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Abstract: This work studies the relationship between the energy allocated for transmitting a pair
of correlated Gaussian sources over a two-user Gaussian broadcast channel with noiseless channel
output feedback (GBCF) and the resulting distortion at the receivers. Our goal is to characterize
the minimum transmission energy required for broadcasting a pair of source samples, such that
each source can be reconstructed at its respective receiver to within a target distortion, when the
source-channel bandwidth ratio is not restricted. This minimum transmission energy is defined
as the energy-distortion tradeoff (EDT). We derive a lower bound and three upper bounds on the
optimal EDT. For the upper bounds, we analyze the EDT of three transmission schemes: two schemes
are based on separate source-channel coding and apply encoding over multiple samples of source
pairs, and the third scheme is a joint source-channel coding scheme that applies uncoded linear
transmission on a single source-sample pair and is obtained by extending the Ozarow–Leung (OL)
scheme. Numerical simulations show that the EDT of the OL-based scheme is close to that of the better
of the two separation-based schemes, which makes the OL scheme attractive for energy-efficient,
low-latency and low-complexity source transmission over GBCFs.

Keywords: Gaussian broadcast channel with feedback; correlated sources; joint source-channel
coding; energy efficiency; energy-distortion tradeoff

1. Introduction

This work studies the energy-distortion tradeoff (EDT) for the transmission of a pair of correlated
Gaussian sources over a two-user Gaussian broadcast channel (GBC) with noiseless, causal feedback,
referred to as the GBCF. The EDT was originally proposed in [1] to characterize the minimum
energy-per-source sample required to achieve a target distortion at the receiver, without constraining
the source-channel bandwidth ratio. In many practical scenarios, e.g., satellite broadcasting [2], sensor
networks measuring physical processes [3,4] and wireless body-area sensor networks [5–7], correlated
observations need to be transmitted over noisy channels. Moreover, in various emerging applications,
particularly in the context of the Internet of Things, the sampling rates are low; and hence, the channel
bandwidth for transmission is much larger than the rate of the sources. Consequently, the main
fundamental limitation for the communication system is the available energy per source sample.
For example, in wireless body-area sensor networks, wireless computing devices located on, or
inside, the human body measure physiological parameters, which typically exhibit correlations as
they originate from the same source. These devices commonly have limited energy supply due to
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their size and are also subject to transmission power constraints due to safety restrictions, while
bandwidth can be relatively large as communications takes place over short distances [8–10]. In this
application, transmission of correlated parameters measured by a single sensor to different devices
can be modeled as a BC with correlated sources. As an example for such a setting, consider a sensor
measuring heart rate, as well as cardiac output (volume of blood outputted from the heart per unit
time), which are correlated parameters (see, e.g., [10] (Section 2.6)), where the heart rate measurements
are communicated to a smart watch (e.g., for the purpose of fitness tracking), while the cardiac output
is communicated to a smart phone (e.g., for health monitoring and reporting purposes).

It is well known that for lossy transmission of a Gaussian source over a Gaussian memoryless
point-to-point channel, either with or without feedback, when the source-channel bandwidth ratio is
fixed and the average power is finite, then separate source and channel coding (SSCC) achieves the
minimum possible average mean square error (MSE) distortion [11] (Theorem 3). In [1] (Cor. 1), it
is further shown that SSCC is optimal also in the sense of EDT: for any target MSE distortion level,
the minimal transmission energy is achieved by optimal lossy compression [12] (Chapter 13) followed
by the most energy efficient channel code [13]. While [1] (Cor. 1) considered unbounded number
of source samples, more recent works [14] (Theorem 9) and [15] showed that similar observations
hold also for the point-to-point channel with a finite number of source samples. Except for a few
special scenarios, e.g., [16–18] and the references therein, the optimality of SSCC does not generalize to
multiuser networks, and a joint design of the source and channel codes can improve the performance.

An example for a setting in which SSCC is sub-optimal is the transmission of a pair of correlated
Gaussian sources over a GBC where the bandwidths of the source and the channel match (i.e., on
average, a single source sample pair is transmitted over a single use of the channel). The complete
characterization of the achievable distortion pairs for this problem was given in [19], which also showed
that a joint source-channel coding (JSCC) transmission scheme is optimal while separation-based
schemes cannot achieve the optimal performance. JSCC for the transmission of correlated sources
over GBCs with a source-channel bandwidth mismatch was recently studied in [20], where novel
hybrid digital/analog coding schemes were proposed and shown to be superior to other schemes
known in the literature. It should be noted that the transmission of correlated sources over GBCs
is an important communications scenario, which applies to a vast number of practical applications,
including broadcasting video [21,22], images [23] and physical measurements [24].

The impact of feedback on lossy JSCC over multiuser channels was considered in relatively few
works. Several achievability schemes and a set of necessary conditions for losslessly transmitting
a pair of discrete and memoryless correlated sources over a multiple-access channel (MAC) with
feedback were presented in [25]. Lossy transmission of correlated Gaussian sources over a two-user
Gaussian MAC with feedback was studied in [26], in which sufficient conditions, as well as necessary
conditions for the achievability of an MSE distortion pair were derived for the case in which the source
and channel bandwidths match. The work [26] also showed that for the symmetric setting, if the
channel signal-to-noise ratio (SNR) is low enough, then uncoded transmission is optimal. While [26]
considered source-channel coding with a unit bandwidth ratio, [1] studied the EDT for the transmission
of correlated Gaussian sources over a two-user Gaussian MAC with and without feedback, when the
bandwidth ratio is not restricted. Lastly, [27] improved the lower bound derived in [1] for the two-user
Gaussian MAC without feedback and extended the results to more than two users.

While EDT analysis has gained some attention in recent years, the EDT of broadcast channels
was considered only for GBCs without feedback. In particular, the work [15] studied the transmission
of Gaussian sources over a GBC and characterized the energy-distortion exponents, namely,
the exponential rate of decay of the square-error distortion as the available energy-to-noise ratio
increases without bound. For GBCFs, the existing literature mainly focused on channel coding aspects,
considering independent and uniformly distributed messages. A key work in this context is the work
of Ozarow and Leung (OL) [28], which obtained inner and outer bounds on the capacity region
of the two-user GBCF, by extending the point-to-point transmission strategy of Schalkwijk–Kailath
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(SK) [29]. The work [30] extended the OL scheme for two-user GBCFs by using estimators with
memory (at the receivers) instead of the memoryless estimators used in the original OL scheme of [28].
In contrast to the point-to-point case [29], for GBCFs, both the scheme of [28] and the scheme of [30] are
generally suboptimal. While the analysis and construction of the OL scheme [28] are carried out in an
estimation theoretic framework, the works [31,32] approached the problem of channel coding for the
GBCF within a control theoretic framework. Specifically, [32] proposed a transmission scheme based
on linear quadratic Gaussian (LQG) control theory, that achieves rate pairs outside the achievable rate
region of the OL code developed in [28]. Recently, it was shown in [33,34] that, for the two-user GBCF
when the noise components at the receivers are mutually independent with equal variances, the LQG
scheme of [32] achieves the maximal sum-rate among all possible linear-feedback schemes. Finally, it
was shown in [35] that the capacity of GBCFs with independent noises at the receivers and only a
common message cannot be achieved using a linear feedback scheme. Instead, the work [35] presented
a capacity-achieving non-linear feedback scheme.

JSCC for the transmission of correlated Gaussian sources over GBCFs when the number of
transmitted symbols is finite (referred to as the finite horizon regime) was previously considered
in [36], which studied the minimal number of channel uses required to achieve a target MSE distortion
pair. Three linear encoding schemes based on uncoded transmission were considered: the first scheme
was a JSCC scheme based on the coding scheme of [28], to which we shall refer as the OL scheme;
the second scheme was a JSCC scheme based on the scheme of [32], to which we shall refer as the
LQG scheme; and the third scheme was a JSCC scheme whose parameters are obtained using dynamic
programming (DP) (in the present work we discuss only the former OL and LQG schemes since the
scheme based on DP becomes analytically and computationally infeasible as the number of channel
uses goes to infinity). We note that linear and uncoded transmission, as implemented in the OL and in
the LQG schemes, has important advantages, including low computational complexity, short coding
delays and small storage requirements, which make this type of coding very desirable. We further
note that although the LQG channel coding scheme of [32] for the two-user GBCF (with two messages)
achieves the largest rate region out of all known channel coding schemes, in [36], it was shown that
when the time horizon is finite, JSCC based on the OL scheme can achieve MSE distortion pairs lower
than the JSCC based on the LQG scheme. In the present work, we analyze lossy source coding over
GBCFs using SSCC and JSCC schemes based on a different performance metric: the EDT.

We note here that, as discussed above, noiseless feedback has been studied extensively in wireless
Gaussian networks. An immediate benefit of this analysis is that the performance obtained for
noiseless feedback serves as an upper bound on the performance for channels with noisy feedback.
The analysis of noiseless feedback scenarios also leads to guidelines and motivation, which then can be
applied to channels with noisy feedback. Indeed, the works [37,38], which studied channel coding for
point-to-point Gaussian channels with noisy feedback and for GBCs with noisy feedback, respectively,
considered transmission schemes, which are based on the SK [29] and on the OL schemes [28],
respectively, originally developed for noiseless feedback scenarios. In [37,38], the noise in the feedback
links was handled by applying modulo-lattice precoding in both the direct and feedback links. It is
shown in [37,38] that, while having noise in the feedback links results in a performance degradation
compared to the case of noiseless feedback [37] (Section V.D), many of the benefits of noiseless feedback
can be carried over to the more practical setup of noisy feedback, thereby further motivating the current
work. It follows that the analysis of noiseless feedback models provides practically relevant insights
while facilitating simpler analysis.

Main contributions: In this work, the EDT for GBCFs is studied for the first time. We derive
lower and upper bounds on the minimum energy per source pair required to achieve a target MSE
distortion at each receiver, for the problem of transmitting a pair of Gaussian sources over a two-user
GBCF, without constraining the number of channel uses per source sample. The new lower bound is
based on cut-set arguments, while the upper bounds are obtained using three transmission schemes:
two SSCC schemes and an uncoded JSCC scheme. The first SSCC scheme jointly compresses the two
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source sequences into a single bit stream, and transmits this stream to both receivers as a common
message. The second SSCC scheme separately encodes each source sequence into two distinct bit
streams, and broadcasts them via the LQG channel code of [32]. It is shown that in terms of the
minimum energy-per-bit, the LQG code provides no gain compared to orthogonal transmission, from
which we conclude that the first SSCC scheme, that jointly compresses the sequences into a single
stream, is more energy efficient. As both SSCC schemes apply coding over multiple samples of the
source pairs, they require high computational complexity, long delays and large storage space. We then
consider the uncoded JSCC OL scheme presented in [36]. For this scheme, we first consider the case
of fixed SNR and derive an upper bound on the number of channel uses required to achieve a target
distortion pair. When the SNR approaches zero, the required number of channel uses grows, and the
derived bound becomes tight. At the limiting scenario of SNR→0, this provides a simple upper bound
on the EDT. While our primary focus in this work is on the analysis of the three schemes mentioned
above, such an analysis is a first step towards identifying schemes that would achieve improved EDT
performance in GBCFs.

Numerical results indicate that the SSCC scheme based on joint compression achieves better
EDT compared to the JSCC OL scheme; yet, the gap is quite small. Moreover, in delay-sensitive
applications, there is a constraint on the maximal allowed latency in transmitting each source sample to
the destination. In such scenarios, coding over large blocks of independent and identically distributed
(i.i.d.) pairs of source samples is not possible, and instantaneous transmission of each observed pair of
source samples via the JSCC-OL scheme may be preferable in order to satisfy the latency requirement,
while maintaining high energy efficiency.

The rest of this paper is organized as follows: The problem formulation is detailed in Section 2.
The lower bound on the minimum energy per source sample is derived in Section 3. Upper bounds on
the minimum energy per source sample are derived in Sections 4 and 5. Numerical results are detailed
in Section 6, and concluding remarks are provided in Section 7.

2. Problem Definition

2.1. Notation

We use capital letters to denote random variables, e.g., X, and boldface letters to denote column
random vectors, e.g., X; the kth element of a vector X is denoted by Xk, k≥1, and we use X j

k, with j ≥ k,
to denote (Xk, Xk+1, ..., Xj). We use sans-serif fonts to denote matrices, e.g., Q. We use h(·) to denote
differential entropy, I(·; ·) to denote mutual information, and X↔Y↔Z to denote a Markov chain, as
defined in [12] (Chapters 9 and 2). We useE {·}, (·)T , log(·),R andN to denote expectation, transpose,
natural base logarithm, the set of real numbers and the set of non-negative integers, respectively. We let
O(g1(P)) denote the set of functions g2(P) such that lim supP→0 |g2(P)/g1(P)|<∞. Finally, we define
sgn(x) as the sign of x∈R, with sgn(0),1.

2.2. Problem Setup

The two-user GBCF is depicted in Figure 1, with all of the signals being real. In this work, we
consider the symmetric setting in which the sources have the same variances and the noises have the
same variances. The encoder observes m i.i.d. realizations of a correlated and jointly Gaussian pair
of sources (S1,j, S2,j)∼N (0,Qs), j= 1, . . . , m, where Qs ,σ2

s ·
[

1 ρs
ρs 1

]
, |ρs|< 1. The task of the encoder

(transmitter) is to generate a transmitted signal that will facilitate decoding of the sequence of the ith

source, Sm
i,1, i= 1, 2, at the ith decoder (receiver), denoted by Rxi, whose channel output at time k is

given by:

Yi,k = Xk + Zi,k, i = 1, 2, (1)
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for k = 1, . . . , n. The noise sequences {Z1,k, Z2,k}n
k=1, are i.i.d. over k = 1, 2, . . . , n, with (Z1,k, Z2,k)∼

N (0,Qz), where Qz,σ2
z ·
[

1 ρz
ρz 1

]
, |ρz|<1.

Figure 1. Gaussian broadcast channel with correlated sources and feedback links. Ŝm
1,1 and Ŝm

2,1 are the
reconstructions of Sm

1,1 and Sm
2,1, respectively.

Let Yk , (Y1,k, Y2,k). The encoder maps the observed pair of source sequences and the
noiseless causal channel outputs obtained through the feedback links into a channel input via:
Xk = fk(Sm

1,1, Sm
2,1, Y1, Y2, . . . , Yk−1), fk :R2(m+k−1) 7→R. Rxi, i=1, 2, uses its channel output sequence

Yn
i,1 to estimate Sm

i,1 via Ŝm
i,1 = gi(Yn

i,1), gi :Rn 7→Rm.
We study the symmetric GBCF with parameters (σ2

s , ρs, σ2
z , ρz), and define a (D, E, m, n) code to

be a collection of n encoding functions { fk}n
k=1 and two decoding functions g1, g2, such that the MSE

distortion satisfies:

m

∑
j=1
E
{
(Si,j−Ŝi,j)

2
}
≤ mD, 0<D≤σ2

s , i = 1, 2, (2)

and the energy of the transmitted signals satisfies:

n

∑
k=1

E
{

X2
k

}
≤ mE. (3)

Our objective is to characterize the minimal E, for a given target MSE D at each user, such that
for all ε > 0, there exist m, n and a (D + ε, E + ε, m, n) code. We call this minimal value the EDT and
denote it by E(D).

Remark 1 (Energy constraint vs. power constraint). The constraint (3) reflects the energy per source sample
rather than per channel use. Note that by defining P , m

n E, the constraint (3) can be equivalently stated as
1
n ∑n

k=1E
{

X2
k
}
≤ P which is the well known average power constraint. Yet, since there is no constraint on

the ratio between m and n, given a finite energy E, when the number of channel uses per source sample n
m

goes to infinity, the classical average power constraint goes to zero. We also note that E(D) can be obtained by
evaluating the power-distortion tradeoff, namely, the minimal power required to achieve a given distortion at
each receiver (see, e.g., [39] (Section II) for the definition of achievable distortion and power for a GBC with
a given set of scenario parameters), in the limit n

m → ∞. This approach was indeed used in [15] to derive
energy-distortion exponents for GBCs without feedback. However, to the best of our knowledge, there are no
tight bounds on the power-distortion tradeoff for GBCFs. Moreover, for the GBCF, we show next that directly
characterizing E(D) leads to significantly simpler results.
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3. Lower Bound on E(D)

Our first result is a lower bound on E(D). First, we define RS1(D) as the rate-distortion function
for the source variable S1, and RS1,S2(D) as the rate distortion function for jointly compressing the pair
of sources (S1, S2). Using [40] (Section III.B), we can write these functions explicitly as:

RS1(D),
1
2

log2

(
σ2

s
D

)
(4a)

RS1,S2(D),


1
2 log2

(
σ2

s (1+|ρs |)
2D−σ2

s (1−|ρs |)

)
, D>σ2

s (1−|ρs|)
1
2 log2

(
σ4

s (1−ρ2
s )

D2

)
, D≤σ2

s (1−|ρs|)
. (4b)

Note that [40] (Section III.B) uses the function RS1,S2(D1, D2) as it allows for a different distortion
constraint for each source. For the present setup, in which the same distortion constraint is applied to
both sources, RS1,S2(D) can be obtained by setting D1 = D2 = D in [40] (Equation (10)), and thus, we
use the simplified notation RS1,S2(D). Next, define:

Elb(D)=σ2
z · loge 2 ·max

{
2RS1(D), (1+ρz)RS1,S2(D)

}
. (5)

The lower bound on the EDT is stated in the following theorem:

Theorem 1. The EDT E(D) satisfies E(D) ≥ Elb(D).

Remark 2 (Different approaches for deriving a lower bound). The work [27] presented a novel technique
for lower bounding the EDT in a Gaussian MAC. Applying this technique to the symmetric GBCF results in
the lower bound reported in Theorem 1. The work [39] presented a lower bound on the distortion achievable
in sending correlated Gaussian sources over a GBC (without feedback). This bound uses the entropy power
inequality while relying on the fact that GBCs are degraded. As GBCFs are not degraded, it is not clear if the
technique used in [39] can be used for deriving lower bounds on the EDT for GBCFs.

Proof of Theorem 1. As we consider a symmetric setting, in the following, we focus on the distortion at
Rx1, and derive two different lower bounds. The first lower bound is obtained by identifying the minimal
energy required in order to achieve an MSE distortion of D at Rx1, while ignoring Rx2. The second lower
bound is obtained by considering the transmission of both sources over a point-to-point channel with
two outputs Y1 and Y2. We begin with the following lemma:

Lemma 1. If for any ε > 0, a (D + ε, E + ε, m, n) code exists, then the rate-distortion functions in (4) are
upper bounded by:

RS1(D) ≤ 1
m

n

∑
k=1

I(Xk; Y1,k) (6a)

RS1,S2(D) ≤ 1
m

n

∑
k=1

I(Xk; Y1,k, Y2,k). (6b)

Proof. The proof is provided in Appendix A.

Now, for achievable (D, E, m, n) fix ε > 0 and consider a (D + ε, E + ε, m, n) code. For the
right-hand side of (6a), we write:
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1
m

n

∑
k=1

I(Xk; Y1,k)
(a)
≤ 1

m

n

∑
k=1

1
2

log2

(
1 +

var{Xk}
σ2

z

)
(b)
≤ 1

m

n

∑
k=1

1
2

var{Xk}
σ2

z · loge 2

(c)
≤ E + ε

2σ2
z · loge 2

, (7)

where (a) follows by considering the point-to-point channel from Xk to Y1,k and noting that the capacity
of this additive white Gaussian noise channel, subject to an input variance variance constraint Pk,
is 1

2 log
(

1 + Pk
σ2

z

)
. Thus, given Xk with variance var(Xk), then setting Pk = var(Xk), it follows that

I(Xk; Y1,k)≤ 1
2 log2

(
1 + var{Xk}

σ2
z

)
; (b) follows from changing the logarithm base and from the inequality

loge(1 + x) ≤ x,∀x ≥ 0; and (c) follows by noting that (3) implies ∑n
k=1var{Xk}≤m(E+ε). Combining

with (6a), we obtain RS1(D + ε) ≤ E+ε
2σ2

z ·loge 2
, which implies that 2σ2

z · loge 2 · RS1(D) ≤ E + ε. Since this

holds for every ε > 0, we arrive at the first term on the right-hand-side (RHS) of (5).
Next, the RHS of (6b) can be upper bounded by considering a Gaussian single-input-multiple-output

channel with two receive antennas. Then, the mutual information I(Xk; Y1,k, Y2,k) is upper bounded by
the capacity of the channel subject to the variance of Xk:

1
m

n

∑
k=1

I(Xk; Y1,k, Y2,k) ≤
1
m

n

∑
k=1

1
2

log2

( |QYk |
|QZk |

)
, (8)

where (8) follows from [12] (Theorem 9.6.5), combined with [12] (Theorem 9.4.1) for jointly Gaussian
random variables, and by defining Zk = (Z1,k, Z2,k) and the covariance matrices QYk , E

{
YkYT

k
}

and
QZk , E

{
ZkZT

k
}

. To explicitly write QYk , we note that E{Y2
i,k} = E

{
(Xk + Zi,k)

2} = E
{

X2
k
}
+ σ2

z for
i = 1, 2, and similarly, E

{
Y1,kY2,k

}
= E

{
X2

k
}
+ ρzσ2

z . We also have E{Z2
i,k} = σ2

z and E
{

Z1,kZ2,k
}
=

ρzσ2
z . Thus, we obtain |QYk | = 2E{X2

k}σ
2
z (1−ρz)+σ4

z (1−ρ2
z) and |QZk | = σ4

z (1−ρ2
z). Plugging these

expressions into (8) results in:

1
m

n

∑
k=1

1
2

log2

( |QYk |
|QZk |

)
≤ 1

m

n

∑
k=1

E
{

X2
k
}

σ2
z (1+ ρz) loge 2

≤ E + ε

σ2
z (1+ ρz) loge 2

, (9)

where the inequalities follow the same arguments as those leading to (7). Combining with (6b), we
obtain RS1,S2(D) ≤ E+ε

σ2
z (1+ρz) loge 2

, which implies that 2σ2
z (1 + ρz) loge 2 · RS1,S2(D) ≤ E + ε. Since this

holds for every ε > 0, we obtain the second term on the RHS of (5). This concludes the proof.

In the next sections, we study three achievability schemes which lead to upper bounds on E(D).
While these schemes have simple constructions, analyzing their achievable EDT is novel and challenging.

4. Upper Bounds on E(D) via SSCC

SSCC in multiuser scenarios carries the advantages of modularity and ease of integration with the
layered architecture, which is the fundamental design architecture in many practical communications
systems. In this section, we analyze the EDT of two SSCC schemes. The first scheme takes advantage of
the correlation between the sources and ignores the correlation between the noise components, while
the second scheme ignores the correlation between the sources and aims at utilizing the correlation
between the noise components.
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4.1. The SSCC-ρs Scheme

This scheme utilizes the correlation between the sources by first jointly encoding both source
sequences into a single bit stream via the source coding scheme proposed in [41] (Theorem 6); see
also [40] (Theorem III.1). For a given distortion D, the minimum required compression bit rate is given
by the rate-distortion function stated in (4b). The bit stream generated through compression is then
encoded via a channel code designed for sending a common message over the GBC (without feedback),
and the corresponding codeword is transmitted to both receivers. Note that the optimal code for
transmitting a common message over GBCFs with ρz 6= 0 is not known, but, when ρz = 0, the optimal
code for sending a common message over the GBCF is known to be the optimal point-to-point channel
code which ignores the feedback [35] (Equation (13)). Thus, SSCC-ρs uses the correlation between
the sources, but ignores the correlation between the noises at the receivers. The following theorem
characterizes the minimum energy per source sample achieved by this scheme.

Theorem 2. The SSCC-ρs scheme achieves the following EDT:

E(ρs)
sep (D)=

σ2
z loge

(
σ2

s (1+|ρs|)
2D−σ2

s (1−|ρs|)

)
, D>σ2

s (1−|ρs|)

σ2
z loge

(
σ4

s (1−ρ2
s )

D2

)
, D≤σ2

s (1−|ρs|)
. (10)

Proof. The optimal rate for jointly encoding the source sequences into a single-bit stream is RS1,S2(D),
given in (4b) [40] (Section III.B). Note that from this stream both source sequences can be recovered
to within a distortion D. The encoded bit stream is then transmitted to both receivers via a
capacity-achieving point-to-point channel code [12] (Theorem 10.1.1) (note that this code does not
exploit the causal feedback [12] (Theorem 8.12.1)). Let Ecommon

b min denote the minimum energy-per-bit
required for reliable transmission over the Gaussian point-to-point channel [13]. From [13] (p. 1025),
we have Ecommon

b min = 2σ2
z loge 2. As the considered scheme is based on source-channel separation,

the achievable EDT is given by E(D) = Ecommon
b min × RS1,S2(D), where RS1,S2(D) is stated in (4b). This

results in the EDT in (10).

Remark 3 (EDT of GBC without feedback). A basic question that may arise is about the EDT for transmitting
a pair of correlated Gaussian sources over the GBC without feedback. The work [15] studied asymmetric
GBCs, namely, when the noises have different variances, and used bounds derived in [39] to characterize the
energy-distortion exponents. It is not clear whether the techniques used to derive the bounds in [39] can be
used for the symmetric setting discussed in the current work. For the symmetric setting, the transmission of
correlated Gaussian source over the GBC has been studied in [42]. Applying the results of [42] (Footnote 2) to
the current case leads to the EDT of the SSCC-ρs scheme, which indeed does not exploit feedback.

4.2. The SSCC-ρz Scheme

This scheme aims at utilizing the correlation between the noises at the receivers, that is available
at the encoder through the feedback links, for generating the channel symbols, while avoiding using
the correlation between the sources for compression. As in this section we focus on separation-based
schemes, the correlation between the noises at the receivers can be utilized only via the channel code.
Our results show that in terms of EDT (or minimum required energy per pair of encoded bits), even
the best known channel code cannot utilize the correlation between the noises at the receivers.

In the SSCC-ρz scheme each of the source sequences is first compressed using the optimal
rate-distortion source code for scalar Gaussian sources [12] (Theorem 13.3.2). Then, the resulting
compressed bit streams are sent over the GBCF using the best known channel code for transmission
over the GBCF, which is the LQG channel coding scheme of [32], that generally utilizes the correlation
between the noises at the receivers, as is evident from [32] (IV.B) and in particular from [32]
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(Equations (23) and (24)). The following theorem characterizes the minimum energy per source
sample required by this scheme.

Theorem 3. The SSCC-ρz scheme achieves the EDT:

E(ρz)
sep (D) = 2σ2

z loge

(
σ2

s
D

)
. (11)

Proof. The encoder separately compresses each source sequence at rate RS1(D), where RS1(D) is given
in (4a). Thus, from each encoded stream the corresponding source sequence can be recovered to within
a distortion D. Next, the two compressed bit streams are broadcast to their corresponding receivers
using the LQG scheme of [32]. Let ELQG

b min denote the minimum energy per pair of encoded bits required
by the LQG scheme. ELQG

b min is given in the following lemma:

Lemma 2. For the symmetric setting, the minimum energy per pair of encoded bits required by the LQG scheme
is given by:

ELQG
b min = 2σ2

z loge 2. (12)

Proof. The proof is provided in Appendix B.

Since two bit streams are transmitted, the achievable EDT is given by E(ρz)
sep (D) = ELQG

b min × 2RS1(D),
yielding the EDT in (11).

Remark 4 (SSCC-ρz vs. time-sharing). Note that ELQG
b min in (12) is independent of ρz, and therefore, even

though in general the LQG scheme is capable of utilizing the correlation between the noises at the receivers, in
terms of minimum energy per pair of encoded bits it cannot (recall that the LQG scheme is the best known channel
coding scheme for the GBCF). Therefore, E(ρz)

sep (D) is also independent of ρz, and the SSCC-ρz scheme does not
take advantage of the correlation between the noises at the receivers to improve the minimum energy per source
sample needed in the symmetric setting. Indeed, an EDT of E(ρz)

sep (D) can also be achieved by transmitting the
two bit streams via time sharing over the GBCF without using the feedback. In this context, we recall that [43]
(Prop. 1) also stated that in Gaussian broadcast channels without feedback, time sharing is asymptotically
optimal as the power tends to zero.

Remark 5 (Relationship between E(ρs)
sep (D), E(ρz)

sep (D) and Elb(D)). We observe that E(ρs)
sep (D)≤E(ρz)

sep (D).

For D ≤ σ2
s (1 − |ρs|) this relationship directly follows from the expressions of E(ρs)

sep (D) and E(ρz)
sep (D).

For D > σ2
s (1− |ρs|) the above relationship holds if the polynomial q(D) = D2(1+|ρs|)−2σ2

s D+σ4
s (1−|ρs|)

is positive. This is satisfied as the discriminant of q(D) is negative. We thus conclude that it is preferable to use
the correlation between the sources than the correlation between the noise components. We further note that
as D→0, the gap between E(ρs)

sep (D) and E(ρz)
sep (D) is bounded. On the other hand, as D→ 0, the gap between

E(ρs)
sep (D) and Elb(D) is not bounded (note that when ρz = 0, the RHS of (5) is given by 2σ2

z · loge 2 · RS1(D)).

Remark 6 (Relevance to more than two users). The lower bound presented in Theorem 1 can be extended to
the case of K > 2 sources using the results of [41] (Theorem 1) and [44]. The upper bound of Theorem 2 can also
be extended in a relatively simple manner to K > 2 sources, again, using [41] (Theorem 1). The upper bound in
Theorem 3 can be extended to K > 2 sources by using the LQG scheme for K > 2 [32] (Theorem 1), or by using
time-sharing.

5. Upper Bound on E(D) via the OL Scheme

Next, we derive a third upper bound on E(D) by applying uncoded JSCC transmission based
on the OL scheme [36] (Section 3). This scheme sequentially transmits the source pairs (S1,j, S2,j),
j = 1, 2, . . . , m, without source coding. Thus, the delay introduced by the OL scheme is significantly
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lower than the delay introduced by the schemes discussed in Section 4. We note that the OL scheme
is designed for a fixed P = E/n, and from condition (3) we obtain that P = E/n ≥ 1

n ∑n
k=1E

{
X2

k
}

.
An upper bound on E(D) can now be obtained by first calculating the minimal number of channel
uses required by the OL scheme to achieve the target distortion D, which we denote by KOL(P, D),
and then determining the required energy via ∑

KOL(P,D)
k=1 E

{
X2

k
}

.

5.1. JSCC Based on the OL Scheme

In the OL scheme, each receiver recursively estimates its intended source samples. At each
time index, the transmitter uses the feedback to compute the estimation errors at the receivers at the
previous time index, and transmits a linear combination of these errors. The scheme is terminated after
KOL(P, D) channel uses, when the target MSE D is achieved at each receiver.

Setup and Initialization: Let Ŝi,k be the estimate of Si at Rxi after receiving the kth channel output Yi,k,
εi,k , Ŝi,k−Si be the estimation error after k transmissions, and define ε̂i,k−1 , Ŝi,k−1−Ŝi,k. It follows
that εi,k = εi,k−1−ε̂i,k−1. Next, define αi,k ,E{ε2

i,k} to be the MSE at Rxi after k transmissions, ρk ,
E{ε1,kε2,k}√

α1,kα2,k
to be the correlation between the estimation errors after k transmissions, and Ψk,

√
P

2(1+|ρk |)
.

For initialization, set Ŝi,0 = 0 and εi,0 = −Si, i = 1, 2; thus, ρ0 = ρs. Note that for this setup and
initializations, we have α1,k =α2,k,αk.

Encoding: At the kth channel use the transmitter sends Xk =
Ψk−1√

αk
(ε1,k−1+ε2,k−1 · sgn(ρk−1)), and the

corresponding channel outputs are given by (1).

Decoding: Each receiver computes ε̂i,k−1, i = 1, 2, based only on Yi,k via ε̂i,k−1=
E{εi,k−1Yi,k}
E
{

Y2
i,k

} Yi,k, which

can be explicitly computed as in [28] (p. 669). Then, similarly to [45] (Equation (7)), the estimate of the
source Si is given by Ŝi,k = ∑k

m=1 ε̂i,m−1. Let Θ , P+σ2
z (2− ρz) and νz , σ4

z (1−ρz)2. The instantaneous
MSE αk is given by the recursive expression [28] (Equation (5)):

αk = αk−1
σ2

z + Ψ2
k−1(1− ρ2

k−1)

P+σ2
z

, i = 1, 2, (13)

where the recursive expression for ρk is given by [28] (Equation (7)):

ρk=
(ρzσ2

z Θ+νz)ρk−1−Ψ2
k−1Θ(1−ρ2

k−1)sgn(ρk−1)

(P+σ2
z )(σ

2
z+Ψ2

k−1(1−ρ2
k−1))

. (14)

Remark 7 (Initialization of the OL scheme). Note that in the above OL scheme we do not apply the
initialization procedure described in [28] (p. 669), as it optimizes the achievable rate rather than the distortion.
Instead, we set εi,0 = −Si and ρ0 = ρs, thus, taking advantage of the correlation between the sources. Moreover,
in Appendix C, it is explicitly shown that for the OL scheme, in the low SNR regime, the impact of the correlation
between the sources on the distortion at the receivers lasts over a large number of channel transmissions. It thus
follows that the proposed initialization clearly exploits the correlation between the sources.. We further note
that [36] (Section III.B) considered several initialization methods for the OL scheme and showed that setting
εi,0=−Si and ρ0=ρs outperforms the other studied initialization approaches.

Let EOL,min(D) denote the minimal energy per source pair required to achieve MSE D at each
receiver using the OL scheme. Since in the OL scheme E

{
X2

k
}
= P, ∀k, we have EOL,min(D) =

minP {P·KOL(P, D)}. From (13) one observes that the MSE value at time instant k depends on
ρk−1 and the MSE at time k−1. Due to the non-linear recursive expression for ρk in (14), it is
very complicated to obtain an explicit analytical characterization for KOL(P, D). For any fixed P,
we can upper bound EOL,min(D), and therefore E(D), via upper bounding P · KOL(P, D). In [36]

(Theorem 1) we showed that KOL(P, D) ≤ 2(P+σ2
z )

P log
(

σ2
s

D

)
, which leads to the upper bound:
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EOL,min(D) ≤ minP 2(P+σ2
z ) log

(
σ2

s
D

)
→P→0 E(ρz)

sep (D). However, when P → 0, the upper bound

KOL(P, D) ≤ 2(P+σ2
z )

P log
(

σ2
s

D

)
is not tight This can be seen by considering a numerical example: Let

σ2
s = 1, ρs = 0.9, σ2

z = 1, ρz = 0.7, D = 1, and consider two possible values for P: P1 = 10−4

and P2 = 10−6. Via numerical simulations one can find that KOL(P1, D) = 38, 311, while the upper
bound is 46,058. For P2 we have KOL(P2, D)=3, 830, 913, while the upper bound is 4,605,176. Thus, the
gap between KOL(P, D) and the above bound increases as P decreases. For this reason, in the next
subsection we derive a tighter upper bound on KOL(P, D) whose ratio to KOL(P, D) approaches 1 as
P→ 0. This bound is then used to derive a tighter upper bound on EOL,min(D).

5.2. A New Upper Bound on KOL(P, D)

Following ideas from [1] (Theorem 7), we assume a fixed σ2
z and approximate the recursive

relationships for ρk and αk given in (13) and (14) for small values of P
σ2

z
. We note that while [1]

(Theorem 7) obtained only asymptotic expressions for ρk and αk for P
σ2

z
→0, in the following we derive

tight bounds for these quantities and obtain an upper bound on KOL(P, D) which is valid for small
values of P

σ2
z
>0. Then, letting P

σ2
z
→0, the derived upper bound on KOL(P, D) yields an upper bound

on EOL,min(D), and therefore on E(D).

First, define: ψ1 , 2|ρz|+ 5(1− ρz), ψ2 , min{2−ρz,2(1−ρz)}
2σ2

z
and ψ3 , max

{
1−ρz

(2−ρz)2 , 1+ρz
4(1−ρz)2

}
.

We further define the positive quantities B1(P) and B2(P):

B1(P) ,
(8+ψ1) P3+24σ2

z P2+12σ4
z ψ1P+4σ6

z
(
4σ2

z ψ1+8
)

8σ10
z

P2, (15a)

B2(P) ,
P + 2σ2

z

2σ6
z

P2, (15b)

and finally, we define the quantities:

ρ̄(P),
P(3− ρz)2

8σ2
z

+B1(P), (16a)

F1(P),
ρs

Pψ2−B1(P)
·ψ3 ·

(
(3−ρz)2P

8σ2
z

+B1(P)
)2

, (16b)

F2(P),
ρs

Pψ2 − B1(P)
B1(P)
ψ22σ2

z
, (16c)

F3(P),
ρs

Pψ2−B1(P)
·


(
(3−ρz)2P

8σ2
z

+B1(P)
)2

(1− ρz)2 +
B1(P)
1− ρz

+B2(P)

, (16d)

F4(P) ,
P

2σ2
z

(
−1 + ρ̄(P) +

2σ2
z

P
B2(P)

)
, (16e)

ρlb
∗ (P, D) , 2− ρz +

σ2
s

D
(ρz + |ρs| − 2) eF3(P), (16f)

Dub
th ,

σ2
s (2− ρz − |ρs|)eF3(P)

2− ρz
, (16g)

Dlb
th ,

σ2
s (2− ρz − |ρs|)e−F3(P)

2− ρz
. (16h)

For small values of P
σ2

z
, the following theorem provides a tight upper bound on KOL(P, D):
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Theorem 4. Let P satisfy the conditions ρ̄(P)+ 2σ2
z

P B2(P)<1 and B1(P)<Pψ2. The OL scheme achieves MSE
D at each receiver within KOL(P, D)≤Kub

OL(P, D) channel uses, where, Kub
OL(P, D) is given by:

Kub
OL(P, D)=


2σ2

z
P(3−ρz)

log
(
(2−ρz−ρlb

∗ (P,D))(1+|ρs|)
(2−ρz−|ρs|)(1+ρlb∗ (P,D))

)
+ 2σ2

z
P (F1(P)+F2(P)) , D>Dub

th , (17a)(
log
(

D(2−ρz−ρ̄(P))
σ2

s (2−ρz−|ρs|)

)
−F3(P)

)
1

F4(P)

+ 2σ2
z

P(3−ρz)
log
(
(2−ρz)(1+|ρs|)

2−ρz−|ρs|

)
+ 2σ2

z
P (F1(P)+F2(P)) , D<Dlb

th. (17b)

Proof outline. Let ρs ≥ 0 (otherwise replace S1 with −S1). From [28] (p. 669) it follows that ρk
monotonically decreases with k until it crosses zero. Let Kth , min{k∈N : ρk+1 < 0} be the largest
time index k for which ρk ≥ 0. In the proof of Theorem 4 we show that, for sufficiently small P

σ2
z

,
|ρk|≤ρ̄(P),∀k≥Kth. Hence, ρk decreases until time Kth and then it has a bounded magnitude (larger
than zero). This implies that the behavior of αk is different in the regions k≤Kth and k>Kth. Let D̃th be
the MSE after Kth channel uses. We first derive upper and lower bounds on D̃th, denoted by Dub

th and
Dlb

th, respectively. Consequently, we arrive at the two cases in Theorem 4: (17a) corresponds to the case
of KOL(P, D)<Kth, while (17b) corresponds to the case KOL(P, D)>Kth. The detailed proof is provided
in Appendix C.

Remark 8 (Bandwidth used by the OL scheme). Note that as P→0, Kub
OL increases to infinity. Since, as

P→0, KOL
Kub

OL
→1, it follows that as P→0, KOL→∞. Assuming the source samples are generated at a fixed rate,

this implies that the bandwidth used by the OL scheme increases to infinity as P→0.

Remark 9 (Theorem 4 holds for non-asymptotic values of P). Note that the conditions on P in Theorem 4
can be written as P<Pth with Pth depending explicitly on σ2

z and ρz. Plugging B1(P) in (15) into the condition
B1(P)< Pψ2, we obtain the condition: (8+ψ1) P4+24σ2

z P3+12σ4
z ψ1P2+4σ6

z
(
4σ2

z ψ1+8
)

P < 8ψ2σ10
z . We

note that, in this formulation the coefficients of Pm, m = 1, 2, 3, 4, are all positive. Therefore, the left-hand-side
(LHS) is monotonically increasing with P, and since 8ψ2σ10

z is constant, the condition B1(P) < Pψ2 is
satisfied if P < Pth,2, for some threshold Pth,2. Following similar arguments, the same conclusion holds for

ρ̄(P)+ 2σ2
z

P B2(P) < 1 with some threshold Pth,1 instead of Pth,2. Thus, by setting Pth =min{Pth,1,Pth,2} we
obtain that the conditions in Theorem 4 restrict the range of power constraint values P for which the theorem
holds for some P<Pth.

5.3. An Upper Bound on EOL,min(D)

Next, we let P → 0, and use Kub
OL(P, D) derived in Theorem 4 to obtain an upper bound on

EOL,min(D), and therefore on E(D). This upper bound is stated in the following theorem.

Theorem 5. Let Dth,
σ2

s (2−ρz−|ρs|)
2−ρz

. Then, EOL,min(D)≤EOL(D), where

EOL(D)=


2σ2

z
3−ρz

log
(

σ2
s (1+|ρs|)

D+(2−ρz)(D−σ2
s )+σ2

s ·|ρs|

)
, D≥Dth,

2σ2
z

(
log
(
(2−ρz−|ρs|)σ2

s
(2−ρz)D

)
+ 1

3−ρz
log
(
(2−ρz)(1+|ρs|)

2−ρz−|ρs|

))
, D<Dth.

(18)

Proof. We evaluate P · Kub
OL(P, D) for P → 0. Note that Bi(P) ∈ O(P2), i = 1, 2, which implies that

Fj(P) ∈ O(P), j = 1, 2, 3, 4. To see why this holds, consider, for example, F1(P):

F1(P) =
ρs · ψ3

Pψ2 − B1(P)︸ ︷︷ ︸
F(a)

1 (P)

(
(3− ρz)2P

8σ2
z

+ B1(P)
)2

︸ ︷︷ ︸
F(b)

1 (P)

.
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Since ρs, ψ2, and ψ3 are constants, and since B1(P) ∈ O(P2), we have F(a)
1 (P) ∈ O(1/P). Now,

since (3−ρz)2

8σ2
z

is constant we have F(b)
1 (P) ∈ O(P2). Taking the product of these two asymptotics we

conclude that F1(P) ∈ O(P).
Now, for D≥Dth we bound the minimum E(D) as follows: First, for D≥Dub

th defined in (16g), we
multiply both sides of (17a) by P. As F1(P), F2(P)∈O(P), then, as P→0, we obtain:

P · Kub
OL(P, D) =

2σ2
z

3− ρz
log

(
(2− ρz − ρlb

∗ (P, D))(1 + |ρs|)
(2− ρz − |ρs|)(1 + ρlb∗ (P, D))

)
+O(P)

(a)−→
P→0

2σ2
z

3− ρz
log
(

σ2
s (1 + |ρs|)

D + (2− ρz)(D− σ2
s ) + σ2

s · |ρs|

)
,

where (a) follows from (16f) by noting that F3(P) ∈ O(P), and therefore, when P → 0, F3(P) → 0.

This implies that as P→ 0 we have ρlb
∗ (P, D)→ 2− ρz +

σ2
s

D (ρz + |ρs| − 2). Finally, note that for P→ 0
we have Dub

th →Dth.
Next, for D < Dth we bound the minimum E(D) by first noting that since ρ̄(P) ∈ O(P) and

2σ2
z

P B2(P)∈O(P), then F4(P)∈O(P). Now, for D<Dlb
th defined in (16h), multiplying both sides of (17b)

by P, we obtain:

P · Kub
OL(P, D) =2σ2

z

(
log
(

D(2−ρz−ρ̄(P))
σ2

s (2−ρz−|ρs|)

)
+O(P)

)
· 1
−1+O(P)

+
2σ2

z
3− ρz

log
(
(2−ρz)(1+|ρs|)

2−ρz−|ρs|

)
+O(P)

(a)−→
P→0

2σ2
z

(
log
(
(2− ρz − |ρs|)σ2

s
(2− ρz)D

)
+

1
3− ρz

log
(
(2− ρz)(1 + |ρs|)

2− ρz − |ρs|

))
,

where (a) follows from the fact that ρ̄(P) ∈ O(P), see (16a). This concludes the proof.

Remark 10 (Performance for extreme correlation values). Similarly to Remark 5, as D→ 0, the gap between
EOL(D) and Elb(D) is not bounded, which is in contrast to the situation for the OL-based JSCC for the Gaussian
MAC with feedback, cf. [1] (Remark 6). When ρs = 0 we obtain that EOL(D) = E(ρs)

sep (D) = E(ρz)
sep (D),

for all 0 ≤ D ≤ σ2
s , which follows as the sources are independent. When |ρs| → 1 and ρz → 1 then

EOL(D)→ Elb(D) ≈ σ2
z log

(
σ2

s
D

)
, in this case we also have E(ρs)

sep (D)→ Elb(D) and E(ρz)
sep (D) ≈ 2EOL(D).

Remark 11 (Comparison of the OL scheme and the separation-based schemes). From (10) and (18), it
follows that if D<σ2

s (1− |ρs|) then EOL(D)−E(ρs)
sep (D) is given by:

EOL(D)−E(ρs)
sep (D)

= 2σ2
z

(
log
(
(2−ρz−|ρs|)σ2

s
2− ρz

)
+

1
3− ρz

log
(
(2− ρz)(1 + |ρs|)

2− ρz − |ρs|

)
−1

2
log
(

σ4
s (1−ρ2

s )
))

. (19)

Note that EOL(D)−E(ρs)
sep (D) is independent of D in this range. Similarly, from (11) and (18) it follows that if

D<Dth then E(ρz)
sep (D)−EOL(D) is independent of D and is given by:

E(ρz)
sep (D)−EOL(D) = 2σ2

z

(
log
(

2− ρz

2− ρz − |ρs|

)
+

1
3− ρz

log
(

2− ρz − |ρs|
(2− ρz)(1 + |ρs|)

))
. (20)

Note that in both cases the gap decreases as |ρs| decreases, which follows as the scenario approaches the
transmission of independent sources. The gap also increases as ρz decreases.
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Remark 12 (Uncoded JSCC via the LQG scheme). In this work, we do not include an analysis of the EDT of
JSCC using the LQG scheme, ELQG(D), because JSCC-LQG does not lend itself to a concise analytical treatment,
and, moreover, our numerical study demonstrated that, in terms of EDT, JSCC-LQG is generally inferior to
JSCC-OL. To elaborate on these aspects, we first recall that the LQG scheme of [32] was already applied to the
transmission of correlated Gaussian sources over GBCFs in [36] (Section IV). It follows from the derivations
in [36] that ELQG(D) is expressed as the solution of an optimization problem which does not have an explicit
analytic solution. It is also shown in [36] that, for a finite duration of transmission and low transmission power,
when the covariance matrix of the sources is different from the covariance matrix of the steady-state of the LQG
scheme, then the JSCC-OL scheme outperforms the JSCC-LQG scheme, which stands in contrast to the results
of [33] for the channel coding problem. This surprising conclusion carries over to the EDT as well. Indeed, using
the results of [36] we carried out an extensive numerical study of JSCC-LQG, the outcome of which was that the
JSCC-LQG scheme of [36] (Section IV) achieves roughly the same minimum energy as the SSCC-ρz scheme.
Since in Section 6 we show that the JSCC-OL scheme outperforms the SSCC-ρz scheme in terms of the EDT, we
decided to exclude the JSCC-LQG scheme from the numerical comparisons reported in Section 6.

6. Numerical Results

In the following, we numerically compare Elb(D), E(ρs)
sep (D), E(ρz)

sep (D) and EOL(D). We set σ2
s = σ2

z =1

and consider several values of ρz and ρs. Figure 2a depicts Elb(D), E(ρs)
sep (D), E(ρz)

sep (D) and EOL(D) for

ρz = 0.5, and for two values of ρs: ρs = 0.2 and ρs = 0.9. As E(ρz)
sep (D) is not a function of ρs, it is plotted

only once. It can be observed that when ρs = 0.2, then E(ρs)
sep (D), E(ρz)

sep (D) and EOL(D) are almost the
same. This follows because when the correlation between the sources is low, the gain from utilizing this
correlation is also low. Furthermore, when ρs = 0.2 the gap between the lower bound and the upper
bounds is evident. On the other hand, when ρs = 0.9, both SSCC-ρs and OL significantly improve upon
SSCC-ρz. This follows as SSCC-ρz does not take advantage of the correlation among the sources. It can
further be observed that when the distortion is low, there is a small gap between OL and SSCC-ρs,
while when the distortion is high, OL and SSCC-ρs require roughly the same amount of energy per
source-pair sample. This is also supported by Figure 2c. We conclude that as the SSCC-ρs scheme
encodes over long sequences of source samples, it better exploits the correlation among the sources
compared to the OL scheme.

Figure 2b depicts Elb(D), E(ρs)
sep (D), E(ρz)

sep (D) and EOL(D) vs. D, for ρs = 0.8, and for ρz ∈ {−0.9, 0.9}.
As E(ρs)

sep (D) and E(ρz)
sep (D) are not functions of ρz, we plot them only once. It can be observed that when

ρz = 0.9, Elb(D), E(ρs)
sep (D) and EOL(D) are very close to each other, as was analytically concluded in

Remark 10. On the other hand, for ρz = −0.9 the gap between the bounds is large.
Note that while analytically comparing E(ρs)

sep (D), E(ρz)
sep (D) and EOL(D) for any D is difficult, our

numerical simulations suggest the relationship E(ρs)
sep (D) ≤ EOL(D) ≤ E(ρz)

sep (D), for all values of D, ρs, ρz.

For example, Figure 2c depicts the difference EOL(D)−E(ρs)
sep (D) for ρz = 0.5, and for all values of D

and |ρs|. It can be observed that for low values of |ρs|, or for high values of D, E(ρs)
sep (D) ≈ EOL(D).

On the other hand, when the correlation among the sources is high and the distortion is low, then the
SSCC-ρs scheme improves upon the OL scheme. When D<σ2

s (1− |ρs|) we can use (19) to analytically
compute the gap between the energy requirements of the two schemes. For instance, at ρs = 0.99
and D < 0.02 the gap is approximately 3.173. Figure 2d depicts the difference E(ρz)

sep (D)− EOL(D) for
ρz = 0.5. It can be observed that larger |ρs| results in a larger gap. Again we can use (20) to analytically
compute the gap between the energy requirements of the two schemes for a certain range of distortion
values: At ρs = 0.99 and D < 0.34, the gap is approximately 0.744. Finally, as stated in Remark 12,
the LQG scheme achieves approximately the same minimum energy as the SSCC-ρz scheme, hence,
OL is expected to outperform LQG. This is in accordance with [36] (Section VI), which shows that for
low values of P, OL outperforms LQG, but, is in contrast to the channel coding problem in which the
LQG scheme of [32] is known to achieve higher rates compared to the OL scheme of [28].
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(a) (b)

(c) (d)

Figure 2. Numerical results. (a) Upper and lower bounds on E(D) for σ2
s = σ2

z = 1, and ρz = 0.5. Solid
lines correspond to ρs =0.9, while dashed lines correspond to ρs =0.2. (b) Upper and lower bounds
on E(D) for σ2

s = σ2
z = 1, ρs = 0.8. Solid lines correspond to ρz = 0.9, while dashed lines correspond

to ρz =−0.9. (c) Normalized excess energy requirement of the OL scheme over the SSCC-ρs scheme,
ρz = 0.5. (d) Normalized excess energy requirement of the SSCC-ρz scheme over the OL scheme,
ρz = 0.5.

7. Conclusions and Future Work

In this work, we studied the EDT for sending correlated Gaussian sources over GBCFs, without
constraining the source-channel bandwidth ratio. In particular, we first derived a lower bound on
the minimum energy per source pair sample using information theoretic tools and then presented
upper bounds on the minimum energy per source pair sample by analyzing three transmission
schemes. The first scheme, SSCC-ρs, jointly encodes the source sequences into a single bit stream,
while the second scheme, SSCC-ρz, separately encodes each of the sequences, thus, it does not exploit
the correlation among the sources. We further showed that the LQG channel coding scheme of [32]
achieves the same minimum energy-per-bit as orthogonal transmission, and therefore, in terms of
the minimum energy-per-bit, it does not take advantage of the correlation between the noises at the
receivers. We also concluded that SSCC-ρs outperforms SSCC-ρz.

The third scheme analyzed is the OL scheme for which we first derived an upper bound on the
number of channel uses required to achieve a target distortion pair, which, in the limit P→0, leads to an
upper bound on the minimum energy per source pair sample. Numerical results indicate that SSCC-ρs

outperforms the OL scheme, as well. On the other hand, the gap between the energy requirements of
the two schemes is rather small. We note that the SSCC-ρs scheme implements coding over blocks of
samples of source pairs, which introduces high computational complexity, large delays and requires
a large amount of storage space. On the other hand, the OL scheme applies linear and uncoded
transmission to each source pair sample separately, which requires low computational complexity,
short delays and limited storage space. Our results demonstrate that the OL scheme provides an
attractive alternative for energy efficient transmission over GBCFs.

Finally, we note that for the Gaussian MAC with feedback, OL-based JSCC is very close to
the lower bound, cf. [1] (Figure 4), while, as indicated in Section 6, for the GBCF, the gap between
the OL-JSCC and the lower bound is larger. This difference is also apparent in the channel coding
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problem for GBCFs, namely between the achievable rate region of the OL scheme and the tightest outer
bound (note that while the OL strategy achieves the capacity of the Gaussian MAC with feedback [32]
(Section V.A), for the GBCF the OL strategy is sub-optimal [28]). Therefore, it is interesting to see if the
duality results between the Gaussian MAC with feedback and the GBCF, presented in [33,34] for the
channel coding problem, can be extended to JSCC and if the approach of [33,34] facilitates a tractable
EDT analysis. We consider this as a direction for future work.
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MSE Mean square error
OL Ozarow–Leung
RHS Right-hand side
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SSCC Separate source-channel coding

Appendix A. Proof of Lemma 1

We begin with the proof of (6a). From [12] (Theorem 13.2.1) we have:

RS1(D) = inf
PŜ1 |S1

:E{(Ŝ1−S1)
2}≤D

I(Ŝ1; S1). (A1)

Now, for any ε > 0 we write:

m · RS1(D + ε)
(a)
≤ inf

PŜm
1,1 |S

m
1,1

:∑m
j=1E{(Ŝ1,j−S1,j)2}≤m(D+ε)

m

∑
j=1

I(Ŝ1,j; S1,j|S
j−1
1,1 )

(b)
≤ I(Ŝm

1,1; Sm
1,1), (A2)

where (a) follows from the convexity of the mutual information I(Ŝ1; S1) in the conditional distribution
PŜ1|S1

, and from the assumption that the sources are memoryless; (b) is due to the non-negativity of
mutual information combined with the chain rule for mutual information. Next, we upper bound
I(Ŝm

1,1; Sm
1,1) as follows:

I(Ŝm
1,1; Sm

1,1)
(a)
≤ I(Yn

1,1; Sm
1,1)

(b)
≤

n

∑
k=1

I(Xk; Y1,k), (A3)

where (a) follows from the data processing inequality [12] (Section 2.8), by noting that Sm
1 ↔ Yn

1 ↔
Ŝm

1 ; (b) follows from the fact that conditioning reduces entropy, and from the fact that since the
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channel is memoryless, then Y1,k depends on (Sm
1 , Xk, Yk−1

1,1 ) only through the channel input Xk, see (1).
By combining (A1)–(A3) we obtain (6a).

Next, we prove (6b). From [40] (Theorem III.1) we have:

RS1,S2(D)= inf
PŜ1,Ŝ2 |S1,S2

:

E{(Ŝi−Si)
2}≤D, i=1,2

I(Ŝ1, Ŝ2; S1, S2). (A4)

Again, for any ε > 0, we write:

m · RS1,S2(D + ε)
(a)
≤ inf

PŜm
1,1,Ŝm

2,1 |S
m
1,1,Sm

2,1
:

∑m
j=1E{(Ŝj,i−Sj,i)

2}≤m(D+ε), i=1,2

m

∑
j=1

I(Ŝ1,j, Ŝ2,j; S1,j, S2,j)
(b)
≤ I(Ŝm

1,1, Ŝm
2,1; Sm

1,1, Sm
2,1), (A5)

where (a) is due to the convexity of the mutual information I(Ŝ1, Ŝ2; S1, S2) in the conditional
distribution PŜ1,Ŝ2|S1,S2

, and (b) follows from the memorylessness of the sources, the chain rule
for mutual information, and from the fact that it is non-negative. Next, we upper bound
I(Ŝm

1,1, Ŝm
2,1; Sm

1,1, Sm
2,1) as follows:

I(Ŝm
1 , Ŝm

2 ; Sm
1 , Sm

2 )
(a)
≤ I(Yn

1 , Yn
2 ; Sm

1 , Sm
2 )

(b)
≤

n

∑
k=1

I(Xk; Y1,k, Y2,k), (A6)

where (a) follows from the data processing inequality [12] (Section 2.8), by noting that we have
(Sm

1 , Sm
2 )↔ (Yn

1 , Yn
2 )↔ (Ŝm

1 , Ŝm
2 ); (b) follows from the fact that conditioning reduces entropy, and from

the fact that the channel is memoryless, thus, Y1,k and Y2,k depend on (Sm
1 , Sm

2 , Xk, Yk−1
1,1 , Yk−1

2,1 ) only
through the channel input Xk, see (1). By combining (A4)–(A6) we obtain (6b). This concludes the
proof of the lemma.

Appendix B. Proof of Lemma 2: Minimum Energy-Per-Bit for the LQG Scheme

We first note that by following the approach taken in the achievability part of [48] (Theorem 1)
it can be shown that for the symmetric GBCF with symmetric rates, the minimum energy-per-bit is
given by:

ELQG
b min = lim

P→0

P
Rsum

LQG(P)
, (A7)

where Rsum
LQG(P) is the sum rate achievable by the LQG scheme. Let x0 be the unique positive real

root of the third order polynomial p(x)= (1+ρz)x3+(1−ρz)x2−
(

1+ρz+
2P
σ2

z

)
x−(1−ρz). From [32]

(Equation (26)), for the symmetric GBCF, the achievable per-user rate of the LQG scheme is RLQG(P) =
1
2 log2(x0) bits. We now follow the approach taken in [36] (Appendix A.3) and bound x0 using Budan’s
theorem [49].

Explicitly writing the derivatives of p(x) and evaluating the sequence p(i)(1), i = 0, 1, 2, 3, we
have V(1) = 1. Next, we let χ = 2P

ασ2
z

where α > 0 is a real constant. Setting x = 1+χ we obtain

p(1+χ)=(1+ρz)χ3+(4+2ρz−α)χ2+(4−α)χ, p(1)(1+χ)=3(1+ρz)χ2+(8+4ρz−α)χ+4, and p(2)(1+
χ), p(3)(1+χ)> 0. Note that we are interested in the regime P→ 0 which implies that χ→ 0. Now,
for χ small enough we have p(1)(1+χ) ≈ 4 > 0. Furthermore, when χ→ 0 we have p(0)(1+χ) =

p(0)
(

1+ 2P
ασ2

z

)
≈ (4−α) 2P

ασ2
z

. Clearly, for any 0 < α < 4, limP→0 p(0)(1+ 2P
ασ2

z
) > 0, and when α > 4,

limP→0 p(0)(1+ 2P
ασ2

z
)<0. Thus, letting 0<δ<4, Budan’s theorem implies that when P→0, the number

of roots of p(x) in the interval
(

1+ 2P
(4+δ)σ2

z
, 1+ 2P

(4−δ)σ2
z

)
is 1. From Descartes’ rule [50] (Section 1.6.3),
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we know that there is a unique positive root, thus, as this holds for any 0< δ< 4, we conclude that
limP→0 x0=1+ P

2σ2
z

. Plugging the value of x0 into (A7), and considering the sum-rate, we obtain:

ELQG
b min = lim

P→0

P

log2

(
1 + P

2σ2
z

) = 2σ2
z loge 2. (A8)

This concludes the proof.

Appendix C. Proof of Theorem 4

First, note that if ρs < 0, we can replace S1 with −S1, which changes only the sign of ρs in the
joint distribution of the sources. Note that changing the sign of ρk−1 in (14) only changes the sign of ρk
while |ρk| remains unchanged. Hence, αk in (13) is not affected by changing the sign of ρs. Therefore,
in the following we assume that 0 ≤ ρs < 1. To simplify the notation we also omit the dependence
of KOL(P, D) on P and D, and write KOL. For characterizing the termination time of the OL scheme
we first characterize the temporal evolution of ρk. From [28] (p. 669), ρk decreases (with k) until it
crosses zero. Let Kth , min{k : ρk+1 < 0}, regardless of whether the target MSE was achieved or not.
We begin our analysis with the case KOL ≤ Kth.

Appendix C.1. The Case of KOL ≤ Kth

From (14) we write the (first order) Maclaurin series expansion [50] (Chapter 7.3.3.3) of ρk+1 − ρk
in the parameter P:

ρk+1 − ρk =
−P

(
(1−ρ2

k)sgn(ρk)+(1−ρz)(sgn(ρk)+ρk)
)

2σ2
z

+ Res1(P, k), (A9)

where Res1(P, k) is the remainder of the first order Maclaurin series expansion. The following lemma
upper bounds |Res1(P, k)|:

Lemma A1. For any k, we have |Res1(P, k)|≤B1(P), where B1(P) is defined in (15).

Proof. Let ϕ(P, k) , ρk+1 − ρk. From Taylor’s Theorem [50] (Subsection 6.1.4.5) it follows that

Res1(P, k) = ∂2 ϕ(x,k)
2∂x2 · P2, for some 0 ≤ x ≤ P. In the following we upper bound ∂2 ϕ(x,k)

∂x2 , for 0≤ x≤P:
Let b2 , (1−ρ2

k)(sgn(ρk)+ρk), b1 ,ρzσ2
z (1−ρ2

k)(sgn(ρk)+ρk)+σ2
z (1−ρz)(2(sgn(ρk)+ρk)+ρk(1−ρ2

k)),
a2 , (1−ρ2

k), a1 , σ2
z
(
2(1+|ρk|)+1−ρ2

k
)
, and a0 , 2σ4

z (1+|ρk|) (note that in order to simplify the
expressions we ignore the dependence of b2, b2, a2, a1, and a0 on k). Using (14), the expression ρk+1− ρk

can now be explicitly written as ϕ(P, k) = −b2P2−b1P
a2P2+a1P+a0

, from which we obtain:

∂2 ϕ(x, k)
∂x2 = 2

(
(a1a2b2 − a2

2b1)x3 + 3a0a2b2x2 + 3a0a2b1x + a0a1b1 − a2
0b2

(a2x2 + a1x + a0)3

)
.

Since a1, a2 > 0, we lower bound the denominator of ∂2 ϕ(x,k)
∂x2 in the range 0 ≤ x ≤ P by

(a2x2 + a1x + a0)
3 ≥ a3

0 = 8σ12
z . Next, we upper bound each of the terms in the numerator of ∂2 ϕ(x,k)

∂x2 .
For the coefficient of x3 we write |a1a2b2 − a2

2b1| ≤ 4σ2
z · 2 + |ρz|σ2

z · 2 + σ2
z (1− ρz) · 5 = σ2

z (8 + ψ1),
where the inequality follows from the fact that 3 + 2|ρk| − ρ2

k ≤ 4. For the coefficient of x2 we write
|3a0a2b2| ≤ 24σ4

z . For the coefficient of x we write |3a0a2b1| ≤ 12σ6
z (2|ρz|+ 5(1− ρz)) = 12σ6

z ψ1.
Finally, for the constant term we write |a0a1b1 − a2

0b2| ≤ 4σ8
z
(
4σ2

z ψ1 + 8
)
. Collecting the above bounds

on the terms of the numerator, and the bound on the denominator, we obtain |Res1(P, k)| ≤ B1(P),
concluding the proof of the lemma.
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Note that for k ≤ Kth we have ρk > 0. Hence, (A9) together with Lemma A1 imply that, for
k ≤ Kth we have:

|ρk+1 − ρk|
P

≤ (1 + ρk)(2− ρz − ρk)

2σ2
z

+
B1(P)

P
.

Next, note that the function f (x) , (1 + x)(2− ρz − x), 0 ≤ x < 1 satisfies:

min{2−ρz, 2(1−ρz)}≤ f (x)≤ (3−ρz)2

4
, 0≤ x<1. (A10)

The lower bound on f (x) follows from the fact that f (x) is concave, and the upper bound
is obtained via: maxx∈R f (x). When B1(P) < ψ2P then we have min{2−ρz ,2(1−ρz)}

2σ2
z

> B1(P)
P , hence

min{2−ρz ,2(1−ρz)}
2σ2

z
− B1(P)

P >0. Thus, we can combine the lower and upper bounds on Res1(P, k), and the

bound on (1+ρk)(2−ρz−ρk)

2σ2
z

to obtain the following lower and upper bounds on |ρk+1−ρk |
P :

min{2− ρz, 2(1− ρz)}
2σ2

z
− B1(P)

P
≤ |ρk+1 − ρk|

P
≤ (3− ρz)2

8σ2
z

+
B1(P)

P
. (A11)

Now, recalling that ρ0 = ρs, the fact that the bound in (A11) does not depend on k results in the
following upper bound on Kth:

Kth≤
ρs

P
2σ2

z
min{2−ρz, 2(1−ρz)}−B1(P)

=
ρs

Pψ2−B1(P)
. (A12)

Next, using the fact that ρk ≥ 0 for k < Kth, we rewrite (A9) as follows:

ρk+1 − ρk
(1 + ρk)(2− ρz − ρk)

= − P
2σ2

z
+

Res1(P, k)
(1 + ρk)(2− ρz − ρk)

,

which implies that for KOL ≤ Kth we have:

KOL−1

∑
k=0

ρk+1 − ρk
(1 + ρk)(2− ρz − ρk)

= −KOLP
2σ2

z
+

KOL−1

∑
k=0

Res1(P, k)
(1 + ρk)(2− ρz − ρk)

. (A13)

Observe that Res1(P,k)
(1+ρk)(2−ρz−ρk)

∈O(P2), which follows from the fact that 0 < (1 + ρk)(2− ρz − ρk)

is lower and upper bounded independent of P and ρk (see (A10)), and from the fact that |Res1(P, k)|∈
O(P2). Next, we focus on the LHS of (A13) and write:

KOL−1

∑
k=0

ρk+1 − ρk
(1 + ρk)(2− ρz − ρk)

=
KOL−1

∑
k=0

1
(1 + ρk)(2− ρz − ρk)

∫ ρk+1

ρk

dρ. (A14)

Since |ρz| < 1, it follows that 1
f (x) =

1
(1+x)(2−x−ρz)

is continuous, differentiable and bounded over
0 ≤ x < 1, which implies that there exists a constant c0 such that:

max
x∈[ρk+1,ρk ]

∣∣∣∣ 1
f (x)

− 1
f (ρk)

∣∣∣∣ ≤ c0|ρk+1 − ρk|. (A15)

The constant c0 is upper bounded in the following Lemma A2. Note that (A15) constitutes an
upper bound on the maximal magnitude of the difference between 1

f (ρk+1)
and 1

f (ρk)
.

Lemma A2. The constant c0, in (A15), satisfies: c0 ≤ max
{
|ρz−1|
(2−ρz)2 , 1+ρz

4(1−ρz)2

}
, ψ3.
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Proof. Since 0≤ρk, ρk+1<1, the mean-value theorem [50] (Section 6.1.4) implies: c0≤ max
x∈[0,1]

∣∣∣∣( 1
f (x)

)′∣∣∣∣.
Writing

(
1

f (x)

)′
explicitly we have:

(
1

f (x)

)′
= 2x−1+ρz

((1+x)(2−x−ρz))2 ,g0(x). To maximize g0(x) over x∈ [0, 1],

we compute g′0(x) =− 2(3−3ρz+ρ2
z−3(1−ρz)x+3x2)

((1+x)(−2+x+ρz))3 . Setting g′0(x)=0 requires g1(x) = x2−(1−ρz)x+1−

ρz+
ρ2

z
3 = 0. Since for all |ρz|< 1 the roots of g1(x) are complex (the determinant of g1(x) is equal

to − ρ2
z

3 + 2ρz − 3 < 0, |ρz| < 1.), then g′0(x) is not equal to 0 in the interval x ∈ [0, 1], and hence its
maximal value is achieved at one of the boundaries of the interval [0,1]. This concludes the proof of
the lemma.

Next, we write the LHS of (A14) as follows:

KOL−1

∑
k=0

ρk+1 − ρk
(1 + ρk)(2− ρz − ρk)

(a)
=

KOL−1

∑
k=0

∫ ρk+1

ρk

dρ

(1 + ρk)(2− ρz − ρk)

(b)
≤

KOL−1

∑
k=0

∫ ρk+1

ρk

dρ

(1 + ρ)(2− ρz − ρ)
+

KOL−1

∑
k=0

∫ ρk+1

ρk

ψ3 · |ρk+1 − ρk|dρ

≤
∫ ρKOL

ρs

dρ

(1 + ρ)(2− ρz − ρ)
+

KOL−1

∑
k=0

ψ3 · |ρk+1 − ρk|2

(c)
≤ 1

ρz−3
log
(
(2− ρz − ρKOL)(1 + ρs)

(2− ρz − ρs)(1 + ρKOL)

)
+F1(P), (A16)

where (a) follows from (A14); (b) follows from (A15) which implies that ∀x ∈ [ρk+1, ρk] : 1
f (ρk)

≤
1

f (x)+c0|ρk+1−ρk|, and from Lemma A2; (c) follows from explicitly calculating the integral, and by
multiplying (A12) by the RHS of (A11) to bound the summation, and then using the upper
bounds (A11) and (A12) which leads to an upper bound on the second summation by F1(P), which is
defined in (16b). By following arguments similar to those leading to (A16) the summation at the LHS
of (A14) can be lower bounded via:

KOL−1

∑
k=0

ρk+1 − ρk
(1 + ρk)(2− ρz − ρk)

≥ 1
ρz − 3

log
(
(2− ρz − ρKOL)(1 + ρs)

(2− ρz − ρs)(1 + ρKOL)

)
− F1(P). (A17)

Next, consider again the RHS of (A13). Using the bound (A10) and Lemma A1, we can write:

−KOLP
2σ2

z
+

KOL−1

∑
k=0

Res1(P)
(1 + ρk)(2− ρz − ρk)

≤ −KOLP
2σ2

z
+

KOL−1

∑
k=0

B1(P)
min {2− ρz, 2(1− ρz)}

(a)
≤ −KOLP

2σ2
z

+ F2(P), (A18)

where (a) follows from (A12), the LHS of (A10) and Lemma A2, and from the definitions of ψ2 and
F2(P) in Section 5.2. Plugging the lower bound (A17) and the upper bound (A18) into (A13) we arrive
at an upper bound on KOL when KOL < Kth:

KOL ≤
2σ2

z
P

1
3− ρz

log
(
(2− ρz − ρKOL)(1 + ρs)

(2− ρz − ρs)(1 + ρKOL)

)
+

2σ2
z

P
(F1(P) + F2(P)) . (A19)
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We emphasize that the above expressions hold only for KOL ≤ Kth, and we note that these
expressions depend on ρKOL . As ρKOL is unknown, in the following we bound its value. For this
purpose, we set αKOL = D in (13) and write:

log
(

D
σ2

s

)
=

KOL−1

∑
k=0

log

(
2σ2

z (1 + |ρk|) + P(1− ρ2
k)

2(P + σ2
z )(1 + |ρk|)

)
(a)
=

KOL−1

∑
k=0
− P

2σ2
z
(1+|ρk|)+

KOL−1

∑
k=0

Res2(P, k), (A20)

where (a) follows from the first order Maclaurin series expansion of log
(

2σ2
z (1+|ρk |)+P(1−ρ2

k)

2(P+σ2
z )(1+|ρk |)

)
in the

parameter P, and Res2(P, k) is the remainder term. Note that this holds for any KOL, irrespective
whether it is smaller or larger than Kth. The following lemma upper bounds |Res2(P, k)|:

Lemma A3. For any k we have |Res2(P, k)|≤B2(P), where B2(P) is defined in (15).

Proof outline. We follow the technique used in the proof of Lemma A1. We let ϕ(P, k) ,

log
(

2σ2
z (1+|ρk |)+P(1−ρ2

k)

2(P+σ2
z )(1+|ρk |)

)
, and use Taylor’s theorem to write Res2(P, k) = ∂2 ϕ(x,k)

2∂x2 · P2 for some

0 ≤ x ≤ P. Then, we upper bound ∂2 ϕ(x,k)
∂x2 in the range 0 ≤ x≤ P.

Next, we focus on the first summation on the RHS of (A20): From (A9), and for k ≤ Kth, we have
ρk+1−ρk
2−ρz−ρk

= − P
2σ2

z
(1 + ρk) +

Res1(P,k)
2−ρz−ρk

. Hence, we write the first summation on the RHS of (A20), for
KOL ≤ Kth as:

KOL−1

∑
k=0
− P

2σ2
z
(1+|ρk|)=

KOL−1

∑
k=0

ρk+1−ρk
2−ρz−ρk

−
KOL−1

∑
k=0

Res1(P, k)
2−ρz−ρk

. (A21)

Similarly to (A16) we write:

KOL−1

∑
k=0

ρk+1 − ρk
2− ρz − ρk

≤
∫ ρKOL

ρs

1
2− ρz − ρ

dρ + F3,1(P)

= log
(

2−ρz−ρs

2−ρz−ρKOL

)
+F3,1(P), (A22)

where

F3,1(P)
(a)
=

ρs

Pψ2 − B1(P)︸ ︷︷ ︸
(∗)

× max
x∈[0,1]

∣∣∣∣∣
(

1
2−ρz−x

)′∣∣∣∣∣ ·
(
(3−ρz)2P

8σ2
z

+B1(P)
)2

︸ ︷︷ ︸
(∗∗)

(b)
=

ρs

Pψ2−B1(P)
· 1
(1−ρz)2 ·

(
(3−ρz)2P

8σ2
z

+B1(P)
)2

.

Here, in step (a) (∗) is obtained as KOL ≤ Kth, where Kth is upper bounded as in (A12), and (∗∗)
follows from bounding | 1

2−ρz−ρ −
1

2−ρz−ρk
| ≤ d0|ρk+1− ρk|, where d0 is found using a similar approach

to the one in the proof of Lemma A2. Then, applying arguments similar to those leading to (A16), we
plug the upper bound on |ρk+1 − ρk| stated in the RHS of (A11), and combine with the bound on d0 to
obtain (∗∗). Step (b) follows from the fact that ∂2

∂x2
1

2−ρz−x > 0, x ∈ [0, 1] which implies that ∂
∂x

1
2−ρz−x is

increasing with x ∈ [0, 1], and therefore, its maximal value is achieved at x = 1.
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For the second term on the RHS of (A21), noting that for |ρk| < 1, 0 < 1
2−ρz−ρk

< 1
1−ρz

, we write:

KOL−1

∑
k=0

Res1(P, k)
2−ρz−ρk

≤ ρs

Pψ2−B1(P)
B1(P)
1−ρz

,F3,2(P). (A23)

Now, we consider the second term on the RHS of (A20). From (A12) and Lemma A3 we obtain:

KOL−1

∑
k=0

Res2(P, k)≤KOL ·B2(P)≤ ρsB2(P)
Pψ2−B1(P)

,F3,3(P). (A24)

Therefore, from (A20)–(A24) using the definition of F3(P) in (16d), we obtain:

log
(

D
σ2

s

)
≤ log

(
2− ρz − ρs

2− ρz − ρKOL

)
+ F3(P). (A25a)

By following similar arguments for lower bounding log
(

D
σ2

s

)
, we also obtain:

log
(

D
σ2

s

)
≥ log

(
2− ρz − ρs

2− ρz − ρKOL

)
− F3(P). (A25b)

From (A25a), we can extract the following lower bound on ρKOL : ρKOL ≥ 2−ρz +
σ2

s
D (ρz +ρs−

2)eF3(P) , ρlb
∗ (P, D). Similarly, from (A25b), we can extract the following upper bound on ρKOL :

ρKOL ≤ 2−ρz+
σ2

s
D (ρz+ρs−2)e−F3(P) , ρub

∗ (P, D). Up to this point we assumed that KOL ≤ Kth and
therefore ρKOL ≥ 0. Hence, we restricted our attention only to values of D for which ρlb

∗ (D) ≥ 0, which

is satisfied for D ≥ σ2
s (2−ρz−ρs)eF3(P)

2−ρz
= Dub

th . We conclude that if D ≥ Dub
th , we can obtain an upper

bound on KOL plugging ρlb
∗ (P, D) into (A19):

KOL ≤
2σ2

z
P

1
3− ρz

log

(
(2− ρz − ρlb

∗ (P, D))(1 + ρs)

(2− ρz − ρs)(1 + ρlb∗ (P, D))

)
+

2σ2
z

P
(F1(P) + F2(P)) . (A26)

This corresponds to the bounds (17a). In the next subsection, we consider the case of KOL > Kth.

Appendix C.2. The Case of KOL > Kth

For upper bounding KOL when KOL > Kth, we first derive an upper bound on |ρk| for k ≥ Kth.
From (A9) we have for any k:

|ρk+1 − ρk| ≤
∣∣∣∣− P

2σ2
z

(
(1−ρ2

k)sgn(ρk)+(1−ρz)(sgn(ρk)+ρk)
)∣∣∣∣+ |Res1(P, k)|

(a)
≤ P

2σ2
z

∣∣∣((1− |ρk|2) + (1− ρz)(1 + |ρk|)
)∣∣∣+ B1(P)

(b)
=

P
2σ2

z
(1 + |ρk|)(2− ρz − |ρk|) + B1(P),

where (a) follows from Lemma A1, and (b) follows since |ρk| is non-negative. Thus, we can use the
upper bound in (A10) to further bound:

P
2σ2

z
(1 + |ρk|)(2− ρz − |ρk|) + B1(P) ≤ P(3− ρz)2

8σ2
z

+ B1(P) , ρ̄(P). (A27)

Note that this bound holds for every k, regardless of the value of KOL. Further note that the condition

ρ̄(P) + 2σ2
z

P B2(P) < 1 implies that ρ̄(P) < 1. The following lemma uses (A27) to bound |ρk|, k ≥ Kth.
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Lemma A4. For k ≥ Kth it holds that |ρk| ≤ ρ̄(P).

Proof. We first recall that ρKth > 0 while ρKth+1 < 0. Therefore, the bound |ρk+1 − ρk| ≤ ρ̄(P)
combined with |ρKth+1 − ρKth |= |ρKth |+|ρKth+1| implies that |ρKth | ≤ ρ̄(P) as well as |ρKth+1| ≤ ρ̄(P).
From [28] (p. 669) we have that if ρk > 0 then ρk+1 < ρk, and if ρk < 0 then ρk+1 > ρk. Note that these
statements hold for every k. We now prove by induction the statement: Suppose |ρKth+∆|< ρ̄(P), for
∆>0, then |ρKth+∆+1|< ρ̄(P). Note that the induction assumption is satisfied for ∆=1. If ρKth+∆ < 0,
then ρKth+∆ < ρKth+∆+1, which implies that |ρKth+∆+1| ≤ ρ̄(P) since |ρk+1 − ρk| ≤ ρ̄(P). If ρKth+∆ > 0,
then ρKth+∆ > ρKth+∆+1, which again, implies that |ρKth+∆+1| ≤ ρ̄(P) since |ρk+1 − ρk| ≤ ρ̄(P). Thus,
by induction we conclude that |ρKth | ≤ ρ̄(P), ∀k ≥ Kth.

Next, we characterize a lower bound on the distortion achieved after Kth time steps. Recall that
for KOL ≤ Kth we have ρKOL ≤ ρub

∗ (P, D), where ρub
∗ (P, D) is defined in Appendix C.1. By setting

ρub
∗ (P, D)=0, we obtain D = σ2

s (2−ρz−ρs)e−F3(P)

2−ρz
,Dlb

th. Thus, Dlb
th constitutes a lower bound on Dth.

Now, we are ready to analyze the case of KOL>Kth. We first note that (A20) holds for any value
of KOL. Hence, we write:

log
(

D
σ2

s

)
=

Kth−1

∑
k=0

(
− P

2σ2
z
(1+|ρk|) + Res2(P, k)

)
+

KOL−1

∑
k=Kth

(
− P

2σ2
z
(1+|ρk|)+Res2(P, k)

)
. (A28)

For the second term on the RHS of (A28), we write:

KOL−1

∑
k=Kth

(
− P

2σ2
z
(1 + |ρk|) + Res2(P, k)

)
(a)
≤ (KOL − Kth)

P
2σ2

z

(
−1 +

(
ρ̄(P) +

2σ2
z

P
B2(P)

))
= (KOL − Kth)F4(P).

where (a) follows from Lemma A3, as the lemma holds for any k, and from the fact that |ρk| ≤
ρ̄(P), ∀k ≥ Kth. Since the sum in (A20) is negative, we require F4(P) < 0, which results in ρ̄(P) +
2σ2

z
P B2(P) < 1. Now, we write (A28) as:

KOL−1

∑
k=Kth

(
− P

2σ2
z
(1+|ρk|)+Res2(P, k)

)
= log

(
D
σ2

s

)
−

Kth−1

∑
k=0

(
− P

2σ2
z
(1+|ρk|)+Res2(P, k)

)
, (A29)

and note that since (A20)–(A25) hold for KOL≤Kth, then replacing KOL with Kth in (A20)–(A25) and
ρKOL with ρKth we can bound:

Kth−1

∑
k=0

(
− P

2σ2
z
(1 + |ρk|) + Res2(P, k)

)
≤ log

(
2− ρz − ρs

2− ρz − ρ̄(P)

)
+ F3(P),

where we used the fact that 0 < ρKth ≤ ρ̄(P). Thus, to obtain an upper bound on KOL we write:

(KOL − Kth)F4(P) ≥ log
(

D
σ2

s

)
−log

(
2− ρz − ρs

2− ρz − ρ̄(P)

)
−F3(P). (A30)

Finally, plugging ρKth instead of ρKOL in (A19), we obtain an upper bound on Kth. Since the

function (2−ρz−x)(1+ρs)
(2−ρz−ρs)(1+x) in (A19) monotonically decreases with x, using the lower bound Kth≥0, we

obtain an explicit upper bound on Kth. Combining this upper bound on Kth with (A30) we obtain the
following upper bound on KOL:



Entropy 2017, 19, 243 24 of 26

KOL ≤
(

log
(

D(2− ρz − ρ̄(P))
σ2

s (2− ρz − ρs)

)
− F3(P)

)
1

F4(P)

+
2σ2

z
P

1
3− ρz

log
(
(2− ρz)(1 + ρs)

2− ρz − ρs

)
+

2σ2
z

P
(F1(P) + F2(P)) ,

where since F4(P) < 0, dividing by F4(P) changes the direction of the inequality. This concludes
the proof.
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