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Abstract: Flood frequency analysis (FFA) is needed for the design of water engineering and hydraulic
structures. The choice of an appropriate frequency distribution is one of the most important issues in
FFA. A key problem in FFA is that no single distribution has been accepted as a global standard. The
common practice is to try some candidate distributions and select the one best fitting the data, based
on a goodness of fit criterion. However, this practice entails much calculation. Sometimes generalized
distributions, which can specialize into several simpler distributions, are fitted, for they may provide
a better fit to data. Therefore, the generalized gamma (GG) distribution was employed for FFA in
this study. The principle of maximum entropy (POME) was used to estimate GG parameters. Monte
Carlo simulation was carried out to evaluate the performance of the GG distribution and to compare
with widely used distributions. Finally, the T-year design flood was calculated using the GG and
compared with that with other distributions. Results show that the GG distribution is either superior
or comparable to other distributions.

Keywords: flood frequency analysis; generalized gamma (GG) distribution; principle of maximum
entropy (POME)

1. Introduction

Flood frequency analysis (FFA) is needed for the design of water engineering and hydraulic
structures. The sizing of bridges, culverts and other facilities; the design capacities of levees, spillways
and other control structures; and reservoir operation or management all depend upon the estimated
magnitude of various design flood values [1–3]. In FFA, flow data, such as the annual maximum data,
are fitted using a theoretical frequency distribution, which is usually selected from a set of candidate
distributions [4]. For example, the Pearson type three distribution (P3) has been recommended
in China [5]. In the US, since 1967 the Log-Pearson type 3 distribution (LP3) has been the official
distribution for all catchments which are fitted for planning and insurance purposes [6]. The UK has
endorsed the GEV distribution [7,8] for FFA.

The choice of the appropriate model is one of the most important issues for FFA. The method
commonly practiced is to try different distributions for the data at hand and choose the best fitted
distribution using some particular goodness-of-fit measure [9]. One of the disadvantages of this
method is that too many different distributions need to be tried and the selected distribution may
be the best based on one goodness of fit criterion, but not based on another criterion. In order to
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overcome this disadvantage, some generalized frequency distributions have been recently used for
FFA. The generalized gamma (GG) distribution is discussed in this study. It is a generalization of the
two-parameter gamma distribution. The GG distribution includes as special cases the exponential
distribution, the two-parameter gamma distribution, and the Weibull distribution, which provide
sufficient flexibility to fit a large variety of data sets.

After deciding the distribution, the second issues is to estimate the parameters associated with the
GG distribution. The popular techniques for parameter estimation include the methods of maximum
likelihood (ML) [7], moments (MM) [10] and L-moments [11]. In addition, entropy theory can be used
to derive more generalized distributions using different constraints [12]. The theory involves entropy
maximizing in accord with the principle of maximum entropy (POME), in which the distribution
parameter are determined, given the observed data and a set of constraints. Singh [12] indicated that
the entropy method was reasonable and efficient for parameter estimation.

The objective of this study was therefore to propose an entropy based generalized gamma
distribution for flood frequency analysis. The GG distribution parameters were estimated using POME.
The GG distribution was tested using observed data sets. Also, Monte Carlo simulation was carried
out to evaluate the predictive ability of the GG distribution and it was compared with some widely
accepted distributions. Finally, the T-year design flood values were calculated and compared based on
different FFA distributions.

2. Methodology

2.1. Generalized Gamma Distribution

Let X be a random variable and x be its specific value. The probability density function (PDF) of
the generalized gamma (GG) distribution can be expressed as:

f (x) =
r2

βΓ( r1
r2
)
(

x
β
)
(r1−1)

exp(−( x
β
)

r2
) (1)

where Γ(•) is the gamma function, and r1, r2 are the shape parameters, and β is the scale parameter.

2.2. Estimation of Parameters of GB2 Distribution by POME

The GG distribution parameters were determined using the principle of maximum entropy
(POME). The POME method involves the following steps: (1) specification of constraints;
(2) maximization of entropy using the method of Lagrange multipliers; (3) derivation of the relation
between Lagrange multipliers and constraints; (4) derivation of the relation between Lagrange
multipliers and distribution parameters; and (5) derivation of the relation between distribution
parameters and constraints. A flow chart showing the estimation procedure is shown in Figure 1.
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2.2.1. Specification of Constraints

Flood discharge is considered as a random variable X, which ranges from 0 to infinity. Its
probability distribution function (PDF) and cumulative distribution function (CDF) are denoted as f (x)
and F(x), respectively, where x is a specific value of X. Since constraints encode the information that
can be given for the random variable, following Singh [12], the constraints for the GG distribution can
be expressed as:

∞∫
0

f (x)dx = 1 (2a)

∞∫
0

f (x) ln xdx = E(ln x) (2b)

∞∫
0

f (x)xqdx = E(xq) (2c)

The first constraint is the total probability law, the second constraint is the mean of log values or
the geometric mean, and the third constraint is the mean of values raised to a power q or log of scaled
values raised to a power and then shifted by unity.

2.2.2. Maximization of Entropy Using the Method of Lagrange Multipliers

The Shannon entropy of X, H(X), can be expressed as [13]:

H(X) = −
∞∫

0

f (x) log f (x)dx (3)

The f (x) can be obtained by maximizing the Shannon entropy subject to given constraints in
accord with the principle of maximum entropy (POME). Following Singh [14,15], maximization of
Equation (3), subject to Equation (2a) to (2c), using the method of Lagrange multipliers leads to:

f (x) = exp(−λ0 − λ1 ln(x)− λ2xq) (4)

where λ0, λ1, λ2 are the Lagrange multipliers that are not known.

2.2.3. Relation between Lagrange multipliers and parameters

Substitution of Equation (4) in Equation (2a) yields:

∞∫
0

f (x)dx =

∞∫
0

exp(−λ0 − λ1 ln(x)− λ2xq)dx = 1 (5)

Equation (5) can be expressed as:

exp(λ0) =

∞∫
0

x(−λ1) exp(−λ2xq)dx (6)

Let t = λ2xq. Then x = ( t
λ2
)

1
q , and dx = 1

qλ2
( t

λ2
)

1
q−1dt. Then Equation (6) can be expressed as:

exp(λ0) =

∞∫
0

1
q
(

1
λ2

)

−λ1+1
q

t
−λ1+1

q −1 exp(−t)dt =
1
q
(

1
λ2

)

−λ1+1
q

Γ(
−λ1 + 1

q
) (7)
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Substitution of Equation (7) in Equation (4) yields:

f (x) = exp(−λ0 − λ1 ln(x)− λ2xq) =
qλ2

−λ1+1
q

Γ(−λ1+1
q )

x(−λ1) exp(−λ2xq) (8)

Let −λ1+1
q = r1

r2
, and λ2 = ( 1

β )
r2 . Then, r2 = q, and r1 = −λ1 + 1. Equation (8) can now be

written as:

f (x) =
r2(

1
β )

r2
r1
r2

Γ( r1
r2
)

x(r1−1) exp(−( 1
β
)

r2

xr2) =
r2

βΓ( r1
r2
)
(

x
β
)
(r1−1)

exp(−( x
β
)

r2
) (9)

Equation (9) is the same as the generalized gamma distribution given by Equation (1). Hence, the
relation between Lagrange multipliers and distribution parameters are given by:

q = r2

λ1 = 1− r1

λ2 = β−r2

(10)

2.2.4. Relation between Lagrange Multipliers and Constraints

Since the Lagrange multiplier λ0 can be expressed by Equations (6) and (7), the set of equations
can be used to obtain λ0:

λ0 = ln(
∞∫

0

exp(−λ1 ln(x)− λ2xq)dx) (11a)

λ0 = − ln q +
λ1 − 1

q
ln(λ2) + ln Γ(

1− λ1

q
) (11b)

Differentiation of Equation (11a) with respect to λ1 and λ2 yields:

∂λ0
∂λ1

=

∞∫
0

ln x exp(−λ1 ln(x)−λ2xq)dx

∞∫
0

exp(−λ1 ln(x)−λ2xq)dx
= −E(ln x)

∂λ0
∂λ2

=

∞∫
0

xq exp(−λ1 ln(x)−λ2xq)dx

∞∫
0

exp(−λ1 ln(x)−λ2xq)dx
= −E(xq)

(12)

Defining b = 1−λ1
q , and differentiating Equation (11b) with respect to λ1 and λ2, we obtain:

{
∂λ0
∂λ1

= 1
q ln λ2 − 1

q ∂
ln Γ(b)

∂b = 1
q ln λ2 − 1

q ϕ(b)
∂λ0
∂λ2

= 1
λ2

λ1−1
q = −b

λ2

(13)

where ϕ(•)is a digamma function.
Based on Equations (12) and (13), the relation between Lagrange multipliers and constraints can

be expressed as: {
∂λ0
∂λ1

= 1
q ln λ2 − 1

q ϕ(b) = −E(ln x)
∂λ0
∂λ2

= −b
λ2

= −E(xq)
(14)
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Since there are three parameters, Equations (13) and (14) are not sufficient for calculating all the
parameters, and one additional equation is therefore needed which is given as:

∂2λ0

∂2λ1
=

1
q2 ϕ′(b) = var(lnx) (15)

2.2.5. Relation between Parameters and Constraints

Based on the relation between parameters and constraints and between parameters and Lagrange
multipliers, the relation between parameters and constraints can be expressed as:

1
r2

ln(β−r2)− 1
r2

ϕ( r1
r2
) = −E(ln x)

βr2 r1
r2

= E(xr2)
1

r2
2 ϕ′( r1

r2
) = var(ln x)

(16)

where ϕ(•) is the digamma function; ϕ′(•) is the tri-gamma function. For a given data set X, the E(lnx)
and var(lnx) can be calculated directly. There are three parameters and three equations in Equation
(16). Therefore, this set of nonlinear functions can be solved by the widely used Newton iteration
method (Deuflhard, [16]) for parameter estimation. The initial value of the three parameters are set to
(1, 1, 1). After multiple iterations, the optimal parameters can be obtained.

3. The Descriptive Ability of GG Distribution

Annual maximum (AM) flood peak data from 10 gauging stations, namely sites 1 to 10, were
selected (Table 1). These ten stations are selected due to their diversity of statistical properties and
climate types (arid, semi-arid and humid).

Table 1. Statistics of annual maximum flood data series for 10 sites.

Site No. Gauging Station Period Cv Cs Ck

1 Rogue River at Raygold near Central Point, US 1906–2001 0.67 1.94 5.66
2 Quinault River at Quinault Lake, US 1912–2001 0.40 0.52 −0.6
3 Eel R A Scotla, US 1911–2001 0.51 0.61 −0.44
4 White River Near Meeker, US 1910–2001 0.34 0.65 0.77
5 Yellowstone River at Corwin Springs, US 1890–2001 0.30 0.66 0.59
6 Genesee River at Portageville, US 1909–2001 0.48 2.93 15.67
7 White River Near Meeker, US 1910–2001 0.34 0.65 0.77
8 Brokenstraw Creek at Younsville, US 1910–2001 0.33 0.75 0.65
9 Danjiangkou reservior at Danjiangkou, China 1929–2014 0.56 0.95 1.57
10 Geheyan reservior at Changyang, China 1951–2005 0.42 1.34 3.34

Besides AM series, partial-duration series can be also employed for the POME method. In this
study, the AM series was considered since it is more widely used. The GG distribution was employed
to fit the AM series of the 10 sites. The distribution parameters were estimated using Equations (16).
The fitted GG distribution and the empirical frequency distribution of the AM series from sites 1, 5, 6
and 8 are shown in Figures 2–5. These four sites are selected because sites 5 and 8 have low skews,
site 1 has moderate skew and site 6 has high skew, the cumulative distributions and histograms of
AM series fitted by GG distribution for these sites can be representative. The line represents the fitted
distribution and point represents the empirical frequencies of observations. Results show that the GG
distribution fitted the empirical data well. Histograms of the AM flood peak series fitted by the GG
distribution for the four sites are also shown in Figures 2–5 which also show that the GG distribution
fitted the empirical histograms well. The skewness coefficient of AM series of sites 1, 5, 6 and 8 was
1.94, 0.66, 2.93 and 0.75, respectively, which showed that the GG distribution described both low and
high skewed data well.
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Several distributions, including normal (NM), exponential (EXP), generalized logistic (GLO),
gamma (GM), generalized Pareto (GPA), Gumbel (GB), Weibull (WB), P3, GEV and LP3 distributions,
in which the parameters of EXP, GLO, GM, GPA, GB, WB, P3, GEV distributions were estimated by the
L-moment method (LM) [11,17], while the parameters of NM and LP3 distributions were estimated
by MM [18,19]. These FFA models were also fitted to the AM series for the 10 sites and the values of
RMSE and AIC were computed for each model using Equations (17) and (18) and listed in Table 2.

RMSE =

√√√√√ n
∑

i=1

(∧
P(i)− P(i)

)2

n
(17)

AIC = n

(
ln

(
1
n

n

∑
i=1

(∧
P(i)− P(i)

)2
))

+ 2K (18)

where n denotes the sample size, K is the number of parameters of the distribution,
∧
P is the theoretical

non-exceedance probability calculated by the distribution, and P is the empirical non-exceedance
probability. Root mean square error (RMSE) is a frequently used measure of the differences between
values (sample and population values) predicted by a model or an estimator and the values actually
observed. The smaller RMSE values represent the better performance of the model. The Akaike
information criterion (AIC) is a measure of the relative quality of statistical models for a given set of
data. It also includes a penalty that is an increasing function of the number of estimated parameters.
Given a set of candidate models for the data, the preferred model is the one with the minimum
AIC value.

Table 2 illustrates that for sites 1, 2, 4, 5, 8, 9 and 10, the GG distribution had the smallest RMSE
values, which means the GG distribution fitted the observed AM data best. In addition, the GG
distribution had the smallest AIC values for sites 2, 5, 8, and 10. Table 2 also indicates that the average
RMSE and AIC values of GG distribution are the smallest among all the compared distributions. Thus,
the GG distribution performs better than other distributions.
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Table 2. The RMSE and AIC values of different flood frequency analysis distributions.

Model
Site 1 Site 2 Site 3 Site 4 Site 5 Mean Value

RMSE AIC RMSE AIC RMSE AIC RMSE AIC RMSE AIC RMSE

GG-POME 0.016 −508.12 0.028 −417.67 0.023 −430.63 0.021 −462.6 0.013 −578.63 0.020
NM-MM 0.078 −258.88 0.047 −306.32 0.048 −316.43 0.037 −394.91 0.038 −407.87 0.053
EXP-LM 0.021 −468.96 0.056 −273.3 0.054 −218.65 0.069 −244.39 0.058 −286.44 0.054
GLO-LM 0.025 −446.68 0.046 −303.81 0.035 −362.47 0.021 −474.16 0.015 −560.19 0.027
GM-LM 0.029 −447.1 0.032 −362.45 0.021 −447.48 0.021 −467.06 0.017 −550.61 0.027
GPA-LM 0.019 −504.1 0.029 −413.67 0.021 −444.15 0.042 −346.33 0.036 −389.21 0.030
GB-LM 0.039 −386.64 0.036 −343.98 0.025 −421.83 0.024 −430.95 0.015 −530.05 0.031
WB-LM 0.017 −522.29 0.029 −372.34 0.019 −459.48 0.025 −441.45 0.019 −515.48 0.024
P3-LM 0.016 −533.04 0.033 −351.64 0.023 −434.97 0.021 −468.95 0.015 −561.44 0.024

GEV-LM 0.019 −495.44 0.034 −347.79 0.025 −419.06 0.021 −472.43 0.014 −572.29 0.022
LP3-MM 0.016 −528.15 0.028 −376.18 0.021 −450.45 0.024 −451.6 0.016 −559.41 0.021

Site 6 Site 7 Site 8 Site 9 Site 10 Mean Value

RMSE AIC RMSE AIC RMSE AIC RMSE AIC RMSE AIC AIC

GG-POME 0.024 −427.53 0.021 −447.25 0.013 −562.19 0.021 −421.51 0.023 −269.84 −452.60
NM-MM 0.038 −407.87 0.113 −198.3 0.035 −400.26 0.046 −313.47 0.051 −210.33 −321.46
EXP-LM 0.058 −286.44 0.04 −373.78 0.059 −271.25 0.064 −233.3 0.061 −150.65 −280.72
GLO-LM 0.033 −377.21 0.014 −520.86 0.023 −449.16 0.031 −368.25 0.023 −267.35 −413.01
GM-LM 0.038 −393.42 0.046 −374.75 0.014 −541.17 0.023 −404.7 0.027 −264.86 −425.36
GPA-LM 0.024 −444.17 0.032 −359.81 0.025 −464.21 0.027 −384.59 0.044 −194.88 −394.51
GB-LM 0.033 −404.93 0.072 −282.68 0.019 −475.75 0.024 −406.35 0.024 −262.96 −394.61
WB-LM 0.022 −454.57 0.042 −312.87 0.013 −559.08 0.021 −429.65 0.030 −237.83 −430.50
P3-LM 0.022 −452.78 0.051 −275.86 0.014 −538.15 0.023 −419.04 0.027 −249.79 −428.57

GEV-LM 0.027 −411.21 0.021 −438.69 0.015 −525.05 0.024 −409.68 0.024 −260.26 −435.19
LP3-MM 0.026 −418.17 0.022 −450.08 0.014 −536.12 0.021 −426.08 0.026 −262.16 −445.84
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Table 2 also shows that the GG, P3, GEV, LP3 distributions gave quite similar performances for
most of the selected sites. However, it was observed that the GG distribution performed better at
several sites. For site 2, the RMSE values for the GG, P3, and GEV distributions were 0.028, 0.033 and
0.034, respectively. The AIC values were −417.67, −351.64 and −347.79, respectively. Thus, the GG
distribution performed much better than the P3 and GEV distributions for site 2. Compared with the
LP3 distribution, the GG distribution was more appropriate for sites 5 and 7. For site 5, the RMSE
and AIC values for the LP3 distribution (GG distribution) were 0.016(0.013) and −559.41 (−578.63),
respectively. For site 7, the RMSE and AIC values for the LP3 distribution (GG distribution) were
0.019(0.016) and −545.85 (−571.71), respectively. Thus, the GG distribution outperformed the LP3
distribution for those two sites. The above discussions shows that the GG distribution is either superior
or comparable to the commonly used distributions.

The maximum likelihood (ML) method was also employed for GG distribution and compared
with the proposed GG-POME model for site 5 (low skew) and site 6 (high skew). Figure 6 gives
comparisons of their probability density functions and indicates that the GG-POME model gives a
better performance. The RMSE and AIC values of GG-ML model for sites 5 and 6 were also calculated.
The RMSE and AIC values for the GG-ML (GG-POME) model are 0.023 (0.013) and −497.54 (−578.63),
respectively for site 5. And the RMSE and AIC values for the GG-ML (GG-POME) model are 0.032
(0.024) and −379.24 (−427.53), respectively for site 6. Therefore it may imply that GG-POME model
outperforms GG-ML model.
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4. Monte Carlo Simulation

The predictive ability of the GG distribution was evaluated using Monte Carlo simulation and
compared with that of the P3, GEV, and LP3 distributions. To test how well a candidate distribution
estimated the magnitude-return period relationship, a parent distribution which was not identical
to any of the candidate distributions was chosen. Cunnane [20] recommended that such a parent
distribution should be a Wakeby distribution with certain parameters. In this study, three kinds of data
sets were generated from the Wakeby distribution with parameters as shown in Table 3. The Wakeby
distribution has quantile function given as [21]:

x(F) = ξ +
α

β
(1− (1− F)β)− γ

δ
(1− (1− F)−δ) (19)

where F is the uniform (0, 1) variate; and ξ, α, β, γ, δ are the parameters.
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Table 3. Monte Carlo simulation data sets generated from the Wakeby distribution.

ξ α β γ δ Cv Cs

Case 1 30.4 114.2 11.3 19.2 −0.5 0.2 0.16
Case 2 15.4 308.8 10.25 38.5 −0.3 0.36 0.48
Case 3 23.5 198.6 3.7 109.2 −0.2 0.55 0.95

Then, the real quantile value QT was computed. S = 1000 samples with size n (n = 20, 50, 100)
were generated from each Wakeby distribution and fitted by the four distributions to estimate the
events of T = 10, 100 and 1000-year return periods. Table 4 lists the RB and RRMSE values computed
by each distribution using Equations (20) and (21):

RB =
1
S

S

∑
i=1

(
∧
QT)i −QT

QT
(20)

RRMSE =

√√√√ 1
S− 1

S

∑
i=1

(
(
∧
QT)i −QT

QT
)2 (21)

where QT is a given parent quantile, (
∧
QT)1 . . . (

∧
QT)S are the estimators for the samples generated

from the Wakeby distribution, and S is the number of Monte Carlo trials. The relative bias (RB) and
the relative root mean square errors (RRMSE) were used to evaluate the accuracy and efficiency of a
candidate model, respectively.

Table 4. Calculated RB and RRMSE values for different FFA distributions.

GG-POME P3-LM GEV-LM LP3-MM

RB RRMSE RB RRMSE RB RRMSE RB RRMSE

T = 10 −1.71 4.54 −1.21 3.64 −0.87 3.78 −0.89 4.07
n = 20 T = 100 6.11 7.95 4.6 9.26 4.89 9.31 2.56 8.84

T = 1000 2.02 6.46 2.29 9.08 5.11 10.84 4.15 10.03
T = 10 −1.32 2.73 −0.87 2.45 −0.75 2.43 −0.81 2.48

Case 1 n = 50 T = 100 5.53 6.5 4.38 6.28 6.12 8.02 4.25 6.77
T = 1000 1.85 4.9 0.02 6.73 2.87 8.1 0.65 7.31
T = 10 −1.06 1.82 −1.05 1.86 −0.72 1.84 −0.71 1.82

n = 100 T = 100 6.02 6.55 4.97 5.72 5.47 6.34 4.74 5.82
T = 1000 1.46 3.42 0.21 4.29 2.93 6.03 0.55 5.46

T = 10 −2.65 9.78 −0.82 9.78 −0.58 9.34 −0.35 14.78
n = 20 T = 100 1.93 10.23 2.25 16.85 3.64 19.23 5.97 39.86

T = 1000 3.59 14.18 8.69 24.29 16.48 34.45 11.62 44.85
T = 10 −1.93 8.44 −1.57 6.76 −1.76 6.21 −1.26 6.63

Case 2 n = 50 T = 100 1.66 7.55 1.76 10.27 1.37 10.74 −1.67 12.54
T = 1000 3.27 10.33 8.64 16.46 6.67 18.96 4.32 21.43
T = 10 −1.21 5.86 −1.18 4.73 −0.58 4.34 −0.86 4.52

n = 100 T = 100 1.94 5.87 1.37 6.24 0.87 7.52 −1.24 7.88
T = 1000 4.22 8.4 9.49 12.78 8.72 16.35 0.29 13.51

T = 10 −0.42 11.46 −0.58 13.43 −2.34 12.57 2.64 14.79
n = 20 T = 100 5.1 14 7.86 21.95 8.54 23.35 4.96 31.38

T = 1000 17.67 28.16 13.57 29.87 21.82 42.72 26.58 57.28
T = 10 -0.41 8.78 0.86 7.96 −1.25 7.38 1.78 8.67

Case 3 n = 50 T = 100 6.34 12.38 4.62 13.94 6.44 15.86 4.41 16.34
T = 1000 16.86 22.85 14.53 24.63 21.02 33.68 8.29 27.32
T = 10 −0.42 5.72 −0.87 5.87 −1.15 5.46 0.26 5.74

n = 100 T = 100 6.37 8.54 4.75 8.98 6.65 11.87 3.54 12.64
T = 1000 17.52 19.32 15.67 19.78 17.98 23.92 7.66 20.67
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From Table 4, generally for all distributions and for all cases, it was observed that the RB and
RRMSE values increased with the return period T. For a small return period (T = 10), the selected four
distributions exhibited very similar behaviors regardless of the sample size. For moderate and large
return periods (T = 100 and 1000), notable differences of RB and RRMSE values were observed. Thus, in
the latter discussion, we would mainly focus on moderate and high return period quantile estimators.

For case 1 (Cv = 0.2, Cs = 0.16), it was observed that the GG and P3 distributions were superior
to the GEV and LP3 distributions. When the sample size equaled 100 or 50, the P3 distribution
quantile estimators had the smallest RB values for both moderate and large return periods (T = 100 and
1000). But the GG distribution quantile estimators had smaller RRMSE values for T = 1000 than other
distributions. For a small sample size (n = 20), the GG distribution had the smallest RB and RRMSE
values for both moderate and large return periods (T = 100 and 1000). For T = 1000, the RRMSE values
of the GG, P3, GEV and LP3 distributions were 6.46, 9.08, 10.84 and 10.03, respectively. Apparently, the
GG distribution performed much better when the sample size was small. This indicates that the GG
distribution was more robust. Thus, for case 1, the P3 distribution was preferable when the sample
size was large than 50, while the GG distribution was more appropriate when sample size did not
exceed 50.

For case 2 (Cv = 0.36, Cs = 0.48), results indicated that for sample size n = 50 and n = 100, the
GEV distribution quantile estimators had the smallest RB values for T = 100 and the LP3 distribution
quantile estimators had the smallest RB values for T = 1000. However, their RRMSE values were quite
large and increased significantly when the sample sizes decreased. For T = 1000, when the sample
size decreased from 100 to 20, the RRMSE values of the GEV distribution rose from 16.35 to 34.45, and
the RRMSE values of the LP3 distribution rose from 13.51 to 44.85. While the RRMSE values of the
GG distribution rose slightly from 4.8 to 14.18. This was due to the poor accuracy of the GEV and LP3
distributions parameter estimators which had high variance for small sample sizes. In this case, the
GG distribution performed significantly better than the other three distributions. Its RB values were
quite small, and its RRMSE values were the smallest for all sample sizes and return periods. This was
a good indication of the robustness of the GG distribution for this case.

For case 3 (Cv = 0.55, Cs = 0.97), all distribution quantile estimators had quite large RB and RRMSE
values. For n = 50 and n = 100, RB and RRMSE of the GEV distribution were the highest, which
amounted to 21.02 and 33.68, respectively, for n = 50, T = 1000, while the GG distribution yielded 16.86
and 22.85, respectively. Also for n = 50 and n = 100, the LP3 distribution quantile estimators had the
smallest RB values for both T = 100 and T = 1000, and the other three distributions had similar RB
values. But the LP3 distribution gave the worst performance for small sample sizes (n = 20). Its RB and
RRMSE values were 26.58 and 57.28, respectively, for T = 1000, whereas the GG distribution yielded
17.67 and 28.16, respectively. In this case, the RB values of the GG distribution were comparable to the
P3 and GEV distributions, and were a little larger than the LP3 distribution for n = 50 and n = 100, the
RRMSE values of the GG distribution were the smallest for both moderate and large return periods
(T = 100 and 1000) regardless of the sample size. Also, when the sample size decreased from 100 to
20, the RB and RRMSE values of the GG distribution rose from 17.52 and 19.32 to 17.67 and 28.16,
respectively. This might imply that the distribution was less affected by sample size. Thus, the GG
distribution was superior to other distributions for this case. Therefore, the predictive ability of the
GG distribution was found to be comparable or superior to that of the other distributions, and it was
more robust since it was less affected by sample size, and therefore, estimated the magnitude-return
period relationships better.

5. T-Year Design Flood Calculation

The Danjiangkou reservoir lies in the upper Hanjiang basin and is the source of water for the
Middle Route Project under the South-to-North Water Transfer Scheme in China [22]. The Geheyan
reservoir, with a volume of 3.12 billion m3, plays an important role in management of Qingjiang
River [23]. Flood frequency analysis for these two sites was therefore considered in this study. The
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T-year design flood calculated by different FFA distributions at Danjiangkou Reservoir and Geheyan
Reservoir are listed in Table 5. Figures 7 and 8 compare frequency curves of different distributions at
these two reservoir sites.

Table 5 indicates that design flood for small return periods was similar for these four distributions.
However, significant differences were observed for large return periods. The 1000-year design
flood calculated by the GG and LP3 distributions at Danjiangkou Reservoir were 55,234 m3/s and
48,822 m3/s, respectively. And the 1000-year design flood calculated by the GEV and LP3 distributions
at Geheyan Reservoir were 15,746 m3/s and 13,877 m3/s, respectively.

Figure 7 indicates that the GG, P3, and GEV distributions had quite similar flood quantile
estimators for large return periods at Danjiangkou Reservoir. However, the 1000-year design flood
calculated by the LP3 distribution was smaller than by the other three distributions. Figure 8 indicates
that the 1000-year design flood calculated by the GEV distribution at Geheyan Reservoir was the
largest, and was the smallest for the LP3 distribution.

Table 5. Comparison of T-year design floods calculated by different FFA distributions at Danjiangkou
and Geheyan sites.

Site Model
Return Period (Year)

1000 500 100 50 10

GG-POME 55,234 51,432 42,204 38,803 27,398
Danjiangkou P3-LM 53,838 50,202 41,407 37,411 27,311

(m3/s) GEV-LM 55,369 51,490 42,054 37,785 27,217
LP3-MM 48,822 46,561 40,261 36,999 27,692

GG-POME 13,992 13,745 11,186 10,277 7957
Geheyan P3-LM 14,896 13,941 11,648 10,616 8039
(m3/s) GEV-LM 15,746 14,594 11,910 10,746 7991

LP3-MM 13,877 13,099 11,171 10,276 7963
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The design flood calculated by the GG distribution was quite close to that by the LP3 distribution.
Besides, the P3 distribution has been adopted in China as a uniform procedure for FFA [24,25]. Table 2
shows that RMSE and AIC values for the P3 distribution at Danjiangkou Reservoir were 0.023 and
−419.04, respectively, and the GG distribution yielded 0.021 and −421.51, respectively. The RMSE
and AIC values for the P3 distribution at Geheyan Reservoir were 0.027 and −249.79, respectively,
and the GG distribution yielded 0.023 and −269.84, respectively. Thus, the performance of the GG
distribution was better than that of the P3 distribution. Therefore, the design flood estimated by the
GG distribution would be preferable in practice.

6. Conclusions

In this study, the GG distribution with parameters estimated by POME was applied for FFA.
Ten gauging stations were selected as a case study to test the GG distribution. Frequency estimates
from the GG distribution were also compared with those of commonly used distributions. A Monte
Carlo simulation study was carried out to evaluate the predictive ability of the GG distribution
and compare it with other distributions. In addition, some characteristics of frequency curves at
Danjiangkou Reservoir and Geheyan Reservoir were evaluated. The following conclusions are drawn
from this study:

(1) The GG distribution is appealing for FFA. The cumulative distributions and histograms show
that the GG distribution can fit both low and high skewed data well.

(2) The parameters estimated by POME are found reasonable. Both the marginal distributions and
histograms indicates that the GG distribution with so estimated parameters can successfully be
fitted to empirical values.

(3) The performance of the GG distribution is comparable or superior to that of the other distributions.
Results illustrate that for sites 1, 2, 4, 5, 8, 9 and 10, the GG distribution has the smallest RMSE
values. In addition, the GG distribution has the smallest AIC values for sites 2, 5, 8, and 10. Thus,
the GG distribution is preferred to other distributions for those sites. Furthermore, the GG, P3,
GEV, and LP3 distributions give similar performance for most of the selected sites. However, the
GG distribution fits better than them for a few sites.
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(4) The predictive ability of the GG distribution is found to be comparable or superior to widely
accepted distributions. The GG distribution performs significantly better than the other three
distributions when sample sizes are small. Thus it is less effected by sample size and is
more robust.
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