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Abstract: This paper is an exercise of quantitative dynamic analysis applied to bilateral relationships
among partners within two monetary union case studies: the Portuguese escudo zone monetary
union (EZMU) and the European euro zone monetary union (EMU). Real world data are tackled
and measures that are usual in complex system analysis, such as entropy, mutual information,
Canberra distance, and Jensen–Shannon divergence, are adopted. The emerging relationships are
visualized by means of the multidimensional scaling and hierarchical clustering computational
techniques. Results bring evidence on long-run stochastic dynamics that lead to asymmetric
indebtedness mechanisms among the partners of a monetary union and sustainability difficulties.
The consequences of unsustainability and disruption of monetary unions have high importance for
the discussion on optimal currency areas from a geopolitical perspective.

Keywords: dynamics; mathematical models; synchronization; economics; entropy; Jensen–Shannon
divergence; multidimensional scaling; hierarchical clustering

1. Introduction

Mathematical models describe systems using the formal tools of mathematics and are extensively
used in physics and engineering disciplines. Models shed light on the system characteristics and
allow for studying the effect of distinct variables and parameters. With the support of differential
calculus, models lead to the concept of dynamics, often with respect to time and space, and eventually
allow researchers to make predictions about the evolution of the system states. Mathematical models
are being applied to social sciences, namely in economics, but we can say loosely that the advances
in this area are still far from the success reached in natural sciences, and many descriptions remain
qualitative or heuristic [1–5]. A reliable alternative of studying complex phenomena is based on
data series analysis. This option requires real-world data and produces phenomenological models
that can be studied by means of solid mathematical tools [6–10]. This paper adopts this strategy for
studying the dynamic evolution in time of the Portuguese escudo zone monetary union (EZMU) and
the European euro zone monetary union (EMU). The followup of the modeling exercise is to analyze
possible scenarios of synchronization of nonlinear dynamics or chaotic systems based on the time
series [11–19]. While it is a mathematical analysis of simple analytic models, a robust and assertive
characterization of monetary unions involving a large number of members poses challenges to be
tackled with the aid of numerical and computational tools.

In November 1961, the Canadian economist Robert Mundell published his breakthrough article
“A Theory of Optimum Currency Areas” (OCAs) in the American Economic Review. The available
historical evidence from the old gold standard before 1914 proved the practical efficiency of Mundell’s
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automatic market mechanisms. The idea supporting the argument of success for monetary unions as
OCAs is the belief “that the adoption of a single currency should be the crowning of a lengthy process
of convergence of the economies seeking to join the union” [20].

Although Mundell formulated his ideas on currency areas in a broad way, for discussing what
the economic criteria were to base “decisions by various regions of the world to adopt a common
currency (...)”, it is quite clear that “Mundell was an ardent supporter of the euro” [20]. Mundell
clearly related his proposals to the international geopolitical cold-war political context. A European
Monetary union could perform an important role in the international monetary system, which could
reflect the importance of currency regions. A European currency or a Western currency (including
the Canadian and US dollars) would be politically instrumental in order to face centrally-planned
economies. The “Plan for a European currency” was launched in a Madrid conference devoted to
currency areas only in March 1970, and was published with “Uncommon Arguments for Common
Currencies” in 1973 [21].

Free trade, free labor and capital movements would combine and mutually produce stabilizing
effects among the partners in any monetary union. The mechanisms were automatic in promoting
pricing adjustments for commodities, wages, and interest rates, so that equilibrium of balances of
payments would arise in a self-regulated way [22].

Mundell’s cost-benefit theories on currency areas earned him the Nobel Prize in 1999, as they are
considered to be the theoretical foundations of a vast literature for the analytical framework of this
subject. The success of Mundell’s theories had to do with their application to the European Economic
Community and the European Monetary Union, and with other “areas where political organization is
in a state of flux, such as in colonial areas” [23].

The colonial case of the EZMU promulgated in 1961 was a political instrument to reinforce the
political cohesion between Portugal and the colonial empire under free trade policies. According to
Mundell, “except in areas where national sovereignty is being given-up, it is not feasible to suggest that
currencies should be reorganized” [23]. Great difficulties in the EZMU were combined with colonial
terrorism activity throughout the 1960s in some of the Portuguese territories. They obliged a reform
in 1971 that put an end to free trade because the inter-territorial payment system “was conceived with
an elegant theoretical coherence (...) but for a reality that was different from the one it had to face”.
The history of currency areas and economic integration is inseparable from Portugal’s national history.
The reformed EZMU could only lead to its open failure, the collapse of the Portuguese political regime,
and decolonization. The EZMU preceded and (anticipated) what would be common-currency plans
for the European continent, and may be studied as another historical experiment.

It is the purpose of this study to look at the main quantitative features of the EZMU and
EMU (see Tables 1 and 2) as case studies on trade compensation systems, and dynamic operation
difficulties. Emphasis will be placed on problems of long-run sustainability of monetary unions, for
historical perspectives and political appraisals. The reasons why monetary union systems may collapse
illustrate important aspects of national and supra-national economic policies, and provide interesting
geopolitical analysis, particularly if disruption includes expectations on military events or conflict.

The study is based on real-world data and adopts mathematical and computational tools that
are usual in complex systems analysis. We consider the entropy [24–30], the Canberra distance,
and Jensen–Shannon devergence [31–37] for measuring and comparing items. Furthermore, we adopt
the Multidimensional Scaling (MDS) and an association of Hierarchical Clustering (HC) and
visualization techniques [38–45] to unveil hidden patterns embedded in the data.

This paper is organized as follows. Section 2 presents the databases and the mathematical
methodology, Section 3 interprets the results in light of historical aspects in order to frame the
conclusions. Finally, Section 4 outlines the main conclusions.
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Table 1. The EZMU Timeline.

Date Description

1961 First terrorism actions in Angola

November 1961 Decree-law 44016: Foundation of the escudo monetary zone

1962 Decree-laws 44698, 44701, 44702: Framing the background for all the monetary features

March 1963

The beginning data of the EZMU operation: BoP assumed much wider functions in order to be
the central bank of the whole system of compensation payments among all territories under

Portuguese political sovereignty and administration. A new contract was signed with the
Portuguese central state (through the Ministry of Finance). New contracts between the other
issuing banks and contracts with the Portuguese central state (through the Ministry of Finance)
were also signed

1963 Beginning of terrorism and guerrilla warfare in Guinea

1964 Beginning of terrorism and guerrilla warfare in Mozambique, intensifying after 1966

September 1968 Prime minister Salazar’s illness and replacement by Marcelo Caetano

November 1971

Reform the EZMU: it introduced quantitative restrictions, tariffs, and previous authorization

on commodities imported from abroad. Exports were submitted to a previous registration in
bulletins. The colonial Exchange Funds also were authorized to issue domestic loans with state
guarantee, but they were jointly responsible for them

1974–1975 Decolonization

Table 2. The EMU Timeline.

Date Description

July 1990 Exchange controls were abolished, and capital movements were completely liberalized

1992 The Treaty of Maastricht established the economic convergence criteria concerning the inflation
rate, public finances, interest rates, and exchange rate stability

December 1995 The name of the new currency (the euro) and the duration of the transition periods were decided
June 1997 Definition of a Stability and Growth Pact to ensure budgetary discipline after creation of the euro
June 1998 Foundation of European Central Bank (ECB)

December 1998 Definition of the conversion rates between the 11 participating national currencies and the euro
1999 The euro became a real currency, and the ECB assumed a single monetary policy

January 2002 The euro notes and coins were introduced
2004–2005 Madrid and London terrorism attacks

January 2007 Slovenia joins the EMU
January 2008 Cyprus and Malta join the EMU
January 2009 Slovakia joins the EMU
January 2011 Estonia joins the EMU
January 2014 Latvia joins the EMU
January 2015 Lithuania joins the EMU

2015–2016 Paris, Brussels, Nice, Berlin terrorism attacks and Migrant crisis in Europe

2. Databases and Mathematical Methodology

Data for the EZMU come from monthly reports on the values of bilateral inter-partner
relationships published by the central bank of this monetary union, Bank of Portugal (BoP), on a set
made of N = 8 partners: The motherland-Portugal and the Atlantic islands of Azores and Madeira
(Pt), the five African territories under Portuguese political sovereignty, Cabo Verde (CV), Guinea (Gu),
S. Tomé and Príncipe (TP), Angola (An), and Mozambique (Mo), and the two Asian territories also
under Portuguese political sovereignty, Macao (Ma), and Timor (TI). The period considered runs from
June 1963 to February 1971 (i.e., tini = 1963 and tend = 1971), with a sampling period of h = 1 month.

Data for the EMU come from a Direction of Trade Statistics (DOTS) exported from the International
Monetary Fund (IMF) quarterly database. It is organized as a matrix that describes the value of the
bilateral relationships between any two partners of a set made of N = 19 countries: Austria (AT),
Belgium (BE), Cyprus (CY), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (GR), Ireland
(IE), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Netherlands (NL), Portugal
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(PT), Slovak-Republic (SK), Slovenia (SI), and Spain (ES). The period considered runs from January
2000 to June 2016 (i.e., tini = 2000 and tend = 2016), with a sampling period of h = 3 months.

To simplify, in both cases, we shall denote hereinafter by Q1, Q2, and Q3, the first, second,
and third quarter of the year, respectively.

The data-sets describe the two cases since their beginning:

• Before the EZMU period analyzed here, the conversion rates of the currencies of the eight
participating partners was 1:1 parity.

• Before the EMU period analyzed here, the conversion rates of the currencies of the initial
11 participating partners and the euro was established (1999).

In both cases, the data are organized in tables X(t) =
[
xij(t)

]
, i, j = 1, . . . , N, for the time

sampling instants t = tini, . . . , tend. The asymmetric N × N matrices X represent the exports/imports
from element i to/from element j and have identical (or 1:1 convertible) currency. Therefore, the
measure of the state of the union is based only on the perspective of the exports/imports relationship.

One possible set of measures (to be denoted as I1) interpret matrix X at time t as a two-dimensional
probability distribution P =

[
pij
]
. For this purpose, the content of cell xij is concerted to a probability

such that
pij =

xij
N

∑
i=1

N

∑
j=1

xij

. (1)

The characteristics of the two-dimensional probability distribution are captured by means of the
Shannon joint entropy S and mutual information I given by:

S = −
N

∑
i=1

N

∑
j=1

pij ln
(

pij
)
, (2)

I =
N

∑
i=1

N

∑
j=1

pij ln

(
pij

p†
i · p∗j

)
, (3)

where p†
i =

N

∑
j=1

pij and p∗j =
N

∑
i=1

pij are marginal probability distributions.

In the context of the economics problem, the joint entropy S can be interpreted as a measure of the
uncertainty associated with a set of variables on imports and exports, while the mutual information I
is a measure of the mutual dependence between them. Furthermore, since, in general, they focus on
distinct characteristics, we can use them to construct a two-dimensional state description (S, I) of the
system dynamics.

Another set of measures (to be denoted as I2) compares matrix X at two distinct time instants
tk and tl . We shall consider the Minkowski distance, Mip

kl , of order p ≥ 1, the Canberra distance, Ckl ,
and the Jensen–Shannon divergence, JSkl , for tini ≤ tk, tl ≤ tend:

Mip
kl =

(
N

∑
i=1

N

∑
j=1

∣∣xij (tk)− xij (tl)
∣∣p) 1

p

, (4)

Ckl =
N

∑
i=1

N

∑
j=1

∣∣xij (tk)− xij (tl)
∣∣∣∣xij (tk)

∣∣+ ∣∣xij (tl)
∣∣ , (5)

JSkl =
1
2
{D [P (tk) ||M (tk, tl)] + D [P (tl) ||M (tk, tl)]} , (6)
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where M represents the mixture distribution M (tk, tl) =
1
2 [P (tk) + P (tl)] and D (P||M) denotes the

Kullback–Leibler divergence:

D (P||M) =
N

∑
i=1

pi ln
(

pi
mi

)
. (7)

For p = 1, p = 2, and p → ∞ the Minkowski distance corresponds to the Manhattan,
Euclidean and Chebyshev distances, respectively.

Set I2 compares the asymmetric matrix X at instants tk and tl and, therefore, considers the
group of countries as a whole. Nonetheless, we can also compare imports/exports of the distinct
countries at one given time instant t. In this line of thought, a third set of measures (to be denoted
as I3) implements the absolute and relative asymmetry measures, AAp

ij,ji and RAij,ji, distances,
for i, j = 1, . . . , N, and tini ≤ t ≤ tend, as follows:

AAp
ij,ji (t) =

∣∣xij (t)− xji (t)
∣∣p , (8)

RAij,ji (t) =

∣∣xij (t)− xji (t)
∣∣∣∣xij (t)

∣∣+ ∣∣xji (t)
∣∣ . (9)

Matrix X(t) has a main diagonal with zeros and, in general, we have xij 6= xij (i.e., the
export/exports between countries i to country j are different). This means that I2 calculates the distance
between two matrices at instants tk and tl , while I3 calculates the asymmetry of each individual matrix
at time t.

The measures (4) and (8) may be sensitive to data having a wide range of amplitudes, where the
larger values tend to “saturate” the measure. In case the data is structured as vectors, a possible
technique to overcome the limitation consists of adopting a distinct weight to each component,
such as in the cases of weighted Minkowski and the Mahalanobis distances. Since the data sets under
comparison involves values both from small and large countries, the measures (5), (6) and (9) seem
preferable to (4) and (8), and, in the follow-up, comparisons between distances will be included to
enlighten this issue. Several numerical experiments for several values of p revealed that p = 1 leads
to slightly better results than other values of p, particularly in (8). In fact, during the numerical
calculations to be described as follows, we verify difficulties for obtaining a good low-dimensional
reconstruction for p > 1. To simplify notation, for p = 1 those measures will be denoted by Mkl and
AAij,ji as follows:

Mkl =
N

∑
i=1

N

∑
j=1

∣∣xij (tk)− xij (tl)
∣∣ , (10)

AAij,ji (t) =
∣∣xij (t)− xji (t)

∣∣ . (11)

The suitability of a given set of measures over alternative indices is not a matter of the
corresponding expression being mathematically correct or not. A “good” measure is the one that
(i) reflects the phenomena and leads to general conclusions compatible with expert knowledge in
the topic; (ii) reveals some specific phenomena not clearly seen with standard tools; and (iii) leads to
distance matrices G of (all) item-to-item distances producing clear clustering patterns with MDS or HC
visualization methods. In some cases, the matrix G does not allow the visualization in a q-dimensional
space, such as with q = 2 or with q = 3, due to the poor information produced by the adopted measure,
for the specific data under analysis, and the user has to try alternative indices. Therefore, the choice
of “good” measures depends on the user experience that often has to perform an initial screening of
candidates before deciding the best ones. In other cases, several alternative distance measures produce
suitable visualization patterns and the user has to choose those he finds best. While such procedure
might be interpreted as subjective, or at least not systematic, in fact, it is the strategy commonly
adopted and accepted as adequate with this technique. From the proposed measures and the type of
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data series, it was observed that measure (8) deteriorates when p increases and, therefore, the limit
case of p = 1 is adopted.

Each of the indices in I2 and I3 is used to construct a distance matrix G, n × n, that feeds
information for the visualization scheme. Therefore, when using I2, we have G = [gkl ], k, l = 1, . . . , 93,
and k, l = 1, . . . , 66 (i.e., n = 93 and n = 66), for the EZMU and EMU, respectively, since we
are comparing the complete matrices at distinct time instants. When using I3, we have G =

[
gij
]
,

i, j = 1, . . . , 8, and i, j = 1, . . . , 19 (i.e., n = 8 and n = 19), for the EZMU and EMU, respectively, since we
are comparing countries within the matrix at a fixed time instant. Furthermore, G is symmetric and
has a main diagonal with zeros because each of its element is calculated by one of the distances in I2

or I3, following the four classical properties of non-negativity, identity of indiscernibles, symmetry
and triangle inequality.

The main idea (see Figure 1) is to represent the items under comparison in a “map” to be
interpreted in terms of the relative positioning of points and emerging clusters (if any), and not
in the perspective of their absolute coordinates. Therefore, the proposed distance measures in I2

and I3 convert the information of the original time series data into the distance matrix G and the
computational/visualization scheme tries to estimate numerically a set of coordinates producing
distances as close as possible to the original ones. Since we depart from relative information
(i.e., the distances) the final coordinates often have no units and we can rotate/shift/amplify the
charts without modifying the results. Moreover, distinct distances lead to maps with different shapes,
reflecting the focus of each index on some particular aspect of the data. The user chooses the distance(s)
associated with the map having a visualization closer to the real-world phenomenon. In general, the
higher the dimension of the visualization space, the closer we get to the original measures. In practice,
we are restricted to representations with dimensions q = 2 or q = 3, but charts for q = 3 are somewhat
difficult to follow and often we need to rotate and magnify the plots. In order to overcome this
difficulty, we use the Radial Basis Interpolation (RBI) technique [46]. The RBI represents an interesting
computational scheme for solving the problem of interpolating incomplete surfaces derived from
graphics with dimension q = 3. Therefore, we present below MDS charts both for the standard q = 3
and the q = 2 with RBI visualization.

Figure 1. Computational visualization scheme.

For the estimation of coordinates and map visualization, two computational techniques are
adopted, namely, the MDS and the HC. Both methods seek to represent some kind of “map” in
which items are represented by points positioned in some low-dimensional space, reflecting the
relative distances measured in the original data. In the case of MDS, we adopt the so-called classical
multidimensional scaling that takes the distance matrix G, n× n, and returns a configuration matrix H,
n× q, with the coordinates of the n points in a q-dimensional space (q < n). The algorithm also returns
the eigenvalues of the scalar product matrix H · H′. The relative magnitudes of those eigenvalues
provide information about the contribution of the corresponding columns of H in reproducing G with
the reconstructed points. In some cases, the numerical values of the eigenvalues show that it is not
possible to find a good low-dimensional reconstruction. In the case of HC, it is frequent to adopt
dendograms or some kind of “tree” in a two-dimensional space, in which points are interconnected
by the means of lines establishing a linkage between them. In the present paper for the HC, we will
employ the Phylip package with the algorithms Neighbor and DrawTree [47].
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3. Comments on Results

In this section, we present the charts produced with the indices defined in the previous section.
Figures 2–7 and 8–13 address the EZMU and EMU, respectively.

Figures 2 and 8 show not only the entropy and mutual information variation in time, but also
a state-space description (S, I).

For the EZMU (see Figure 2), we verify a decrease over time of both indices and that they exhibit
a linear relationship in the locus (S, I). For the EMU (see Figure 8), we observe a limit cycle of S(t)
with an approximate period of 10.4 years and an increase of I, up to a maximum in 2012, followed by
a decrease until the present date. The state-space (S, I) reveals a limit cycle with a one-year period and
confirms that year 2012 was an extreme state, with the 2016 state close to that of 2008.

Figures 3 and 9 depict the MDS charts produced by the I2 indices during period t ∈ [tini, tend].
In both cases, we verify an evolution in which the successive states (i.e., the points) move away from
the initial state. For smoothing the noise present in the trajectories, an average is adopted so that before
calculating MDS, matrix G is filled by means of a moving average gij (t) = α1gij (t− 1) + α2gij (t) +
α3gij (t + 1), α1 = α3 = 1

4 and α2 = 1
2 . It is interesting to note the influence of the four seasons, which is

clear with the JS index for the EMU. Figures 4 and 10 depict the corresponding two-dimensional MDS
charts with the RBI technique.

Figures 5 and 11 represent the variation of the I2 distances between the initial state at tini and the
one at time t (left side), and the distances between the states at two consecutive instants, t and t + 1
(right side). The two charts are consistent with the MDS plots, exhibiting an increasing distance from
the initial state, but with a much more volatile variation in the case of the EMU.

Figures 6 and 7, 12 and 13 correspond to the MDS with RBI and “trees” produced by the HC and
Phylip. For the sake of parsimony, we depict only the charts for time tini and tend. We observe that the
quality of the map generated by AAij,ji is inferior to RAij,ji, particularly for the EZMU. Not only the
MDS charts based on the AAij,ji depict a one-dimensional nature, but also the calculation of H yields a
matrix with numerical values that are close to singular or badly scaled values so that results may be
inaccurate. This result follows the initial estimate that the measures (4) and (8) would be sensitive to
the presence of large and small values and that (5), (6) and (9) would be more robust.
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Figure 2. Analysis of the EZMU during the years 1963–1971 using the joint entropy S and mutual
information I: (a) Time evolution of S(t) and I(t); (b) state space representation (S, I).



Entropy 2017, 19, 245 8 of 17

-8

1970

1

-6

-4

-2

0.5 6

0

1969

M
k
l (

z
-c

o
m

p
o

n
e

n
t)

×10
5

2

4

1963 ½

4
1971

M
kl

 (y-component)

×10
6

0

1968

6

2

1964

×10
6

M
kl

 (x-component)

1966

1965

8

0-0.5
-2

1967

-1 -4

(a)

1967

-0.2

1969

0.4

-0.1
1971

1968

0
1970

0.1

0.2 0.6

0.2

C
k
l (

z
-c

o
m

p
o
n
e
n
t)

0.3

0.4

19661965

0.4

C
kl

 (y-component)

0 0.2

0.5

C
kl

 (x-component)

0

0.6

-0.2 -0.2

1964

-0.4
-0.4 -0.6

1963 ½

(b)

-0.03
0.06

-0.02

1963 ½

-0.01

1964
0

0.04 0.1

1968

0.01

J
S

k
l (

z
-c

o
m

p
o
n
e
n
t)

0.02

0.02 0.05

1965

0.03

1966

JS
kl

 (y-component)

1969
1971

0.04

1970

JS
kl

 (x-component)

0

1967

0

0.05

-0.02 -0.05

-0.04 -0.1

(c)

Figure 3. MDS charts with q = 3 of the EZMU during the years 1963–1971 using the: (a) Manhattan
distance, Mkl ; (b) Canberra distance, Ckl ; (c) Jensen–Shannon divergence, JSkl .
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Figure 4. MDS charts with q = 2 and RBI of the EZMU during the years 1963–1971 using the: (a) the
Manhattan distance, Mkl ; (b) Canberra distance, Ckl ; (c) Jensen–Shannon divergence, JSkl .
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states at time tini and t > tini; (b) two consecutive states at time t and t + 1.
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Figure 6. MDS charts with q = 2 and RBI of the relationship between the EZMU countries in tini and
tend using asymmetry measures. (a) AAij,ji, tini = 1963; (b) AAij,ji, tend = 1971; (c) RAij,ji, tini = 1963;
(d) RAij,ji, tend = 1971.
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Figure 7. HC charts of the relationship between the EZMU countries in tini and tend using asymmetry
measures. (a) AAij,ji, tini = 1963; (b) AAij,ji, tend = 1971; (c) RAij,ji, tini = 1963; (d) RAij,ji, tend = 1971.
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Figure 8. Analysis of the EMU during the years 2000–2016 using the joint entropy S and mutual
information I. (a) Time evolution of S(t) and I(t); (b) state space representation (S, I).
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distance, Mkl ; (b) Canberra distance, Ckl ; (c) Jensen–Shannon divergence, JSkl .
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Figure 10. MDS charts with q = 2 and RBI of the EMU during the years 2000–2016 using the:
(a) Manhattan distance, Mkl ; (b) Canberra distance, Ckl ; (c) Jensen–Shannon divergence, JSkl .
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Figure 12. MDS charts with q = 2 and RBI of the relationship between the EMU countries in tini and
tend using asymmetry measures. (a) AAij,ji, tini = 2000; (b) AAij,ji, tend = 2016; (c) RAij,ji, tini = 2000;
(d) RAij,ji, tend = 2016.
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(a) (b)

(c) (d)

Figure 13. HC charts of the relationship between the EMU countries in tini and tend using asymmetry
measures. (a) AAij,ji, tini = 2000; (b) AAij,ji, tend = 2016; (c) RAij,ji, tini = 2000; (d) RAij,ji, tend = 2016.

It is possible to distinguish an initial period in both monetary unions. The Canberra distance for
one quarter in the EMU and one month in the EZMU shows that compensation mechanisms were
beginning to be checked. In both cases, political propaganda promised large benefits for participants,
and expectations for the future were positive because of trade specialization and financial solidarity,
thanks to commodities, labor, and free capital movements. The Canberra distance smoothed for one
period and the Canberra distance for initial state makes clearer the special character of the initial period.
In the case of the EZMU colonial terrorism activity and guerrilla warfare had two fronts (in Angola
and Guinea), but the Government was hopeful for a victory by sending troops to these territories and
investing in public utilities.

In 2002, the EMU euro currency was introduced and brought a stable character to intra-monetary
union relationships, which lasted for about four years. In the case of the EZMU, it is also possible to
see a smooth performance, while colonial terrorism affected the two territories only until 1964.

Divergence after the first period is quite clear in both EZMU and EMU. The unilateral declaration
of independence of Rhodesia in November 1965, and sanctions against this country, coupled with
terrorism attacks in Mozambique since 1966, led to a permanent Angolan and Mozambican indebtedness
in the escudo compensation system creating the need for loans from the Portuguese motherland to respect
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the 1:1 parity. The period from then to 1968 Q3 thus changed the relative positions among the territories
under Portuguese sovereignty. The same occurs with the EMU. In Europe, terrorism activity began to
have some meaning [48], while successive partners joined in 2007 (Slovenia) and 2008 (Cyprus and
Malta). Their presence in the euro community, coupled with other Southern partners’ net negative
quarterly positions, brought asymmetrical profiles to the monetary EMU [49]. It became possible to
identify more or less permanent debtor and creditor partners within the euro area. This reflected job
market problems in many of these countries, as labor mobility faced several difficulties including
language and cultural differences. These difficulties are usually identified with the 2008 crisis [50].

As for the EZMU, a post-1968 third stage is also quite clear, when a shift took place in the
Portuguese society (Figure 5). Hopes for more liberal political relationships with the empire, thanks to
the replacement of Prime-Minister Salazar by Marcelo Caetano led to lower levels of entropy in the
system, as more and more motherland loans sought to accommodate rising levels of financial transfers
to the colonies. Increasing Canberra distances for initial state and for end times characterize this phase
that preceded the 1971 reform, which set back free trade and free capital flow. Angola, Mozambique,
and Macao presented the most dissimilar positions, according to Canberra distance for end times
(Figures 6 and 7). Macao was the partner that most changed (in improving) from its initial position,
and Angola the one that most changed (in losing) from its initial position (Figure 6). Decolonizations
followed in 1974 for Guinea, and 1975 for the other African territories. Macao and Timor had opposite
paths in the EZMU, from 1963 to 1971. Macao continued under Portuguese administration until
20 December 1999 and became a Chinese territory. Timor became independent on 20 May 2002,
after a long and difficult international political process.

The MDS figures reveal that enlargements to new countries after 2008 also represent a third
EMU phase. Coupled with terrorism activity and unrest in the EMU zone, and recent migration
inflows because of warring in neighboring countries, they have contributed to added dissimilarity
in net relative positions. Slovakia joined on 1 January 2009, the Baltic Estonia on 1 January 2011,
Latvia in 2014, and Lithuania in 2015 [51]. The Canberra distance for initial state and for end time
reveal a disruption with increasing levels of entropy (Figure 9). The relative good performance of
Luxembourg and the poor performance of Cyprus are totally opposite (see Figures 12 and 13).

In 2016, the EMU core similarity includes Austria, Belgium, Luxembourg, France, Germany,
Ireland, Italy, Netherlands, Portugal, Spain, and Slovenia. A second group of countries presents high
dissimilarity, namely, Malta, the Slovak Republic, Finland, Greece, Latvia, and Lithuania, as well as
Cyprus and Estonia, according to Figure 13.

4. Conclusions

This paper presented a modeling approach of economic unions based on real-world data.
We started with a small case, the EZMU, and followed with a larger case, the EMU. For analyzing the
data, we adopted techniques employed in complex systems, namely, entropy, Canberra distance,
and Jensen–Shannon divergence, combined with computational and visualization techniques,
MDS and HC. The results for the EZMU and EMU are different, but consistent with existing heuristic
knowledge. The use of several distinct measures is essential to capture the different features of the
complex dynamics involved in the monetary unions.

According to the evidence from MDS techniques and pictures, it becomes easier to describe how
and why a reform of the EZMU was introduced in 1971, and how and why the need of a reform for
the EMU is often mentioned. Databases clearly point to evolutions that exhibit strongly divergent net
positions among the partners in both monetary unions. In spite of economic and monetary integration,
Mundell’s expected automatic mechanisms for self-regulation and equilibrium are not historically
confirmed. They may be disrupted by political problems such as terrorism, migrations from the outside
instead of internal migrations, and negative expectations on the success of compensating monetary
systems. The EZMU failed and the EMU is far from an OCA. MDS empirically checks the evidence on
two case studies, one made of independent partners (the EMU), and another made of politically-related
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territories, and disappoints theories that stress the importance of political ties for monetary unions’
success. OCAs depend not only on the mobility of factors, but also on the symmetry of disturbances
caused by them, so that permanent debtors (and creditors) can not arise in the process [52]. This is
a central debate for scholars and policy-makers.
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