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Abstract: Entropy methods enable a convenient general approach to providing a probability
distribution with partial information. The minimum cross-entropy principle selects the distribution
that minimizes the Kullback–Leibler divergence subject to the given constraints. This general principle
encompasses a wide variety of distributions, and generalizes other methods that have been proposed
independently. There remains, however, some confusion about the breadth of entropy methods
in the literature. In particular, the asymmetry of the Kullback–Leibler divergence provides two
important special cases when the target distribution is uniform: the maximum entropy method and
the maximum log-probability method. This paper compares the performance of both methods under
a variety of conditions. We also examine a generalized maximum log-probability method as a further
demonstration of the generality of the entropy approach.

Keywords: entropy; minimum cross entropy; joint probability distribution

1. Introduction

Estimating the underlying probability distribution of the decision alternatives is an essential
step for every decision that involves uncertainty [1]. For example, when making investments, the
distribution over profitability is required, and when designing an engineered solution, the probability
of failure for each option is required.

The method used for constructing a joint probability distribution depends on the properties of the
problem and the information that is available. When all the conditional probabilities are known, Bayes’
expansion formula provides an exact solution. The problem becomes more challenging, however,
when incomplete information or computational intractability necessitate the use approximate methods.
Maximum likelihood estimation, Bayesian statistics [2], entropy methods [3], and copulas [4] are among
the methods for estimating the parameter(s) underlying the distribution or the distribution itself.

Edwin Jaynes [3] proposed the minimum cross-entropy method as a means to determine prior
probabilities in decision analysis. Entropy methods rely on the optimization of an objective function
where the objective is the Kullback–Leibler divergence. The available information is incorporated in
the form of constraints in the optimization problem. Both directions of the cross-entropy method are
widely used in decision analysis particularly in aggregating expert opinion [5].

Multiple distributions are enabled by such entropy methods, leading to confusion in some parts
of the literature about the applicability and generality of the entropy approach. For example, in some
recent literature, [6] criticizes entropy methods and proposes maximizing the sum of log-probabilities
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(MLP) as a better alternative, without acknowledging that MLP is a special case of the minimum
cross-entropy principle. As we shall see, even generalizations of the MLP method are special cases of
entropy methods.

Given this observation, this paper seeks to clarify the relationship between the maximum entropy
(ME) and the maximum log-probability (MLP) methods. It is well known that ME is a special case of
cross entropy in which the target distribution is uniform [3,7]. We also highlight that the MLP method
is a special case of minimum cross entropy (MCE) with a uniform posterior distribution. Thus, not
only are the ME and MLP methods both entropy formulations, they are also both instantiations of
minimum cross-entropy when a uniform distribution is involved. This paper first reviews the analytic
solutions in both directions that highlight this relationship, providing much needed clarification.

In light of the close relationship between the ME and MLP methods, it is important to understand
the properties of the methods to support the appropriate application of each. Thus, the second
motivation of this paper is to characterize the consequences of using one method versus the other and
the error that may result in each case. A simulation method is developed to quantify this error. This
paper then derives insights on the performance of ME and MLP methods based on the numeric results.
Finally, the third motivation of this paper is an examination of the geometric properties of the solutions
to the ME and MLP methods to further distinguish the two.

The results of this paper are important given the wide applicability of the ME and MLP methods.
ME methods are used to approximate in cases of univariate distributions [8], bivariate distributions [9],
and in cases with bounds on the distribution [10]. The method has also found applications to utility
assessments in decision analysis [11]. The MLP method, on the other hand, has also received attention
in the literature with applications to parameter estimation [12] and optimization [13].

The analysis of this paper is predicated on understanding entropy methods, including the
formulations for the ME and MLP methods. Thus, the paper begins with background information on
the relevant entropy methods showing that MLP method is a special case of minimum cross entropy
in Section 2. Then, we use a numeric example to highlight conditions under which each method
outperforms the other in Section 3. We examine generalizations in Sections 4 and 5 and geometric
properties of the solutions in Section 6. Finally, Section 7 concludes.

2. Background Information: Entropy Methods

2.1. The Minimum Cross Entropy (MCE) Problem

Cross entropy is a measure of the relatedness of two probability distributions, P and Q. It can be
leveraged through the principle of minimum cross entropy (MCE) to identify the distribution P that
satisfies a set of constraints and is closest to a target distribution Q, where the “closeness” is measured
by the Kullback–Leibler divergence [14,15]. For a discrete reference distribution Q estimated with
discrete distribution P, the Kullback–Leibler divergence is:

K(P : Q) =
n

∑
i=1

p(xi) log
p(xi)

q(xi)
(1)

where p(xi) and q(xi) represent the probabilities for outcomes i = 1, . . . , n, of distributions P and Q
respectively [14,15]. The measure is nonnegative and is equal to zero if and only if the two distributions
are identical.

Importantly, the Kullback–Leibler divergence is not symmetric. It does not satisfy the triangle
inequality, and K(P : Q) and K(Q : P) are not generally equal. Hence, depending on the direction
of its objective function, the MCE problem can produce different results [16]. This property leads
the Kullback–Leibler divergence to also be called the directed divergence. The solution to the MCE
problem depends on the direction in which the problem is solved.
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We use the notation P1
CE to indicate the forward direction of the problem, i.e., Direction (1), where

the goal is to minimize the divergence of the MCE distribution P = {p(xi), i = 1, . . . , n} from a known
target distribution Q = {q(xi), i = 1, . . . , n}. In this direction, the problem formulation is:

P1
CE
∗ : argmin

n
∑

i=1
p(xi) log p(xi)

q(xi)

Subject to
∑xi

p(xi) = 1
∑xi

f j(xi)p(xi) = µj j ∈ J
p(xi) ≥ 0

(2)

We use the notation P2
CE to indicate the second direction, i.e., Direction (2), which is the reverse

problem. The distribution P = {p(xi), i = 1, . . . , n} is the target distribution for which the parameters
are unknown. This reverse direction is a special case of the maximum likelihood problem and is
formulated as:

P2
CE
∗ : argmin

n
∑

i=1
q(xi) log q(xi)

p(xi)

Subject to
∑xi

p(xi) = 1
∑xi

f j(xi)p(xi) = µj j ∈ J
p(xi) ≥ 0

(3)

The analytic solution of the MCE problem is known; it is a convex optimization solved using
Lagrangian multipliers [16]. The solution for the minimum cross-entropy formulation in direction (1),
P1

CE
∗ has an exponential form [16]:

P1
CE
∗
(xi) = q(xi)e

−1−λ0−∑j∈J λj f j(xi) (4)

where λ0 and λj are the Lagrangian multipliers associated with the unity and j-th constraint. Refer to
Appendix A for the calculations.

Thus, the solution in the reverse direction, P2
CE
∗, has an inverse form:

P2
CE
∗
(xi) =

q(xi)

λ0 + ∑j∈J λj f j(xi)
(5)

where λ0 and λj are the Lagrangian multipliers associated with unity and the j-th constraint,
respectively. Refer to Appendix A for the calculations.

Next, we use these analytic solutions to examine the relationship between MCE and the ME and
MLP methods and show how MCE relates the two.

2.2. The Maximum Entropy (ME) Method

The ME method is an entropy approach that identifies the distribution with the largest entropy
among the set of distributions that satisfy constraints imposed by known information [17,18].
The classic ME formulation uses Shannon’s entropy as the objective function [18]. Then, for a
discrete random variable X, the maximum entropy distributionP∗ME is the solution to the following
optimization problem:

P∗ME : argmax−∑xi
p(xi) log(p(xi))

∑xi
p(xi) = 1

∑xi
f j(xi)p(xi) = µj, j ∈ J

p(xi) ≥ 0

(6)
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In this notation, f j(xi) are the moment functions, and p(xi) indicates the probability of the outcome
X = xi. The constraints in (6) are imposed by unity and by the known moment which represent the
known information.

A well-known result is that the ME method is the special case of MCE in which the target
distribution is uniform [3,7]. This fact is shown by solving the ME problem and obtaining:

P∗ME(xi) = e1−λ0−λ1xi (7)

where λ0 and λj are the Lagrangian multipliers associated with the first two constraints. Notice
that replacing q(xi) from the MCE solution in the forward direction (Equation (4)) gives a result that
matches Equation (7). These matching solutions show that ME is the special case of MCE with a
uniform target distribution Q. The calculations to solve (6) are in Appendix A.

2.3. The Maximum Log-Probability (MLP) Method

The MLP method is similarly based on an optimization. In this formulation, however, the objective
function is the maximum of a log-probability function. Thus, the MLP distribution is:

P∗MLP : argmax ∑xi
log(p(xi))

∑xi
p(xi) = 1

∑xi
f j(xi)p(xi) = µj j ∈ J

p(xi) ≥ 0

(8)

Then, the solution for the MLP method with mean and unity constraints can be written as:

P∗MLP : p(xi) =
1

λ0 + xiλ1
(9)

Notice that replacing q(xi) from the MCE solution in the reverse direction in Equation (5) gives a
result that matches Equation (9). These matching solutions show that the MLP method is the special
case of MCE in which the posterior distribution P is uniform. We also wish to highlight that the
analytic center method proposed by Sonnevand [19] has been used in conjunction with MLP [6].

The results in this section illuminate the relationship between the ME and MLP methods; they are
both instantiations of MCE and simply represent different directions of the problem.

3. Simulation to Quantify Error Based on the Underlying Distribution

Given the clarification that shows the similarity between the ME and MLP methods, it is important
to understand how the methods are different in order to discern, if possible, the cases in which one
method is preferable to the other. Comparing the functional forms of the solutions (7) and (9) is a
starting point for discerning differences. We suspect that the ME method performs better when the
underlying probability distribution has an exponential form, whereas the MLP method performs better
when the underlying distribution is a rational probability mass function. This section investigates the
role of the underlying distribution on method performance.

We design a simulation-based approach to study the performance of the two methods for different
probability distribution functions. Generating numerical examples from target distributions facilitates
the evaluation of the performance of these two methods in approximating the probability distribution
for different distribution functions. Based on the functional forms of their solutions, we consider two
distribution families:

1. Discretized exponential family distribution: f (X) = 1
L eλT X

2. Discretized inverse family distribution: f (X) = 1
L

1
λT X
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Term L is the normalizing factor, X is the vector of random variables, and λ is the vector of
parameters. For our study, we generate a test distribution belonging to one of the two mentioned
families. Then we solve the ME and MLP problem using the desired information (mean). We consider
a simple univariate discrete case.

3.1. Simulation Steps

We assume that the underlying random variable X is discrete, with 20 outcomes: X = {1, . . . , 20}
and follows either a discretized exponential or a discretized inverse distribution. The Monte Carlo
simulation is run 1000 times, with each run containing the following steps:

1. The outcomes for X are generated: {1, . . . , 20}.
2. The coefficients for the desired functional form are randomly generated: a, b, c ∈ [0, 1].
3. The probabilities for each outcome are calculated based on the generated coefficients.
4. The given probabilities are normalized such that they sum to one.
5. The mean for the sampled data points is calculated.
6. The optimization problems are solved for P∗ME and P∗MLP.
7. The Kullback–Leibler divergence and the total variation are calculated for each approximation.

In Step 7, the Kullback–Leibler divergence and total variation are calculated in order to serve
as performance measures for both methods. The total variation is the sum of absolute differences
between the original and estimated distribution for each outcome:

n

∑
i=1
|p(xi)− q(xi)| (10)

The results for the simulation are presented in the following two subsections. Note that in Step
1, functions of different orders may be used, and that in Step 6, the optimization can be solved with
different constraints. We first report results when using a first order distribution and a constraint on
the mean only, and then we present results with a second order distribution and constraints on both
the mean and the second moment.

3.2. Results with a Discretized Exponential Distribution

We first examine the simulation results when the underlying distribution is a discretized
exponential distribution specified by

f (x) =
1
L

e−ax−b (11)

This function is similar to the exact solution of the ME method. We expect that the ME method
performs better with respect to the average divergence measures when using this function. Note that L
is the normalizing function, where:

L =
20

∑
x=1

e−ax−b (12)

The results of the simulation for both the ME and MLP methods are reported in Table 1. As we
expected, the ME method performs better in approximating this distribution as shown by the deviation
measures that are several orders of magnitude smaller than the deviation measures for the MLP
method. The solution of the ME method has exactly the same form as the underlying distribution,
making this method more precise in recovering it.
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Table 1. Univariate first order exponential function with 20 outcomes.

Divergence Measure MLP vs. Simulated Distribution ME vs. Simulated Distribution

K–L Divergence Avg. Deviation:
0.315

Standard Deviation:
0.164

Avg. Deviation:
6× 10−6

Standard Deviation:
1.12 × 10−5

Total Deviation Avg. Deviation:
0.588

Standard Deviation:
0.231

Avg. Deviation:
0.0001

Standard Deviation:
0.0002

The second order exponential function is the exact solution for the ME method with mean and
variance constraints:

f (x) =
1
L

e−ax2−bx−c (13)

But for consistency of the comparison, we use both the ME and MLP methods with mean and
second moment constraints only. Although the solution from the ME method has an exponential form,
they are not exactly the same here. However, we expect that the ME method performs better. The results
in Table 2 confirm this expectation; the ME method produces significantly smaller divergence measures.

Table 2. Univariate second order exponential function with 20 outcomes.

Divergence Measure MLP vs. Simulated Distribution ME vs. Simulated Distribution

K–L Divergence Avg. Deviation:
0.093

Standard Deviation:
0.069

Avg. Deviation:
5.54 × 10−8

Standard Deviation:
2.46 × 10−7

Total Deviation Avg. Deviation:
0.342

Standard Deviation:
0.183

Avg. Deviation:
2.12 × 10−5

Standard Deviation:
5.88 × 10−5

3.3. Results with a Discretized Inverse Distribution

Inverse functions have a similar expression to the solution of the MLP method. We explore the
possibility that the MLP method performs better with respect to the divergence measures by repeating
the simulation when sampling from the following discretized inverse function:

f (x) =
1
L

1
ax + b

(14)

In this scenario, as expected, the MLP method outperforms the ME method in regard to the
divergence measures. Table 3 summarizes the results for the simulation.

Table 3. Univariate first order rational function with 20 outcomes.

Divergence Measure MLP vs. Simulated Distribution ME vs. Simulated Distribution

K–L Divergence Avg. Deviation:
4.19× 10−12

Standard Deviation:
1.51× 10−11

Avg. Deviation:
0.034

Standard Deviation:
0.017

Total Deviation Avg. Deviation:
1.18 × 10−6

Standard Deviation:
1.98× 10−6

Avg. Deviation:
0.218

Standard Deviation:
0.069

We conclude the numerical examples by reporting the simulation results for the second order
discretized inverse distribution function:

f (x) =
1
L

1
ax2 + bx + c

(15)

Similar to the discretized exponential example, we use both the mean and the second moment
constraints since the order for random variable X has increased. The solution for the MLP method
resembles the test distribution function although they are not the same. As expected, the MLP method
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performs better than the ME method with respect to the performance measures defined. The numerical
results reported in Table 4 show this comparison clearly.

Table 4. Univariate first-order rational function with 20 outcomes.

Divergence Measure MLP vs. Simulated Distribution ME vs. Simulated Distribution

K–L Divergence Avg. Deviation:
3.93 × 10−14

Standard Deviation:
1.31× 10−13

Avg. Deviation:
0.0027

Standard Deviation:
0.0014

Total Deviation Avg. Deviation:
1.39 × 10−7

Standard Deviation:
1.69 × 10−7

Avg. Deviation:
0.059

Standard Deviation:
0.017

The results discussed in this section confirm the conjecture that the underlying functional form,
whether exponential or inverse, affects the performance of the ME method and the MLP method, and
represents an important difference between the methods. Neither method outperforms the other in
all cases. The ME method performs better when dealing with an exponential distribution function,
whereas the MLP method performs better in the case of an underlying inverse function.

4. Simulation to Quantify Error Based on the Target Distribution

The results in the previous section suggest that the functional form of the underlying distribution
plays an important role in selecting the direction of the MCE problem. In this section, we further
differentiate the ME and MLP methods by examining the role of the target distribution. Specifically,
we examine (i) whether the functional form of the target distribution affects the precision of the
approximations and (ii) under which target functions the ME and MLP solutions get closer together or
farther apart.

Assuming the general MCE problem, we consider two possible directions, calling them Direction
(1) and Direction (2):

P1
CE : argmin

n

∑
i=1

p(xi) log
p(xi)

q(xi)
(16)

P2
CE : argmin

n

∑
i=1

q(xi) log
q(xi)

p(xi)
(17)

Our goal is to investigate the role of the functional form of the target distribution
Q = {q(xi)|i = 1, . . . , n}. We accomplish this goal with a simulation that recovers a distribution
using different functional forms for the target distributions and that solves the CME problem in both
directions, as described in the next section.

4.1. Simulation for the Role of the Target Distribution

We use uniform sampling with the simplex method [20] to generate the test distribution P.
We reconstruct the distribution P with a different target distribution Q = {q(xi)|i = 1, . . . , n} at each
run, using the uniform, inverse, or exponential distribution. The underlying random variable X is
assumed to be discrete with outcomes X = {1, . . . , 20}.

We run the Monte Carlo simulation 10,000 times. Each run of the simulation contains the
following steps:

1. The outcomes for X are generated: {1, . . . , 20};
2. The test distribution is generated using uniform sampling on the simplex. This represents a

general case for the underlying distribution;
3. The mean, µ, for the test distribution is calculated as an input for the optimization model;
4. The µ calculated in Step 3 is used for the target distribution of the inverse and the exponential

forms: a = 1/µ;
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5. The second coefficient, the constant term, for the discretized exponential and the inverse function
is randomly generated: b ∈ [0, 1];

6. The optimization problems are solved for P1
CE and P2

CE;
7. The Kullback–Leibler divergence and the total deviation are calculated for each approximation.

We also calculate the Euclidean norm between the solutions P1
CE and P2

CE for each
target distribution:

‖ P1
CE − P2

CE ‖2 (18)

This value indicates the difference between the solutions from each direction when the target
function is fixed and enables us to find the distributions for which they are closest/farthest.

4.2. Results of Uniform Sampling on the Simplex

Uniform sampling over the simplex generates a test distribution without providing any
information about the shape of the distribution function. It seems an appropriate sampling method to
compare the solutions of MCE problem in two different directions. Table 5 summarizes the results
for Direction (1) of the MCE problem. Each column represents the deviation measures for different
target distributions Q, used to reconstruct the test distribution P. Table 5 shows the results for the
MCE method in Direction (1), and Table 6 summarizes results of Direction (2).

The results in both Tables 5 and 6 show that there is not much difference in using different target
distributions. When the underlying distribution is sampled using uniform sampling on the simplex,
the information about the shape of the function is not available. Using the MCE method to recover
this general distribution, whether using a uniform, a discretized exponential, or a discretized inverse
distribution, does not result in a significant difference.

Table 5. Comparison of different target functions in Direction (1).

Divergence Measure (1) with Exponential Target (1) with Inverse Target (1) with Uniform Target (1) with Uniform
Sampling Target

K–L Divergence Average: 0.5153
Standard Deviation: 0.175

Average: 0.522
Standard Deviation: 0.179

Average: 0.515
Standard Deviation: 0.1754

Average: 0.889
Standard Deviation: 0.319

Total Deviation Average: 0.6944
Standard Deviation: 0.108

Average: 0.699
Standard Deviation: 0.110

Average: 0.694
Standard Deviation: 0.108

Average: 0.948
Standard Deviation: 0.156

Table 6. Comparison of different target functions in Direction (2).

Divergence Measure (2) with Exponential Target (2) with Inverse Target (2) with Uniform Target (2) with Uniform
Sampling Target

K–L Divergence Average: 0.530
Standard Deviation: 0.181

Average: 0.545
Standard Deviation: 0.194

Average: 0.514
Standard Deviation: 0.175

Average: 0.886
Standard Deviation: 0.320

Total Deviation Average: 0.708
Standard Deviation: 0.114

Average: 0.718
Standard Deviation: 0.1205

Average: 0.693
Standard Deviation: 0.109

Average: 0.947
Standard Deviation: 0.156

The direction in which the MCE problem is solved also seems irrelevant as the results are very
close for each target distribution. This observation suggests that the MLP and ME methods perform
close to each other when there is no information regarding the underlying distribution other than the
mean. This result contrasts with the results of Section 3 that show the performance of each method is
different when the shape of the distribution function is known.

We also compute the Euclidean norm between the solutions of the two directions of the MCE
problem, P1

CE and P2
CE for each target distribution. The results are reported in Table 7 and show

that the distance between the two directions is much smaller when the target distribution is uniform.
However, the distance increases if the target distribution is randomly assigned, such as when it is
uniformly sampled over the simplex.
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Table 7. Euclidean distance of solutions of both directions.

Euclidean Norm Exponential Inverse Uniform Uniform Sampling

Uniform sampling
Test distribution

0.0419
(0.028)

0.033
(0.0337)

0.0056
(0.0087)

0.204
(0.0393)

Although the distance when the target distribution is exponential or inverse is larger than when
the target distribution is uniform, they are still close to each other. This result reiterates the previous
result: the MCE method performs similarly in both directions if there is no information other than the
mean. A question that remains to be answered is whether this conjecture will hold if the information
from higher moments is added to the MCE optimization. The next section examines this question.

5. The Generalized Maximum Log-Probability Method

The analytic solutions in Section 2 show that the MLP method is an instantiation of the more general
MCE principle and raises the question of whether it is possible to improve the performance of the MLP
method by using it in this more general scheme. We investigate this question. Specifically, we are interested
in the case when the underlying distribution is a discretized exponential distribution. The numerical
example in Section 3 shows that the ME method performs better than the MLP method in this case.

We use the Monte Carlo simulation described in Section 4.1. The underlying distribution is
generated using the method described in Section 3 with the following format:

p(xi) =
1
L

e−axi−b (19)

The coefficients for the this function are generated at random: a, b ∈ [0, 1]. We then use the MCE
method in the reverse direction:

P2
CE : argmin

n

∑
i=1

q(xi) log
q(xi)

p(xi)
(20)

with the unity constraint and mean constraint. To generalize the MLP method, the target distribution
Q is chosen from the exponential family rather than the uniform distribution. Precisely,

q(xi) =
1
L′

e−a′xi−c (21)

where a′ = 1/µ, µ is the mean (available information), and c ∈ [0, 1]. The result of the Monte Carlo simulation
indicates that the performance of the generalized MLP method is better than the MLP method itself.

The results are shown in Table 8. When comparing the results of Table 8 to those of Table 1, we
notice that the ME method still performs better than both the generalized and regular MLP methods.
However, the performance of the generalized MLP method improves significantly in comparison to
the regular MLP method, both in terms of the Kullback–Leibler divergence and the total deviation.
This result suggests that the performance of the MLP method can be improved using the generalized
form with a proper target distribution.

Table 8. Performance of MLP vs. generalized MLP methods.

Divergence Measure MLP Method ME Method

K–L Divergence Avg. Deviation:
0.314

Standard Deviation:
0.164

Avg. Deviation:
0.001

Standard Deviation:
0.001

Total Deviation Avg. Deviation:
0.58

Standard Deviation:
0.227

Avg. Deviation:
0.034

Standard Deviation:
0.024
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6. Geometric Interpretation

Examining the geometric properties of the solutions to the ME and MLP methods provides further
insight to the performance of each. A simple scenario is used for the analysis. The constraint set for
both methods creates a bounded polyhedron, a polytope. We consider only constraints on unity and
the mean. In the simplest form, if we assume that the random variable X has two outcomes: X = {1, 2},
then the feasible set contains, at most, one point. Figure 1 shows the case where µ = 1.5. The only
feasible solution for this constraint set is P(X = 1) = P(X = 2) = 0.5. The dashed line indicates the
second constraint, while the solid line refers to the first constraint. Thus, regardless of the objective
function, both the ME method and the MLP method will produce the same solution.
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Figure 1. Feasible set for the probability distribution when the variable has two outcomes.

6.1. Geometry with a Three-Outcome Variable

The problem becomes more complicated as the number of outcomes increases. For a random
variable with three outcomes, the feasible set lies along the intersection of two planes (constraints).
The first constraint, ∑x p(x) = 1, creates a simplex. The second plane, ∑x x·p(x) = µ intersects the
simplex, creating a line. In general, if X = {x1, x2, x3}, then the line equation for the feasible set can be
written as:

L =

 t(x3 − x2)− µ + x2

t(x1 − x3) + µ− x1

t(x2 − x1)

, (22)

For the special case of X = {1, 2, 3}, the line equation becomes:

L =

 t− µ + 2
−2t + µ− 1

t

 f or t ∈ [0, 1/2] (23)

For the case where µ = 2, the line equation becomes L = (t, −2t + 1, t), where both methods
find the optimal solution at point t = 1

3 , or the uniform distribution. Figure 2 shows the line that is
formed as the intersection of these two planes for the case where X = {1, 2, 3} and µ = 2.

It is very important to understand that L is the line equation and not all the points on L are
feasible. Every element of L has to be non-negative and smaller than one, satisfying the probability
axioms. For example, in the case of X = {1, 2, 3} and µ = 2, the values for t can be only be between 0
and 0.5. This observation poses a limitation for the Monte Carlo simulation we discuss next.
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6.2. Monte Carlo Simulation

We design a simulation to observe the geometric properties of the solutions of the ME and MLP
methods and to locate the solutions on the feasible set (line). We assume that the random variable X is
discrete with three outcomes X = {1, 11, 21}. Using the line Equation (22), we modify the mean, µ and
track the changes in the Kullback–Leibler and the total deviation. The algorithm can be summarized
as follows:

1. The value for µ is determined: µ = {1, . . . , 21}.
2. Based on the result of Step 1, the feasible range for p(x3) = t is determined using the line equation

L of Equation (22);
3. The value for t is incremented by 0.005 from the minimum to the maximum that was computed

in the previous step;
4. Using the line equation, the values for p(x1) and p(x2) are determined;
5. P = (p(x1), p(x2), p(x3)) is specified as the desired test distribution;
6. The optimization problems are solved for P∗ME and P∗MLP;
7. The Euclidean norm of the difference between the solutions of the ME and MLP methods

is calculated:
‖ P∗MLP − P∗ME ‖2 (24)

6.3. Euclidean Distance of the ME and MLP Solutions

Figure 3 shows the Euclidean distance between the solutions of the ME and the MLP methods
for every value of the mean, µ = {1, . . . , 21}. The distance between the solutions of both methods is
the smallest for the boundary cases: µ = 1 or µ = 21. These instances are the cases with only one
feasible solution: P = (1, 0, 0) and P = (0, 0, 1). Hence, the solutions for the ME method and the MLP
method are similar. The other minimum occurs in the case of µ = 11. In this case, the number of
points in the feasible set is the maximum possible, but both methods provide the uniform solution:
P∗MLP = P∗ME =

(
1
3 , 1

3 , 1
3

)
. This solution is what one would expect from the ME method as it is the

solution with the maximum uncertainty (i.e., maximum entropy). From these results, we see that the
distance between the methods vanishes around the uniform distribution, but increases farther away
from it. These results underscore the insights derived previously in this paper showing that there are
conditions under which both the ME and MLP methods will produce the same results, and there are
also conditions under which the solutions will differ.
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7. Conclusions  

In this paper, we first reviewed the notion that both ME and MLP methods are specific 
instantiations of the minimum cross-entropy principle. Through analytic analysis and numerical 
examples, we then established that the information about the target distribution can significantly 
affect the performance of the methods. The ME method performs well with exponential 
distributions, whereas the MLP method has better performance with inverse distributions. We then 
used the minimum-cross entropy method to generalize the maximum log-probability approach.  

The analysis shows that it is not, in general, possible to determine that one method (direction of 
the Kullback–Leibler divergence) yields better results than the other. Rather, the performance 
depends on the problem and the information that is available. This work highlights the need to 
appropriately match the method used to the information available and opens the door to future 
research on questions such as the performance of these methods in particular contexts and methods 
to capture all types of available information. We hope this work helps clarify some of the confusion 
and criticisms of entropy methods and their special cases in the literature. We also hope to see 
further applications of entropy methods in a variety of applications.  
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7. Conclusions

In this paper, we first reviewed the notion that both ME and MLP methods are specific
instantiations of the minimum cross-entropy principle. Through analytic analysis and numerical
examples, we then established that the information about the target distribution can significantly
affect the performance of the methods. The ME method performs well with exponential distributions,
whereas the MLP method has better performance with inverse distributions. We then used the
minimum-cross entropy method to generalize the maximum log-probability approach.

The analysis shows that it is not, in general, possible to determine that one method (direction of
the Kullback–Leibler divergence) yields better results than the other. Rather, the performance depends
on the problem and the information that is available. This work highlights the need to appropriately
match the method used to the information available and opens the door to future research on questions
such as the performance of these methods in particular contexts and methods to capture all types of
available information. We hope this work helps clarify some of the confusion and criticisms of entropy
methods and their special cases in the literature. We also hope to see further applications of entropy
methods in a variety of applications.
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Appendix A

The analytic solutions of MCE. The Lagrangian function for Direction (1) can be written as:

LCE(X, Λ)1 =
n

∑
i=1

p(xi) log
p(xi)

q(xi)
− λ0

(
∑x p(x)− 1

)
−∑

j∈J
λj

(
∑xi

f j(xi)p(xi)− µj

)
(A1)

The minimum occurs when the derivative vanishes to zero:

∂LCE
∂p(xi)

= log
p(xi)

q(xi)
+ 1− λ0 −∑

j∈J
λj f j(xi) = 0 (A2)
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Solving the equation above results in an exponential distribution:

P1
CE
∗
(xi) = q(xi)e

−1+λ0+∑j∈J λj f j(xi) (A3)

Following the same steps, the solution for Direction (2) can be derived:

P2
CE
∗
(xi) =

q(xi)

λ0 + ∑j∈J λj f j(xi)
(A4)

MCE solution with a uniform target distribution. Let the target distribution Q = {q(xi), i = 1, . . . , n} be a
uniform distribution, e.g., q(xi) =

1
n . Then the Kullback–Leibler divergence for distribution P and the

uniform distribution as the reference distribution becomes:

K(P : U) =
n
∑

i=1
p(xi) log p(xi)

1/n = log(n)−
(
−

n
∑

i=1
p(xi) log(p(xi))

)
= log(n)− H(P)

(A5)

where H(P) = −∑n
i=1 p(xi) log(p(xi)) represents the Shannon entropy of the distribution P. Hence,

minimizing the cross-entropy to the uniform distribution under some given constraints is the same as
finding the maximum entropy distribution under the same set of constraints.
MCE solution with a uniform posterior distribution. Suppose q(xi) =

1
n ; the Kullback–Leibler divergence

in the reverse direction can be written as follows:

K(Q : P) =
n
∑

i=1
q(xi) log q(xi)

p(xi)
=

n
∑

i=1
1/n log 1/n

p(xi)
= 1/n

n
∑

i=1
(log( 1

n )− log(p(xi))

= 1/n
n
∑

i=1
log
(

1
n

)
− 1/n

n
∑

i=1
log(p(xi)

(A6)

The first part of the above expression is constant; hence, minimizing the above expression is
similar to maximizing the summation of the natural log of the probabilities, or the objective function
of the MLP method:

P∗MLP = min 1/n
n

∑
i=1

log
(

1
n

)
− 1/n

n

∑
i=1

log(p(xi) = argmax ∑x log(p(x)) (A7)

This result establishes the MLP method as a special case of the minimum relative entropy method
with the uniform posterior distribution.
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