
75

	
1.19

	
75

	
0.04

	
9

	
2

	
1

	
0




	
70

	
−74,845

	
72

	
−74,845

	
76

	
−74,834

	
77

	
−74,830

	
67

	
−74,837

	
77

	
−74,803

	
77

	
−74,794

	
76

	
1.20

	
77

	
0.04

	
9

	
1

	
2

	
0




	
71

	
−74,845

	
71

	
−74,845

	
75

	
−74,834

	
76

	
−74,830

	
66

	
−74,837

	
76

	
−74,803

	
76

	
−74,794

	
77

	
1.20

	
76

	
0.04

	
9

	
1

	
2

	
1




	
72

	
−74,849

	
70

	
−74,831

	
57

	
−73,796

	
56

	
−73,433

	
73

	
−75,657

	
50

	
−72,672

	
8

	
−71,888

	
8

	
0.98

	
8

	
0.35

	
784

	
9

	
3

	
0




	
73

	
−74,903

	
73

	
−74,885

	
58

	
−73,851

	
57

	
−73,489

	
74

	
−75,714

	
51

	
−72,728

	
13

	
−71,944

	
13

	
0.99

	
13

	
0.34

	
784

	
13

	
3

	
1




	
74

	
−74,932

	
74

	
−74,932

	
77

	
−74,927

	
78

	
−74,926

	
70

	
−74,928

	
78

	
−74,913

	
78

	
−74,909

	
78

	
1.20

	
78

	
0.02

	
4

	
1

	
1

	
0




	
75

	
−75,377

	
75

	
−75,355

	
64

	
−74,086

	
58

	
−73,638

	
75

	
−76,462

	
52

	
−72,802

	
5

	
−71,841

	
5

	
0.98

	
5

	
0.35

	
961

	
10

	
3

	
0




	
76

	
−75,965

	
76

	
−75,938

	
68

	
−74,412

	
60

	
−73,872

	
76

	
−77,375

	
54

	
−72,973

	
4

	
−71,817

	
4

	
0.98

	
4

	
0.35

	
1156

	
11

	
3

	
0




	
77

	
−76,591

	
77

	
−76,560

	
73

	
−74,751

	
66

	
−74,111

	
77

	
−78,374

	
58

	
−73,161

	
2

	
−71,792

	
2

	
0.98

	
2

	
0.35

	
1369

	
12

	
3

	
0




	
78

	
−77,238

	
78

	
−77,201

	
78

	
−75,086

	
69

	
−74,335

	
78

	
−79,441

	
61

	
−73,349

	
1

	
−71,749

	
1

	
0.98

	
1

	
0.36

	
1600

	
13

	
3

	
0














Table A10. Second half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of [image: there is no content], and times 10 data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
40

	
−73,655

	
40

	
−73,648

	
36

	
−73,288

	
30

	
−72,646

	
35

	
−73,231

	
21

	
−72,256

	
24

	
−72,000

	
24

	
0.99

	
24

	
0.34

	
256

	
7

	
3

	
1




	
41

	
−73,681

	
41

	
−73,674

	
39

	
−73,315

	
32

	
−72,672

	
38

	
−73,258

	
25

	
−72,283

	
28

	
−72,027

	
28

	
0.99

	
28

	
0.33

	
256

	
13

	
3

	
2




	
42

	
−73,798

	
42

	
−73,790

	
40

	
-73,385

	
31

	
−72,658

	
40

	
−73,336

	
16

	
−72,235

	
14

	
−71,946

	
14

	
0.99

	
14

	
0.34

	
289

	
8

	
2

	
0




	
43

	
−73,863

	
43

	
−73,862

	
46

	
−73,811

	
59

	
−73,725

	
46

	
−73,774

	
62

	
−73,637

	
62

	
−73,601

	
62

	
1.10

	
62

	
0.18

	
36

	
5

	
1

	
0




	
44

	
−74,012

	
44

	
−74,011

	
48

	
−73,976

	
62

	
−73,916

	
49

	
−73,946

	
64

	
−73,851

	
64

	
−73,826

	
64

	
1.12

	
64

	
0.15

	
25

	
2

	
2

	
0




	
45

	
−74,033

	
45

	
−74,033

	
51

	
−73,997

	
63

	
−73,938

	
50

	
−73,968

	
65

	
−73,872

	
65

	
−73,847

	
65

	
1.12

	
65

	
0.15

	
25

	
4

	
1

	
0




	
46

	
−74,035

	
46

	
−74,034

	
49

	
−73,983

	
61

	
−73,897

	
48

	
−73,946

	
63

	
−73,809

	
63

	
−73,773

	
63

	
1.12

	
63

	
0.16

	
36

	
2

	
3

	
1




	
47

	
−74,045

	
47

	
−74,036

	
43

	
−73,582

	
36

	
−72,768

	
43

	
−73,546

	
29

	
−72,312

	
22

	
−71,988

	
22

	
0.99

	
22

	
0.34

	
324

	
8

	
3

	
1




	
48

	
−74,154

	
48

	
−74,153

	
52

	
−74,103

	
64

	
−74,017

	
52

	
−74,066

	
66

	
−73,929

	
66

	
−73,893

	
66

	
1.13

	
66

	
0.15

	
36

	
4

	
2

	
1




	
49

	
−74,198

	
49

	
−74,188

	
44

	
−73,681

	
37

	
−72,773

	
44

	
−73,659

	
26

	
−72,284

	
12

	
−71,923

	
12

	
0.99

	
12

	
0.34

	
361

	
9

	
2

	
0




	
50

	
−74,222

	
50

	
−74,212

	
45

	
−73,705

	
38

	
−72,798

	
45

	
−73,684

	
28

	
−72,309

	
15

	
−71,948

	
15

	
0.99

	
15

	
0.34

	
361

	
6

	
3

	
0




	
51

	
−74,246

	
51

	
−74,245

	
54

	
−74,210

	
67

	
−74,151

	
54

	
−74,180

	
68

	
−74,085

	
68

	
−74,060

	
68

	
1.14

	
68

	
0.13

	
25

	
3

	
2

	
1




	
52

	
−74,257

	
52

	
−74,256

	
53

	
−74,206

	
66

	
−74,120

	
53

	
−74,169

	
67

	
−74,032

	
67

	
−73,996

	
67

	
1.13

	
67

	
0.13

	
36

	
3

	
3

	
2




	
53

	
−74,300

	
53

	
−74,299

	
57

	
−74,264

	
68

	
−74,205

	
55

	
−74,235

	
69

	
−74,140

	
69

	
−74,115

	
69

	
1.14

	
69

	
0.12

	
25

	
2

	
3

	
2




	
54

	
−74,464

	
54

	
−74,464

	
59

	
−74,441

	
70

	
−74,404

	
59

	
−74,420

	
70

	
−74,359

	
70

	
−74,343

	
70

	
1.16

	
70

	
0.09

	
16

	
2

	
2

	
1




	
55

	
−74,478

	
55

	
−74,467

	
47

	
−73,905

	
41

	
−72,900

	
47

	
−73,902

	
34

	
−72,379

	
19

	
−71,979

	
19

	
0.99

	
19

	
0.34

	
400

	
9

	
3

	
1




	
56

	
−74,496

	
58

	
−74,496

	
62

	
−74,473

	
73

	
−74,435

	
62

	
−74,452

	
73

	
−74,391

	
73

	
−74,375

	
71

	
1.16

	
73

	
0.09

	
16

	
1

	
3

	
0




	
57

	
−74,496

	
57

	
−74,496

	
61

	
−74,473

	
72

	
−74,435

	
61

	
−74,452

	
72

	
−74,391

	
72

	
−74,375

	
72

	
1.16

	
72

	
0.09

	
16

	
1

	
3

	
1




	
58

	
−74,496

	
56

	
−74,496

	
60

	
−74,473

	
71

	
−74,435

	
60

	
−74,452

	
71

	
−74,391

	
71

	
−74,375

	
73

	
1.16

	
71

	
0.09

	
16

	
1

	
3

	
2




	
59

	
−74,509

	
59

	
−74,509

	
63

	
−74,487

	
74

	
−74,449

	
63

	
−74,465

	
74

	
−74,404

	
74

	
−74,388

	
74

	
1.16

	
74

	
0.09

	
16

	
3

	
1

	
0




	
60

	
−74,625

	
60

	
−74,613

	
50

	
−73,994

	
40

	
−72,883

	
51

	
−74,009

	
31

	
−72,330

	
9

	
−71,889

	
9

	
0.98

	
9

	
0.35

	
441

	
10

	
2

	
0




	
61

	
−74,800

	
61

	
−74,800

	
67

	
−74,787

	
75

	
−74,766

	
65

	
−74,773

	
75

	
−74,739

	
75

	
−74,730

	
75

	
1.19

	
75

	
0.04

	
9

	
2

	
1

	
0




	
62

	
−74,864

	
63

	
−74,864

	
69

	
−74,851

	
77

	
−74,830

	
67

	
−74,837

	
77

	
−74,803

	
77

	
−74,794

	
76

	
1.20

	
77

	
0.04

	
9

	
1

	
2

	
0




	
63

	
−74,864

	
62

	
−74,864

	
68

	
−74,851

	
76

	
−74,830

	
66

	
−74,837

	
76

	
−74,803

	
76

	
−74,794

	
77

	
1.20

	
76

	
0.04

	
9

	
1

	
2

	
1




	
64

	
−74,903

	
64

	
−74,890

	
55

	
−74,210

	
43

	
−72,992

	
56

	
−74,250

	
36

	
−72,407

	
11

	
−71,923

	
11

	
0.99

	
11

	
0.34

	
484

	
7

	
3

	
0




	
65

	
−74,941

	
66

	
−74,941

	
70

	
−74,935

	
78

	
−74,926

	
70

	
−74,928

	
78

	
−74,913

	
78

	
−74,909

	
78

	
1.20

	
78

	
0.02

	
4

	
1

	
1

	
0




	
66

	
−74,949

	
65

	
−74,935

	
56

	
−74,256

	
45

	
−73,040

	
57

	
−74,298

	
39

	
−72,454

	
18

	
−71,970

	
18

	
0.99

	
18

	
0.34

	
484

	
10

	
3

	
1




	
67

	
−75,101

	
67

	
−75,086

	
58

	
−74,344

	
44

	
−73,011

	
58

	
−74,409

	
35

	
−72,394

	
7

	
−71,865

	
7

	
0.98

	
7

	
0.35

	
529

	
11

	
2

	
0




	
68

	
−75,455

	
68

	
−75,439

	
64

	
−74,630

	
49

	
−73,183

	
64

	
−74,729

	
45

	
−72,536

	
17

	
−71,960

	
17

	
0.99

	
17

	
0.34

	
576

	
11

	
3

	
1




	
69

	
−75,619

	
69

	
−75,602

	
65

	
−74,724

	
46

	
−73,149

	
68

	
−74,852

	
41

	
−72,472

	
6

	
−71,847

	
6

	
0.98

	
6

	
0.35

	
625

	
12

	
2

	
0




	
70

	
−75,659

	
70

	
−75,642

	
66

	
−74,765

	
51

	
−73,191

	
69

	
−74,894

	
42

	
−72,514

	
10

	
−71,889

	
10

	
0.98

	
10

	
0.35

	
625

	
8

	
3

	
0




	
71

	
−75,999

	
71

	
−75,980

	
71

	
−75,031

	
55

	
−73,332

	
71

	
−75,200

	
48

	
−72,626

	
16

	
−71,950

	
16

	
0.99

	
16

	
0.34

	
676

	
12

	
3

	
1




	
72

	
−76,141

	
72

	
−76,121

	
72

	
−75,097

	
52

	
−73,257

	
72

	
−75,299

	
43

	
−72,523

	
3

	
−71,794

	
3

	
0.98

	
3

	
0.35

	
729

	
13

	
2

	
0




	
73

	
−76,529

	
73

	
−76,508

	
73

	
−75,407

	
56

	
−73,433

	
73

	
−75,657

	
50

	
−72,672

	
8

	
−71,888

	
8

	
0.98

	
8

	
0.35

	
784

	
9

	
3

	
0




	
74

	
−76,583

	
74

	
−76,561

	
74

	
−75,461

	
57

	
−73,489

	
74

	
−75,714

	
51

	
−72,728

	
13

	
−71,944

	
13

	
0.99

	
13

	
0.34

	
784

	
13

	
3

	
1




	
75

	
−77,436

	
75

	
−77,410

	
75

	
−76,061

	
58

	
−73,638

	
75

	
−76,462

	
52

	
−72,802

	
5

	
−71,841

	
5

	
0.98

	
5

	
0.35

	
961

	
10

	
3

	
0




	
76

	
−78,443

	
76

	
−78,412

	
76

	
−76,789

	
60

	
−73,872

	
76

	
−77,375

	
54

	
−72,973

	
4

	
−71,817

	
4

	
0.98

	
4

	
0.35

	
1156

	
11

	
3

	
0




	
77

	
−79,526

	
77

	
−79,489

	
77

	
−77,567

	
65

	
−74,111

	
77

	
−78,374

	
58

	
−73,161

	
2

	
−71,792

	
2

	
0.98

	
2

	
0.35

	
1369

	
12

	
3

	
0




	
78

	
−80,668

	
78

	
−80,625

	
78

	
−78,379

	
69

	
−74,335

	
78

	
−79,441

	
61

	
−73,349

	
1

	
−71,749

	
1

	
0.98

	
1

	
0.36

	
1600

	
13

	
3

	
0











Table A9. First half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of [image: there is no content], and times 10 data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
1

	
−72,859

	
1

	
−72,856

	
1

	
−72,715

	
5

	
−72,465

	
1

	
−72,649

	
23

	
−72,268

	
44

	
−72,168

	
44

	
1.00

	
44

	
0.32

	
100

	
4

	
3

	
1




	
2

	
−72,879

	
2

	
−72,877

	
2

	
−72,736

	
9

	
−72,486

	
2

	
−72,670

	
27

	
−72,289

	
45

	
−72,189

	
45

	
1.00

	
45

	
0.32

	
100

	
7

	
3

	
2




	
3

	
−72,895

	
3

	
−72,893

	
7

	
−72,779

	
25

	
−72,577

	
7

	
−72,717

	
37

	
−72,409

	
49

	
−72,328

	
49

	
1.01

	
49

	
0.31

	
81

	
4

	
2

	
0




	
4

	
−72,903

	
4

	
−72,900

	
8

	
−72,787

	
26

	
−72,585

	
8

	
−72,725

	
38

	
−72,417

	
50

	
−72,336

	
50

	
1.01

	
50

	
0.31

	
81

	
8

	
1

	
0




	
5

	
−72,906

	
5

	
−72,903

	
5

	
−72,763

	
13

	
−72,513

	
5

	
−72,696

	
30

	
−72,316

	
46

	
−72,216

	
46

	
1.01

	
46

	
0.32

	
100

	
8

	
2

	
1




	
6

	
−72,915

	
6

	
−72,911

	
3

	
−72,741

	
1

	
−72,438

	
3

	
−72,671

	
7

	
−72,210

	
39

	
−72,089

	
39

	
1.00

	
39

	
0.33

	
121

	
8

	
3

	
2




	
7

	
−72,919

	
7

	
−72,916

	
4

	
−72,746

	
2

	
−72,443

	
4

	
−72,675

	
9

	
−72,215

	
41

	
−72,094

	
41

	
1.00

	
41

	
0.33

	
121

	
9

	
2

	
1




	
8

	
−72,942

	
8

	
−72,939

	
14

	
−72,826

	
28

	
−72,624

	
14

	
−72,765

	
40

	
−72,456

	
51

	
−-72,375

	
51

	
1.02

	
51

	
0.30

	
81

	
7

	
2

	
1




	
9

	
−72,948

	
9

	
−72,945

	
10

	
−72,804

	
20

	
−72,555

	
11

	
−72,738

	
32

	
−72,357

	
47

	
−72,257

	
47

	
1.01

	
47

	
0.31

	
100

	
9

	
1

	
0




	
10

	
−72,951

	
10

	
−72,948

	
6

	
−72,778

	
6

	
−72,475

	
6

	
−72,708

	
20

	
−72,247

	
42

	
−72,126

	
42

	
1.00

	
42

	
0.32

	
121

	
5

	
2

	
0




	
11

	
−72,952

	
11

	
−72,949

	
11

	
−72,809

	
21

	
−72,559

	
13

	
−72,742

	
33

	
−72,362

	
48

	
−72,262

	
48

	
1.01

	
48

	
0.31

	
100

	
3

	
3

	
0




	
12

	
−72,977

	
12

	
−72,974

	
9

	
−72,804

	
12

	
−72,502

	
9

	
−72,734

	
24

	
−72,273

	
43

	
−72,152

	
43

	
1.00

	
43

	
0.32

	
121

	
10

	
1

	
0




	
13

	
−72,990

	
13

	
−72,988

	
17

	
−72,898

	
34

	
−72,740

	
19

	
−72,844

	
46

	
−72,600

	
53

	
−72,536

	
53

	
1.03

	
53

	
0.29

	
64

	
3

	
3

	
1




	
14

	
−72,996

	
14

	
−72,994

	
19

	
−72,904

	
35

	
−72,746

	
21

	
−72,849

	
47

	
−72,606

	
54

	
−72,542

	
54

	
1.03

	
54

	
0.29

	
64

	
7

	
1

	
0




	
15

	
−73,015

	
15

	
−73,011

	
12

	
−72,809

	
3

	
−72,447

	
10

	
−72,736

	
1

	
−72,188

	
33

	
−72,044

	
33

	
1.00

	
33

	
0.33

	
144

	
5

	
3

	
1




	
16

	
−73,019

	
16

	
−73,015

	
13

	
−72,813

	
4

	
−72,452

	
12

	
−72,741

	
3

	
−72,193

	
34

	
−72,049

	
34

	
1.00

	
34

	
0.33

	
144

	
10

	
2

	
1




	
17

	
−73,020

	
17

	
−73,018

	
18

	
−72,904

	
33

	
−72,703

	
18

	
−72,843

	
44

	
−72,535

	
52

	
−72,454

	
52

	
1.02

	
52

	
0.29

	
81

	
6

	
3

	
2




	
18

	
−73,045

	
18

	
−73,041

	
15

	
−72,839

	
7

	
−72,478

	
15

	
−72,767

	
11

	
−72,218

	
38

	
−72,074

	
38

	
1.00

	
38

	
0.33

	
144

	
9

	
3

	
2




	
19

	
−73,050

	
19

	
−73,048

	
25

	
−72,958

	
39

	
−72,800

	
25

	
−72,904

	
49

	
−72,660

	
55

	
−72,596

	
55

	
1.03

	
55

	
0.28

	
64

	
6

	
2

	
1




	
20

	
−73,060

	
20

	
−73,057

	
16

	
−72,854

	
10

	
−72,494

	
16

	
−72,783

	
14

	
−72,234

	
40

	
−72,090

	
40

	
1.00

	
40

	
0.33

	
144

	
11

	
1

	
0




	
21

	
−73,149

	
21

	
−73,145

	
20

	
−72,907

	
8

	
−72,483

	
17

	
−72,835

	
2

	
−72,192

	
27

	
−72,023

	
27

	
0.99

	
27

	
0.33

	
169

	
11

	
2

	
1




	
22

	
−73,160

	
22

	
−73,156

	
21

	
−72,918

	
11

	
−72,494

	
20

	
−72,847

	
5

	
−72,203

	
31

	
−72,034

	
31

	
0.99

	
31

	
0.33

	
169

	
6

	
2

	
0




	
23

	
−73,183

	
23

	
−73,178

	
22

	
−72,941

	
14

	
−72,517

	
22

	
−72,869

	
13

	
−72,226

	
35

	
−72,057

	
35

	
1.00

	
35

	
0.33

	
169

	
10

	
3

	
2




	
24

	
−73,191

	
24

	
−73,187

	
23

	
−72,949

	
16

	
−72,526

	
23

	
−72,878

	
15

	
−72,234

	
36

	
−72,065

	
36

	
1.00

	
36

	
0.33

	
169

	
12

	
1

	
0




	
25

	
−73,193

	
25

	
−73,189

	
24

	
−72,951

	
17

	
−72,528

	
24

	
−72,880

	
17

	
−72,237

	
37

	
−72,068

	
37

	
1.00

	
37

	
0.33

	
169

	
4

	
3

	
0




	
26

	
−73,236

	
26

	
−73,234

	
32

	
−73,144

	
42

	
−72,987

	
32

	
−73,090

	
53

	
−72,847

	
56

	
−72,783

	
56

	
1.05

	
56

	
0.26

	
64

	
5

	
3

	
2




	
27

	
−73,296

	
27

	
−73,291

	
26

	
−73,016

	
15

	
−72,523

	
26

	
−72,946

	
4

	
−72,200

	
25

	
−72,004

	
25

	
0.99

	
25

	
0.34

	
196

	
12

	
2

	
1




	
28

	
−73,310

	
28

	
−73,305

	
27

	
−73,030

	
18

	
−72,538

	
27

	
−72,960

	
8

	
−72,214

	
26

	
−72,018

	
26

	
0.99

	
26

	
0.33

	
196

	
6

	
3

	
1




	
29

	
−73,322

	
29

	
−73,316

	
28

	
−73,041

	
19

	
−72,549

	
28

	
−72,972

	
12

	
−72,225

	
29

	
−72,029

	
29

	
0.99

	
29

	
0.33

	
196

	
13

	
1

	
0




	
30

	
−73,333

	
30

	
−73,328

	
29

	
−73,052

	
22

	
−72,561

	
29

	
−72,983

	
18

	
−72,237

	
32

	
−72,041

	
32

	
0.99

	
32

	
0.33

	
196

	
11

	
3

	
2




	
31

	
−73,354

	
31

	
−73,353

	
35

	
−73,284

	
47

	
−73,165

	
36

	
−73,238

	
55

	
−73,051

	
57

	
−73,002

	
57

	
1.06

	
57

	
0.24

	
49

	
6

	
1

	
0




	
32

	
−73,367

	
32

	
−73,366

	
37

	
−73,297

	
48

	
−73,178

	
37

	
−73,251

	
56

	
−73,064

	
58

	
−73,015

	
58

	
1.06

	
58

	
0.24

	
49

	
5

	
2

	
1




	
33

	
−73,379

	
33

	
−73,377

	
38

	
−73,308

	
50

	
−73,189

	
39

	
−73,262

	
57

	
−73,076

	
59

	
−73,027

	
59

	
1.06

	
59

	
0.24

	
49

	
3

	
2

	
0




	
34

	
−73,450

	
34

	
−73,444

	
30

	
−73,128

	
23

	
−72,563

	
30

	
−73,063

	
6

	
−72,207

	
20

	
−71,982

	
20

	
0.99

	
20

	
0.34

	
225

	
7

	
2

	
0




	
35

	
−73,459

	
35

	
−73,452

	
31

	
−73,137

	
24

	
−72,571

	
31

	
−73,072

	
10

	
−72,215

	
23

	
−71,990

	
23

	
0.99

	
23

	
0.34

	
225

	
13

	
2

	
1




	
36

	
−73,493

	
36

	
−73,492

	
41

	
−73,423

	
53

	
−73,303

	
41

	
−73,377

	
59

	
−73,190

	
60

	
−73,141

	
60

	
1.07

	
60

	
0.23

	
49

	
2

	
3

	
0




	
37

	
−73,501

	
37

	
−73,495

	
33

	
−73,179

	
27

	
−72,614

	
33

	
−73,114

	
22

	
−72,257

	
30

	
−72,032

	
30

	
0.99

	
30

	
0.33

	
225

	
12

	
3

	
2




	
38

	
−73,504

	
38

	
−73,502

	
42

	
−73,433

	
54

	
−73,314

	
42

	
−73,388

	
60

	
−73,201

	
61

	
−73,152

	
61

	
1.07

	
61

	
0.23

	
49

	
4

	
3

	
2




	
39

	
−73,639

	
39

	
−73,632

	
34

	
−73,273

	
29

	
−72,630

	
34

	
−73,215

	
19

	
−72,240

	
21

	
−71,984

	
21

	
0.99

	
21

	
0.34

	
256

	
5

	
3

	
0










Table A7. First half output of the model selection analysis for data sampled from target function (A7), sample size N = 15,000, Gaussian error of [image: there is no content], and straightforward data estimates of [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]; given are (internally) ranked logarithms of the discussed evidences, ranked sample error standard deviations (from low to high) and R-square values, number of parameters m, and spline model specifications (geometry, polynomial-order, and continuity-order).







	
Ignorance

	
Manor

	
Neeley

	
Constantineau

	
BIC

	
AIC

	
“Sure Thing”

	
Error Std

	
R-Square

	
m

	
Model Specs






	
1

	
−72,645

	
1

	
−72,642

	
3

	
−72,511

	
5

	
−72,465

	
1

	
−72,649

	
23

	
−72,268

	
44

	
−72,168

	
44

	
1.00

	
44

	
0.32

	
100

	
4

	
3

	
1




	
2

	
−72,656

	
2

	
−72,653

	
1

	
−72,493

	
1

	
−72,438

	
3

	
−72,671

	
7

	
−72,210

	
39

	
−72,089

	
39

	
1.00

	
39

	
0.33

	
121

	
8

	
3

	
2




	
3

	
−72,660

	
3

	
−72,657

	
2

	
−72,498

	
2

	
−72,443

	
4

	
−72,675

	
9

	
−72,215

	
41

	
−72,094

	
41

	
1.00

	
41

	
0.33

	
121

	
9

	
2

	
1




	
4

	
−72,665

	
4

	
−72,663

	
7

	
−72,532

	
9

	
−72,486

	
2

	
−72,670

	
27

	
−72,289

	
45

	
−72,189

	
45

	
1.00

	
45

	
0.32

	
100

	
7

	
3

	
2




	
5

	
−72,692

	
5

	
−72,689

	
6

	
−72,530

	
6

	
−72,475

	
6

	
−72,708

	
20

	
−72,247

	
42

	
−72,126

	
42

	
1.00

	
42

	
0.32

	
121

	
5

	
2

	
0




	
6

	
−72,692

	
6

	
−72,690

	
10

	
−72,558

	
13

	
−72,513

	
5

	
−72,696

	
30

	
−72,316

	
46

	
−72,216

	
46

	
1.01

	
46

	
0.32

	
100

	
8

	
2

	
1




	
7

	
−72,706

	
7

	
−72,703

	
4

	
−72,513

	
3

	
−72,447

	
10

	
−72,736

	
1

	
−72,188

	
33

	
−72,044

	
33

	
1.00

	
33

	
0.33

	
144

	
5

	
3

	
1




	
8

	
−72,711

	
8

	
−72,708

	
5

	
−72,518

	
4

	
−72,452

	
12

	
−72,741

	
3

	
−72,193

	
34

	
−72,049

	
34

	
1.00

	
34

	
0.33

	
144

	
10

	
2

	
1




	
9

	
−72,718

	
9

	
−72,716

	
9

	
−72,556

	
12

	
−72,502

	
9

	
−72,734

	
24

	
−72,273

	
43

	
−72,152

	
43

	
1.00

	
43

	
0.32

	
121

	
10

	
1

	
0




	
10

	
−72,722

	
10

	
−72,720

	
19

	
−72,613

	
25

	
−72,577

	
7

	
−72,717

	
37

	
−72,409

	
49

	
−72,328

	
49

	
1.01

	
49

	
0.31

	
81

	
4

	
2

	
0




	
11

	
−72,729

	
11

	
−72,728

	
21

	
−72,621

	
26

	
−72,585

	
8

	
−72,725

	
38

	
−72,417

	
50

	
−72,336

	
50

	
1.01

	
50

	
0.31

	
81

	
8

	
1

	
0




	
12

	
−72,734

	
12

	
−72,731

	
15

	
−72,600

	
20

	
−72,555

	
11

	
−72,738

	
32

	
−72,357

	
47

	
−72,257

	
47

	
1.01

	
47

	
0.31

	
100

	
9

	
1

	
0




	
13

	
−72,736

	
13

	
−72,733

	
8

	
−72,543

	
7

	
−72,478

	
15

	
−72,767

	
11

	
−72,218

	
38

	
−72,074

	
38

	
1.00

	
38

	
0.33

	
144

	
9

	
3

	
2




	
14

	
−72,738

	
14

	
−72,735

	
17

	
−72,604

	
21

	
−72,559

	
13

	
−72,742

	
33

	
−72,362

	
48

	
−72,262

	
48

	
1.01

	
48

	
0.31

	
100

	
3

	
3

	
0




	
15

	
−72,752

	
15

	
−72,749

	
11

	
−72,559

	
10

	
−72,494

	
16

	
−72,783

	
14

	
−72,234

	
40

	
−72,090

	
40

	
1.00

	
40

	
0.33

	
144

	
11

	
1

	
0




	
16

	
−72,768

	
16

	
−72,767

	
25

	
−72,660

	
28

	
−72,624

	
14

	
−72,765

	
40

	
−72,456

	
51

	
−72,375

	
51

	
1.02

	
51

	
0.30

	
81

	
7

	
2

	
1




	
17

	
−72,787

	
17

	
−72,783

	
12

	
−72,561

	
8

	
−72,483

	
17

	
−72,835

	
2

	
−72,192

	
27

	
−72,023

	
27

	
0.99

	
27

	
0.33

	
169

	
11

	
2

	
1




	
18

	
−72,798

	
18

	
−72,794

	
13

	
−72,572

	
11

	
−72,494

	
20

	
−72,847

	
5

	
−72,203

	
31

	
−72,034

	
31

	
0.99

	
31

	
0.33

	
169

	
6

	
2

	
0




	
19

	
−72,821

	
19

	
−72,817

	
14

	
−72,594

	
14

	
−72,517

	
22

	
−72,869

	
13

	
−72,226

	
35

	
−72,057

	
35

	
1.00

	
35

	
0.33

	
169

	
10

	
3

	
2




	
20

	
−72,830

	
20

	
−72,826

	
16

	
−72,603

	
16

	
−72,526

	
23

	
−72,878

	
15

	
−72,234

	
36

	
−72,065

	
36

	
1.00

	
36

	
0.33

	
169

	
12

	
1

	
0




	
21

	
−72,832

	
21

	
−72,828

	
18

	
−72,605

	
17

	
−72,528

	
24

	
−72,880

	
17

	
−72,237

	
37

	
−72,068

	
37

	
1.00

	
37

	
0.33

	
169

	
4

	
3

	
0




	
22

	
−72,847

	
22

	
−72,845

	
29

	
−72,739

	
33

	
−72,703

	
18

	
−72,843

	
44

	
−72,535

	
52

	
−72,454

	
52

	
1.02

	
52

	
0.29

	
81

	
6

	
3

	
2




	
23

	
−72,853

	
23

	
−72,852

	
32

	
−72,768

	
34

	
−72,740

	
19

	
−72,844

	
46

	
−72,600

	
53

	
−72,536

	
53

	
1.03

	
53

	
0.29

	
64

	
3

	
3

	
1




	
24

	
−72,859

	
24

	
−72,858

	
33

	
−72,774

	
35

	
−72,746

	
21

	
−72,849

	
47

	
−72,606

	
54

	
−72,542

	
54

	
1.03

	
54

	
0.29

	
64

	
7

	
1

	
0




	
25

	
−72,876

	
25

	
−72,872

	
20

	
−72,613

	
15

	
−72,523

	
26

	
−72,946

	
4

	
−72,200

	
25

	
−72,004

	
25

	
0.99

	
25

	
0.34

	
196

	
12

	
2

	
1




	
26

	
−72,890

	
26

	
−72,886

	
22

	
−72,628

	
18

	
−72,538

	
27

	
−72,960

	
8

	
−72,214

	
26

	
−72,018

	
26

	
0.99

	
26

	
0.33

	
196

	
6

	
3

	
1




	
27

	
−72,902

	
27

	
−72,897

	
23

	
−72,639

	
19

	
−72,549

	
28

	
−72,972

	
12

	
−72,225

	
29

	
−72,029

	
29

	
0.99

	
29

	
0.33

	
196

	
13

	
1

	
0




	
28

	
−72,913

	
29

	
−72,912

	
36

	
−72,828

	
39

	
−72,800

	
25

	
−72,904

	
49

	
−72,660

	
55

	
−72,596

	
55

	
1.03

	
55

	
0.28

	
64

	
6

	
2

	
1




	
29

	
−72,913

	
28

	
−72,909

	
24

	
−72,650

	
22

	
−72,561

	
29

	
−72,983

	
18

	
−72,237

	
32

	
−72,041

	
32

	
0.99

	
32

	
0.33

	
196

	
11

	
3

	
2




	
30

	
−72,969

	
30

	
−72,963

	
26

	
−72,667

	
23

	
−72,563

	
30

	
−73,063

	
6

	
−72,207

	
20

	
−71,982

	
20

	
0.99

	
20

	
0.34

	
225

	
7

	
2

	
0




	
31

	
−72,977

	
31

	
−72,971

	
27

	
−72,675

	
24

	
−72,571

	
31

	
−73,072

	
10

	
−72,215

	
23

	
−71,990

	
23

	
0.99

	
23

	
0.34

	
225

	
13

	
2

	
1




	
32

	
−73,019

	
32

	
−73,014

	
28

	
−72,717

	
27

	
−72,614

	
33

	
−73,114

	
22

	
−72,257

	
30

	
−72,032

	
30

	
0.99

	
30

	
0.33

	
225

	
12

	
3

	
2




	
33

	
−73,091

	
33

	
−73,085

	
30

	
−72,747

	
29

	
−72,630

	
34

	
−73,215

	
19

	
−72,240

	
21

	
−71,984

	
21

	
0.99

	
21

	
0.34

	
256

	
5

	
3

	
0




	
34

	
−73,099

	
34

	
−73,098

	
40

	
−73,014

	
42

	
−72,987

	
32

	
−73,090

	
53

	
−72,847

	
56

	
−72,783

	
56

	
1.05

	
56

	
0.26

	
64

	
5

	
3

	
2




	
35

	
−73,106

	
35

	
−73,101

	
31

	
−72,763

	
30

	
−72,646

	
35

	
−73,231

	
21

	
−72,256

	
24

	
−72,000

	
24

	
0.99

	
24

	
0.34

	
256

	
7

	
3

	
1




	
36

	
−73,133

	
36

	
−73,127

	
34

	
−72,790

	
32

	
−72,672

	
38

	
−73,258

	
25

	
−72,283

	
28

	
−72,027

	
28

	
0.99

	
28

	
0.33

	
256

	
13

	
3

	
2




	
37

	
−73,179

	
37

	
−73,173

	
35

	
−72,791

	
31

	
−72,658

	
40

	
−73,336

	
16

	
−72,235

	
14

	
−71,946

	
14

	
0.99

	
14

	
0.34

	
289

	
8

	
2

	
0




	
38

	
−73,250

	
38

	
−73,249

	
43

	
−73,185

	
47

	
−73,165

	
36

	
−73,238

	
55

	
−73,051

	
57

	
−73,002

	
57

	
1.06

	
57

	
0.24

	
49

	
6

	
1

	
0




	
39

	
−73,263

	
39

	
−73,262

	
44

	
−73,198

	
48

	
−73,178

	
37

	
−73,251

	
56

	
−73,064

	
58

	
−73,015

	
58

	
1.06

	
58

	
0.24

	
49

	
5

	
2

	
1












Appendix B. Introducing C-Splines


Appendix B.1. A Simple Trivariate C-Spline Model


If we have predictors from a three dimensional domain [image: there is no content], where [image: there is no content], and a corresponding dependent variable v, then the simplest non-trivial spline model is the model which partitions the cube of the three dimensional domain in [image: there is no content] sub-cubes, has polynomial order 1 with no interactions, that is,


[image: there is no content]



(A8)




and continuity of order 0 (i.e., piecewise polynomials themselves need to connect, but not their derivatives.) It is found that this particular spline model corresponds with the C-spline basis [image: there is no content] [5]:


[image: there is no content]



(A9)




where each of the rows u correspond with a particular sub-domain in [image: there is no content].



Let [image: there is no content] and k be the x-, y-, and z-axis sub-domain coordinates, respectively. Then we have that the row number u of [image: there is no content] is the following function of the sub-domain coordinates


[image: there is no content]



(A10)




where the coordinates [image: there is no content] for a given sub-domain can be found as


ix=1,x≤0.5,2,x>0.5,jy=1,y≤0.5,2,y>0.5,kz=1,z≤0.5,2,z>0.5.



(A11)







Now, if we have a data set with sample size N, then we may go iteratively through this data set, as we determine for each entry in the predictor matrix [image: there is no content] the corresponding coordinates [image: there is no content], by way of (A11):


[image: there is no content]











These coordinates then map to the row [image: there is no content], by way of (A10):


[image: there is no content]











We then substitute the values [image: there is no content] into the vector [image: there is no content], which gives us [image: there is no content]. Finally, we set the nth row of the spline predictor matrix [image: there is no content] to


[image: there is no content]








As we follow this procedure for [image: there is no content], we end up with a [image: there is no content] spline predictor matrix [image: there is no content]. If we regress this spline predictor matrix on the dependent variable vector [image: there is no content], we obtain the spline regression coefficients


[image: there is no content]



(A12)




If we combine the functions (A10) and (A11), so as to obtain the sub-domain number directly as a function of x, y, and z,


[image: there is no content]



(A13)




then the C-spline model on the domain [image: there is no content] for the expected value (156), with a 2-by-2-by-2 geometry, a polynomial order 1 with no interactions, and continuity order 0 may be written down as the inner product, (A9) and (A12),


[image: there is no content]



(A14)




In Figure A20 we give a demonstration of the spline equivalent (A14) of the polynomial (A8), by way of the spline basis (A9), where we (arbitrarily and as a reference for the reader) let


[image: there is no content]












Figure A20. Example of the trivariate C-spline model for (A8), for [image: there is no content], [image: there is no content], and [image: there is no content], respectively.



[image: Entropy 19 00250 g020]






Note that 8 trivariate piecewise polynomials of order 1 with no interactions ordinarily would make for [image: there is no content] parameters, whereas just the one trivariate piecewise polynomial (A8) over the total unpartitioned domain makes for [image: there is no content] parameters. Seeing that (A9) consists of [image: there is no content] parameters, it follows that the constraint for connectedness of the polynomials has incurred a cost of


[image: there is no content]








free parameters relative to the unconstrained case, or, alternatively, a gain of


[image: there is no content]








free parameters relative to the case where one polynomial is defined over the whole of the domain.




Appendix B.2. Enforcing Connectivity


The sub-domains


D1:0.5<x,y≤1and0≤z≤0.5,D2:0.5<x,y≤1and0.5<z≤1,








connect at [image: there is no content]. The sub-domains [image: there is no content] and [image: there is no content] are associated with the sub-domain numbers [image: there is no content] and [image: there is no content], respectively, (A13). It follows that [image: there is no content] and [image: there is no content] have corresponding C-spline basis vectors (A9)


[image: there is no content]








and


[image: there is no content]








If we approach the z-boundary of the 4th and the 8th sub-domain, or, equivalent, if we let [image: there is no content] in the domains [image: there is no content] and [image: there is no content], from below and above, respectively, then it may be checked that the above C-spline basis vectors converge to the same vector:


[image: there is no content]








and


[image: there is no content]








It follows that the C-spline model (A14) will connect at the z-boundary of the sub-domains [image: there is no content] and [image: there is no content], for any regression coefficient vector [image: there is no content], as the z-boundary is crossed from below and the inner product goes from


[image: there is no content]








to


[image: there is no content]








and vise versa. It may be checked that this holds for all possible boundary crossings in the domain [image: there is no content]. Stated differently, the C-spline model (A14) enforces the piecewise polynomials to connect at their domain boundaries by way of its C-spline basis (A9).




Appendix B.3. Adding Polynomial Interaction and Power Terms


Now, the C-spline model (A14) enforces the piecewise polynomials to connect at their domain boundaries by way of its C-spline basis (A9). So, it follows that any product of the columns in (A9) must also enforce this connectedness; to be more specific, if we want to introduce an interaction between x and y, then we just need to multiply the two x-columns with the two y-columns of (A9) in the following manner:


xy=x−0.5·y−0.5x−0.5·y−0.5x−0.5·y−0.5x−0.5·y−0.50·y−0.50·y−0.5x−0.5·y−0.5x−0.5·y−0.5x−0.5·0x−0.5·y−0.5x−0.5·0x−0.5·y−0.50·00·y−0.5x−0.5·0x−0.5·y−0.5x−0.5·y−0.5x−0.5·y−0.5x−0.5·y−0.5x−0.5·y−0.50·y−0.50·y−0.5x−0.5·y−0.5x−0.5·y−0.5x−0.5·0x−0.5·y−0.5x−0.5·0x−0.5·y−0.50·00·y−0.5x−0.5·0x−0.5·y−0.5=x−0.5y−0.5x−0.5y−0.5x−0.5y−0.5x−0.5y−0.500x−0.5y−0.5x−0.5y−0.50x−0.5y−0.50x−0.5y−0.5000x−0.5y−0.5x−0.5y−0.5x−0.5y−0.5x−0.5y−0.5x−0.5y−0.500x−0.5y−0.5x−0.5y−0.50x−0.5y−0.50x−0.5y−0.5000x−0.5y−0.5








or, equivalently, as any linear combination of columns also will adhere to the constraint of connectivity,


[image: there is no content]



(A15)




And it may be checked that the addition of these columns to the spline basis (A9) will still result in an enforcement of the constraint of connectedness. (Similarly, one may also row reduce the spline basis (A9), should one wish to do so.)



By way of induction, it follows that the number of columns in the introduction of the spline polynomials interactions [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] to (A8),


[image: there is no content]



(A16)




will result in a spline basis which has


[image: there is no content]








free parameters. In Figure A21 we give a demonstration of the added flexibility of the spline equivalent (A14) of the polynomial (A16) for a random [image: there is no content].




Figure A21. Example of the trivariate C-spline model for (A16), for [image: there is no content], [image: there is no content], and [image: there is no content], respectively.



[image: Entropy 19 00250 g021]






Also, the term [image: there is no content] may be simply constructed as by taking the kth power of the two x-columns with the two y-columns of (A9)


[image: there is no content]








It follows that the addition of [image: there is no content], [image: there is no content], and [image: there is no content] and the subtraction of the term [image: there is no content] to (A16)


[image: there is no content]



(A17)




will result in a spline basis which has


[image: there is no content]








free parameters. In Figure A22 we give a demonstration of the added flexibility of the spline equivalent (A14) of the polynomial (A17) for a random [image: there is no content].




Figure A22. Example of the trivariate C-spline model for (A17), for [image: there is no content], [image: there is no content], and [image: there is no content], respectively.



[image: Entropy 19 00250 g022]
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