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Abstract: According to non-stationary characteristic of the acoustic emission signal of rolling element
bearings, a novel fault diagnosis method based on empirical wavelet transform (EWT) and ambiguity
correlation classification (ACC) is proposed. In the proposed method, the acoustic emission signal
acquired from a one-channel sensor is firstly decomposed using the EWT method, and then the
mutual information of decomposed components and the original signal is computed and used
to extract the noiseless component in order to obtain the reconstructed signal. Afterwards, the
ambiguity correlation classifier, which has the advantages of ambiguity functions in the processing
of the non-stationary signal, and the combining of correlation coefficients, is applied. Finally,
multiple datasets of reconstructed signals for different operative conditions are fed to the ambiguity
correlation classifier for training and testing. The proposed method was verified by experiments, and
experimental results have shown that the proposed method can effectively diagnose three different
operative conditions of rolling element bearings with higher detection rates than support vector
machine and back-propagation (BP) neural network algorithms.

Keywords: ambiguity correlation classifier; empirical wavelet transform; faults diagnosis; rolling
element bearings

1. Introduction

The rolling element bearing represents one of the most important elements in the industrial
equipment field, and they are widely used in many important equipment fields, such as space flight
and aviation, wind power generation, etc. The operative conditions of rolling bearings play a vital role
in the proper operation of equipment [1–3]. However, complex working environments and human
factors might cause bearing faults or, in the worst case, major accidents [4]. Thus, it is necessary to
diagnose the operative condition of rolling element bearings in order to provide a plan for subsequent
repairs and to guarantee a proper operation of industrial equipment.

Nowadays, the monitoring of status of rolling element bearings is performed by the processing of
collected stress signals, acoustic emission signals (AE), vibration analysis, and current signals. The
traditional method for vibration analysis detection has been widely used in bearing fault diagnosis,
but no significant changes occur in the vibration signal in the case of an early-stage fault. It is
difficult to clearly identify the fault due to the easy mixture between the vibration signal from other
components of the mechanical equipment, the fault signal, and the interference from the surrounding
noise. Bearing fault detection based on the current signal uses the stator current signal analysis method.
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It is characterized by non-invasive detection. The method is successfully applied in bearing fault
detection. The stator current signal is more convenient, simpler, and more practical in extraction than
the vibration signal. However, the stator current signal is susceptible to the interference from the
fundamental frequency and noise, thus making it difficult to extract the fault characteristic quantity as it
contains a small fault-related frequency component. The acoustic emission signal has a wide frequency
spectrum ranging from several kHz to MHz. Using the acoustic emission signal for diagnosis of the
bearing fault can easily avoid the interference from the low-frequency vibration signal and achieve high
sensitivity and real-time monitoring. Morhain and Mba undertook an investigation to ascertain the
most appropriate threshold level for AE count diagnosis in rolling element bearings [5]. A comparative
study on the use of AE and vibration analysis was conducted, which concluded that AE offers earlier
fault detection and improved identification capabilities than vibration analysis. Furthermore, the
AE technique also provided an indication of the defect size, allowing the user to monitor the rate of
degradation of the bearing.

Moreover, the acoustic emission method has attracted wide attention from scholars because of
its high sensitivity and availability in real-time on-line monitoring [6,7]. Accordingly, an acoustic
emission method is used to monitor different operative conditions of rolling bearings in this paper [8,9].
In this study, the bearing faults were seeded on the rolling elements and on the inner and outer
races, and each faulty bearing was reinstalled (separately) on the test rig. Bearing fault diagnosis
has been studied in the past decades and promising results have been offered in a large volume of
prior literature [10]. Many researchers have discussed the spectral analysis methodologies for bearing
fault diagnosis [11,12]. A vibration spectrum was referred to as a mechanical signature, and the
determination of information from it was referred to as signature analysis. Traditionally, mechanical
signatures were obtained standardly from known healthy machines. Signatures taken at later occasions
could be compared according to the noted standard and significant changes, which leads to corrective
actions. Ideally, the signature components or contributions can be attributed to specific causes (i.e.,
mechanical parts), in order to facilitate the specific remedial actions [13]. Therefore, the impending
failures can be predicted. Even though the spectral analysis methods have demonstrated the capability
of diagnosing bearing defects and have shown promising results, the bearing fault-related features are
generally clouded by massive uncorrelated signals; thus, it is not easy to observe the fault features of
bearings when the previous methods are used. In the case of rolling element bearings, the acoustic
emission technique has been extensively studied by researchers. When faults occur in the bearing,
impulse mode components caused by the faults will appear in the acoustic emission signal. The
acoustic emission signals consist of fault components related to the system dynamical characteristics.
However, due to factors of nonlinear stiffness and clearance of the bearing, the acoustic emission
signals often exhibit as non-stationary. A non-stationary signal processing method must be employed
to obtain mode decomposition from the fault signal.

The traditional non-stationary signal analysis method and wavelet decomposition method
cannot obtain effective feature information due to a lack of adaptability [14–16]. The empirical
mode decomposition (EMD) represents a classical time-frequency analysis method. However, the
decomposed (IMF) component loses its true physical significance due to mode mixing in the EMD
decomposition process [17–19]. In order to solve this issue, the empirical wavelet transform (EWT) is
proposed to construct the wavelet basis in an adaptive way [20,21]. In contrast to EMD decomposition,
EWT processes the signal within the wavelet framework, has a sufficient theoretical basis, and can
extract an inherent mode of the signal [22,23]. Based on wavelet theory, the mode mixing problem
can be resolved using EWT. Moreover, EWT has more applications than EMD. Therefore, it is worth
introducing EWT into the rolling element bearing fault to provide better detection performance than
the performance obtained by EMD-based methods [24,25]. The acoustic emission signals consist of
fault information related to the rolling element bearings. The EWT method is used to analyze the
acoustic emission signal and to obtain the mode components; some of decomposed components were
sensitive to fault information, while others were not correlated with faults. Thus, these components
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needed to be processed further in order to extract the related mode components of the fault and
to reject the noise interference. The mutual information was a measure of the statistical correlation
between two random variables. The higher the correlation between the two random variables, the
greater the mutual information. Thus, the related mode components of the fault were extracted
using the mutual information. The traditional back-propagation (BP) neural network and the support
vector machine (SVM) algorithms are widely used for fault diagnosis. Riahi et al. distinguished
signals of different corrosion stages with a BP neural network in acoustic emission testing of a tank
bottom [26,27]. However, a BP neural network has the disadvantages of complex parameter setting,
slow convergence, falling easily into local minima, and limited accuracy and scope of application [28].
Compared to a BP neural network, SVM generalization performance is better, but it still requires
manual assignment of kernel functions and kernel function parameters [29,30], which limits the
significance of SVM applications.

Based on the above analysis, a novel fault detection method for rolling element bearings based on
empirical wavelet transform and ambiguity correlation classification (ACC) is proposed. The EWT
method is used to analyze the vibration signal and to obtain the accurate mode components without
mode mixing generated in the EMD method. In addition, a mutual-information selection method is
proposed to select the de-noised components of the vibration signals and to reconstruct the signal.
In order to address the disadvantages of traditional BP and SVM classifiers, such as complex parameter
setting and low convergence rate, the ambiguity functions and the correlation coefficients are combined
to achieve the ambiguity correlation classification. The reconstructed signal is used as an input of the
ACC intended for training and testing in order to provide the monitoring of operative conditions of
rolling element bearings.

This paper is organized as follows: In Section 2, the EWT method is explained and illustrated by
simulations. In Section 3, the proposed classification based on ambiguity correlation is presented in
detail. In Section 4, the fault diagnosis method based on EWT and ACC is introduced. The proposed
fault-detection scheme is experimentally validated and compared to the diagnosis method based on
EMD in Section 5. Lastly, the conclusions of the paper are given in Section 6.

2. EWT Decomposition Method

2.1. EWT Principle

The empirical wavelet transform represents a self-adaptive signal processing method proposed
by Gilles et al. in 2013 [20–22]. Namely, EWT can obtain a series of frequency modulation signals and
amplitude modulation signals by self-adaptive segmentation of the signal frequency spectrum. The
mathematical expression of complex decomposed signal f (t) is:

f (t) =
N

∑
k=0

fk(t) (1)

where fk(t) denotes the decomposed component, and fk(t) stands for the frequency-modulated
amplitude-modulated signal, f (t) is a complex decomposed signal.

The empirical wavelet transform provides the wavelet filter bank by self-adaptive segmentation
of the Fourier spectrum of the signal. In this method, it is firstly supposed that Fourier supports
segmentation of N continuous parts in a segmentation interval Λn = [ωn−1, ωn], (ω0 = 0, ωn = π),
where ωn represents the boundary between different parts, and a ∪N

n=1Λn = [0, π] partitioned graph
is a transitional segment with the center ωn and width of 2τn. When the segmentation interval Λn is
determined, the empirical wavelet defines the band-pass filter on each section of Λn. Based on this
concept, Gilles reconstructed an empirical wavelet using the Meyer wavelet reconstruction method.
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For n greater than 0, the empirical scaling function
_
φ n(ω) and the empirical wavelet function ϕ̂n(ω)

can be expressed as:

φ̂n(ω)


1, |ω| ≤ (1− γ)ωn

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise
(2)

ψ̂n(ω)


1, (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

sin[π
2 β( 1

2γωn
(|ω| − (1− γ)ωn))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

(3)

where:
τn = γωn (4)

β(x) = x4(35− 84x + 70x2 − 20x3) (5)

γ < min(
ωn+1 −ωn

ωn+1 + ωn
) (6)

where
_
φ n(ω) is the empirical scaling function, and ϕ̂n(ω) is the empirical wavelet function. The

traditional wavelet transform is used to construct the EWT. Namely, it is supposed that F[.] and F−1[.]
are the Fourier transformation and inverse Fourier transformation, respectively. The empirical wavelet
high-frequency component is obtained from the inner product of the signal by the empirical wavelet
function. The corresponding mathematical expression is as follows:

We
f (n, t) =< f (t), ψn(t) >=

r
f (τ)ψn(τ − t)dτ

= F−1[ f (ω)ψ̂(ω)
] (7)

where We
f (n, t) is the high-frequency component of the empirical wavelet. Then, the low-frequency

component can also be obtained from the inner product of the signal by the empirical scale function:

We
f (0, t) =< f (t), φ1(t) >=

r
f (τ)φ1(τ − t)dτ

= F−1[ f (ω)φ̂1(ω)
] (8)

where We
f (0, t) is the low-frequency component of the empirical wavelet. Finally, the reconstructed

original signal is obtained from high-frequency and low-frequency components:

f (t) = We
f (0, t)× φ1(t) +

N
∑

n=1
We

f (n, t)× ψn(t)

= F−1[Ŵe
f (0, ω)φ̂1(t) +

N
∑

n=1
Ŵe

f (n, ω)× ψ̂n(ω)]
(9)

where Ŵe
f (0, ω) and Ŵe

f (n, ω) are the Fourier transformations of We
f (0, t) and We

f (n, t), respectively.
Thus, the mathematical expressions of the frequency-modulated amplitude-modulated signal are
as follows:

f0(t) = We
f (0, t)× φ1(t) (10)

fk(t) = We
f (k, t)× ψk(t) (11)

where f (t) stands for the frequency-modulated amplitude-modulated signal. Accordingly, the
empirical wavelet transform can achieve a self-adaptive decomposition of complex signals and obtain
a series of frequency-modulated amplitude-modulated components, which are processed to obtain the
instantaneous frequency and the instantaneous amplitude.
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2.2. Analysis of the Simulation Signal

In order to verify the algorithm, the analysis of simulation signal was performed.
The mathematical expressions of the simulation signal are as follows:

f1(t) = 6t2

f2(t) = cos(10πt + 10πt2)

f3(t) =

{
cos(80πt− 15π), t > 0.5

cos(60πt), otherwise
f (t) = f1(t) + f2(t) + f3(t)

(12)

where f1(t) f2(t) f3(t) represent the components at three different frequencies, and f (t) represents the
composite signal consisting of the first three signals. The EMD method and EWT method were used to
process the simulation signal. The used simulation signal and its frequency spectrum are presented in
Figures 1 and 2, respectively. In addition, the obtained decomposition results of the EWT and EMD are
shown in Figures 3 and 4, respectively.
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Figure 1. The simulated signal with three components.
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As it can be seen in Figure 3, EWT separated the simulation signal into four signals with different
frequencies, which can be considered as different modes since they have different frequencies and
energies. However, in Figure 4, the modes are not decomposed, and both redundant information
and false information are present. Accordingly, it is clear that EWT can decompose the signal more
effectively and separate components of different frequencies more accurately than EMD.
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3. Ambiguity Correlation Classification

3.1. Ambiguity Correlation Theory

Due to the advantages of non-stationary signal analysis, the ambiguity functions are widely used
in engineering applications, such as radar signal analysis and optical information processing [31].
The mathematical expression of ambiguity functions is as follows:

A(τ, θ) =
1

2π

w
rx(t, τ)ejθtdt (13)

rx(t, τ) = x(t + τ/2)x∗(t− τ/2) (14)

where x(t) is the signal and rx(t, τ) is the self-correlation function of signal, A(τ, θ) is the
ambiguity function.

The correlation coefficient method can be used to measure the similarity between two variables.
The greater the correlation coefficient, the higher the correlation between variables. Therefore, the
ambiguity correlation classifier is proposed in this paper based on the advantages of the correlation
coefficient and ambiguity function. The combination of these two methods reduces the amount of
calculations and avoids the interference from cross terms of the ambiguity function. The specific
algorithm is as follows:
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(1) The correlation functions of ambiguity function images of two signals, namely x(t), y(t),
are calculated:

Rxy(τ, θ) = max
τo ,θ0

∣∣∣∣∣∣
+∞∫
−∞

+∞∫
−∞

Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣∣∣∣ (15)

where Rxy(τ, θ) is a correlation function.
(2) The correlation functions are then used to normalize the correlation coefficient, and the

corresponding mathematical expression is as follows:

ρxy(τ, θ) =

max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(τ, θ)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(τ, θ)dτdθ ]
1
2

(16)

where ρxy(τ, θ) is the correlation coefficient.
(3) When τ = 0 or θ = 0, the correlation coefficients are defined by:

ρxy(0, θ) =

max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(0, θ)Ay(0− τ0, θ − θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(0, θ)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(0, θ)dτdθ ]
1
2

(17)

ρxy(τ, 0) =
max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(τ, 0)Ay(τ − τ0, 0− θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(τ, 0)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(τ, 0)dτdθ ]
1
2

(18)

(4) Finally, the ambiguity correlation coefficient is calculated by:

ρ =

√
ρ2

xy(0, θ) + ρ2
xy(τ, 0)

2
(19)

where ρ is the ambiguity correlation coefficient.

3.2. Basic Principle of the Classifier

The ambiguity correlation classifier represents a one-to-one classifier. Firstly, the signal is
decomposed with the empirical wavelet transform decomposition method. Then, the mutual
information method is proposed for the de-noising process, and the noiseless component is
reconstructed in order to obtain the de-noising signal. Afterwards, the ambiguity correlation functions
of three de-noised signal types are calculated, i.e., ambiguity functions of the class A signal, test signal
C, and the class B signal. Then, the correlation coefficient is calculated using the ambiguity function of
the reconstructed signal. The correlation coefficients of the class A signal and test signal C are labeled
as I. The correlation coefficients of the class B signal and test signal C are labeled as II. Further, the
correlation coefficients I and II are compared, and if I is larger, then C belongs to class A; otherwise, C
belongs to class B. Similarly, this principle can be used to determine the signal collected in the next
time moment. The principle of ambiguity correlation classifier is shown in Figure 5.
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4. Bearing Faults Diagnosis Method

The bearing faults diagnosis method based on EWT and ACC eliminates noise interference,
extracts characteristic components from weak signals, and inputs reconstructed signals into the
classifier in order to realize bearing fault detection. The specific steps are as follows:

(1) Collect the vibration signals and decompose these signals using EWT to derive multiple
F components.

(2) Select noiseless components according to the mutual information.
(3) Reconstruct chosen noiseless components and inputs using ACC.
(4) Collect several groups of data for training and testing, and realize the fault diagnosis of rolling

element bearings.

5. Experimental Research

5.1. Collection of Experimental Data

In this work, data from Case Western Reserve University were used for analysis, and the acoustic
emission technique was used for detection. The basic layout of the test rig is shown in Figure 6.
It consisted of a 2 HP Reliance electric motor (Cleveland, OH, USA) that drove a shaft on which a
torque transducer and encoder were mounted. Torque was applied to the shaft via a dynamometer
and electronic control system. Further details about the test setup can be found in [31,32].

During the test process, the diameter of faults was from 0.007 to 0.028 in (0.18–0.71 mm) and faults
were seeded on the drive-end and fan-end bearings (SKF deep-groove ball bearings: 6205-2RSJEM and
6203-2RSJEM, respectively) of the motor using an electro-discharge machining (EDM) (Cleveland, OH,
USA). The faults were also seeded on the rolling elements and on the inner and outer races, and each
faulty bearing was reinstalled (separately) on the test rig, which was then run at constant speed with
the motor set to 0–3 horsepower (approximate motor speed was 1797–1720 rpm). The relevant bearing
details and fault frequencies are presented in Table 1. During each test, acceleration was measured
perpendicularly on the housing of the drive-end bearing (DE), and in some tests acceleration was also
measured perpendicularly on the fan-end bearing housing (FE) and on the motor supporting base
plate (BA). The length of collected data, N, was 3500.
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Figure 6. Field test acquisition device.

Table 1. Bearing details and fault frequencies.

Position on the Rig Model Number
Fault Frequencies (Multiple of Shaft Speed)

Outer Race Inner Race Rolling Element Ball

Drive end SKF6205-2RSJEM 23.585 15.415 9.357
Fan end SKF6203-2RSJEM 21.053 14.947 11.994

5.2. Analysis of Experimental Data

The normal signal, the outer race fault signal, and the inner race fault signal, as shown in Figure 7,
were used in the experiments. The outer race fault signal of the rolling element bearing was subjected
to EWT decomposition, as shown in Figure 8.
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Figure 7. The vibration signals collected by sensor: (a) normal signal; (b) outer race fault signal; and
(c) inner race fault signal.

As it can be seen in Figure 8, six components of the outer race fault signal were obtained by EWT
decomposition. Some of the decomposed components were sensitive to fault information, while others
were not correlated with faults. Thus, these F components needed to be processed further in order to
extract the de-noising components and to reject the noise interference. The mutual information was
a measure of statistical correlation between two random variables [33]. The higher the correlation
between two random variables, the greater the mutual information. Thus, the de-noising components
were extracted using the mutual information. Namely, for any two random variables, x and y, the
mutual information I(X, Y) can be expressed by:
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I(x, y) = ∑
x,y

pxy(x, y) log
pxy(x, y)

px(x)py(y)
(20)

where pxy(x, y) is joint distribution, px(x) is marginal distribution, and I(x, y) is the
mutual information.Entropy 2017, 19, 231  10 of 15 
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Figure 8. EWT results for the outer race fault signal.

Using Equation (20), the mutual information of decomposed F components and the original signal
was calculated respectively, Figure 9.

Entropy 2017, 19, 231  10 of 15 

 

 

Figure 8. EWT results for the outer race fault signal. 

As it can be seen in Figure 8, six components of the outer race fault signal were obtained by 
EWT decomposition. Some of the decomposed components were sensitive to fault information, 
while others were not correlated with faults. Thus, these F components needed to be processed 
further in order to extract the de-noising components and to reject the noise interference. The 
mutual information was a measure of statistical correlation between two random variables [33]. The 
higher the correlation between two random variables, the greater the mutual information. Thus, the 
de-noising components were extracted using the mutual information. Namely, for any two random 
variables, x and y, the mutual information ( , )I X Y  can be expressed by: 

,

( , )
( , ) ( , ) log

( ) ( )
xy

xy
x y x y

p x y
I x y p x y

p x p y
=

 
(20) 

where ( , )xyp x y  is joint distribution, ( )xp x is marginal distribution, and ( , )I x y  is the mutual 

information. 
Using Equation (20), the mutual information of decomposed F components and the original 

signal was calculated respectively, Figure 9. 
Three different types of vibration signal were decomposed. The mutual information values of 

decomposed components and original signal were calculated. As it can be seen in Figure 9, in the 
case of the normal signal, the mutual information values of the first two components and original 
signal were larger than the others; thus, they were selected for reconstruction of the normal signal. 
In the case of the outer race fault signal, the mutual information values of components F4 and F5 
were the greatest; thus, they were selected for reconstruction of the outer ring fault signal. Similarly, 
in the case of the inner ring fault signal, components F2 and F3 were selected for reconstruction. 
Consequently, the ambiguity correlation coefficients of the bearing reconstructed signal for 
different operative conditions were calculated. 

(a) (b)

0 1000 2000 3000
-10

0

10

Si
gn

al

0 1000 2000 3000
-2

0

2

F
1

0 1000 2000 3000

-1

0

1

F
2

0 1000 2000 3000

-0.5

0

0.5

F
3

0 1000 2000 3000
-1

0

1

F
4

0 1000 2000 3000
-1

0

1

Sample dots

F
6

F1 F2 F3 F4 F5 F6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normal condition

N
o

rm
a

liz
e

d
 m

u
tu

a
l i

n
fo

rm
a

tio
n

 

F components

F1 F2 F3 F4 F5 F6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 m
ut

u
al

 in
fo

rm
a

tio
n 

F components

Outer race fault

Entropy 2017, 19, 231  11 of 15 

 

(c)

Figure 9. The mutual information of F components for different conditions for: (a) normal signal; (b) 
outer race fault signal; and (c) inner race fault signal. 

5.3. Ambiguity Correlation Classification 

The mean and standard deviation of the ambiguity correlation coefficient of the signals 
processed by EWT and EMD-based de-noising were calculated, and they are presented in Tables 2 
and 3, respectively. 

Table 2. The mean and standard deviation for EMD. 

Different Class Number #1 #2 #3 
different normal outer race inner race 

operative conditions state fault fault 
normal mean 0.5074 0.4664 0.4042 

state standard deviation 0.0630 0.0719 0.0853 
outer race mean 0.4664 0.2415 0.3650 

fault standard deviation 0.0719 0.0540 0.0710 
inner race mean 0.4042 0.3650 0.2789 

fault standard deviation 0.0853 0.0710 0.0552 

Table 3. The mean and standard deviation for EWT. 

Different Class Number #1 #2 #3 
different  normal outer race inner race 

operative conditions state fault fault 
normal mean 0.6347 0.3134 0.1025 

state standard deviation 0.0395 0.1164 0.0969 
outer race mean 0.3134 0.5407 0.0685 

fault standard deviation 0.1164 0.0240 0.0543 
inner race mean 0.1025 0.0685 0.2253 

fault standard deviation 0.0969 0.0534 0.0452 

As it is presented in Table 2, the mode mixing that is present in the empirical modal 
decomposition process leads to illusive component decomposition. Namely, the reconstructed 
signal obtained using the mutual information contained a noise component. Therefore, there was 
no significant difference in the mean of the correlation coefficients of the three decomposed signal 
types in the ambiguity domain; thus, it was impossible to monitor the rolling element bearings. On 
the other hand, when EWT was used to process the signals in order to obtain the inherent modal 

F1 F2 F3 F4 F5 F6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 m

ut
ua

l i
nf

or
m

a
tio

n
 

F components

Inner race fault

Figure 9. The mutual information of F components for different conditions for: (a) normal signal;
(b) outer race fault signal; and (c) inner race fault signal.
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Three different types of vibration signal were decomposed. The mutual information values of
decomposed components and original signal were calculated. As it can be seen in Figure 9, in the case
of the normal signal, the mutual information values of the first two components and original signal
were larger than the others; thus, they were selected for reconstruction of the normal signal. In the
case of the outer race fault signal, the mutual information values of components F4 and F5 were the
greatest; thus, they were selected for reconstruction of the outer ring fault signal. Similarly, in the case
of the inner ring fault signal, components F2 and F3 were selected for reconstruction. Consequently, the
ambiguity correlation coefficients of the bearing reconstructed signal for different operative conditions
were calculated.

5.3. Ambiguity Correlation Classification

The mean and standard deviation of the ambiguity correlation coefficient of the signals
processed by EWT and EMD-based de-noising were calculated, and they are presented in Tables 2
and 3, respectively.

Table 2. The mean and standard deviation for EMD.

Different Class Number #1 #2 #3

different normal outer race inner race
operative conditions state fault fault

normal mean 0.5074 0.4664 0.4042
state standard deviation 0.0630 0.0719 0.0853

outer race mean 0.4664 0.2415 0.3650
fault standard deviation 0.0719 0.0540 0.0710

inner race mean 0.4042 0.3650 0.2789
fault standard deviation 0.0853 0.0710 0.0552

Table 3. The mean and standard deviation for EWT.

Different Class Number #1 #2 #3

different normal outer race inner race
operative conditions state fault fault

normal mean 0.6347 0.3134 0.1025
state standard deviation 0.0395 0.1164 0.0969

outer race mean 0.3134 0.5407 0.0685
fault standard deviation 0.1164 0.0240 0.0543

inner race mean 0.1025 0.0685 0.2253
fault standard deviation 0.0969 0.0534 0.0452

As it is presented in Table 2, the mode mixing that is present in the empirical modal decomposition
process leads to illusive component decomposition. Namely, the reconstructed signal obtained using
the mutual information contained a noise component. Therefore, there was no significant difference
in the mean of the correlation coefficients of the three decomposed signal types in the ambiguity
domain; thus, it was impossible to monitor the rolling element bearings. On the other hand, when
EWT was used to process the signals in order to obtain the inherent modal component of the signal
and to remove the noise interference, the mean of the correlation coefficients of three signal types
in the ambiguity domain could be clearly distinguished (Table 3). With the aim to provide a visual
comparison of the obtained results, the mean and standard deviation of the ambiguity correlation
coefficients presented in Tables 2 and 3 are plotted in Figures 10 and 11, respectively.
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Figure 10. Normal distribution of EWT: (a) #1; (b) #2; and (c) #3.

As it is shown in Figures 10 and 11, the normal distribution curves visualize the diagnosis of three
operative conditions of rolling bearings and provide the real-time monitoring. Moreover, there are
no significant differences between the normal distribution curves of the EMD-based correlation
coefficients. In contrast to EMD decomposition, EWT processes the signal within the wavelet
framework, so it can extract an inherent signal mode without mode mixing. Hence, the EWT-based
method can distinguish between three modes, and the differences between the normal distribution
curves of the correlation coefficients in the ambiguity domain are significant.
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Figure 11. Normal distribution of EMD: (a) #1; (b) #2; and (c) #3.

As it was stated above, 20 datasets were used for training and testing, namely 15 datasets were
used for training, and the remaining five datasets were used for testing. The classification results and
accuracies are presented in Figure 12.

Entropy 2017, 19, 231  13 of 15 

 

(c)

Figure 11. Normal distribution of EMD: (a) #1; (b) #2; and (c) #3. 

As it is shown in Figures 10 and 11, the normal distribution curves visualize the diagnosis of 
three operative conditions of rolling bearings and provide the real-time monitoring. Moreover, 
there are no significant differences between the normal distribution curves of the EMD-based 
correlation coefficients. In contrast to EMD decomposition, EWT processes the signal within the 
wavelet framework, so it can extract an inherent signal mode without mode mixing. Hence, the 
EWT-based method can distinguish between three modes, and the differences between the normal 
distribution curves of the correlation coefficients in the ambiguity domain are significant.  

As it was stated above, 20 datasets were used for training and testing, namely 15 datasets were 
used for training, and the remaining five datasets were used for testing. The classification results 
and accuracies are presented in Figure 12.  

(a) (b)

(c)

Figure 12. The classification result of three classifiers: (a) proposed method; (b) SVM; and (c) BP. 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

Correlation coefficients 

N
or

m
al

 d
is

tr
ib

ut
io

n

 

 
Normal condition
Outer race fault
Inner race fault

1 2 3 4 5
0

20

40

60

80

100

Groups

A
cc

ur
ac

y 
ra

te
（

%
）

 

The proposed method SVM BP

1 2 3 4 5
0

20

40

60

80

100

Groups

A
cc

ur
ac

y 
ra

te
（

%
）

 

 
THe proposed method SVM BP

1 2 3 4 5
0

20

40

60

80

100

Groups

A
cc

ur
ac

y 
ra

te
（

%
）

 

The proposed method SVM BP

Figure 12. The classification result of three classifiers: (a) proposed method; (b) SVM; and (c) BP.

According to the obtained test results presented in Figure 12, the proposed classifier has a shorter
training time, simpler calculation, higher identification rate, and higher ability to diagnose different
operative conditions of rolling bearings than BP and SVM classifiers.
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6. Conclusions

The collected vibration signals are often mixed with substantial ambient noise, which makes
the fault signal features insignificant for the rolling bearings fault diagnosis. Thus, a novel fault
diagnosis method for rolling element bearings based on EWT and ACC is proposed. Due to mode
mixing in the EMD decomposition, in the proposed method EWT is used to decompose the vibration
signal in order to obtain the accurate components and to eliminate the mode mixing. Moreover, in
order to address the disadvantages of traditional BP and SVM classifiers, such as complex parameter
setting and low convergence rates, the ambiguity functions and correlation coefficients are combined
to achieve the ambiguity correlation classification. The ambiguity correlation classifier is based on
a simple calculation process and requires no parameter setting. The proposed method was verified
by experiments, and the experimental results have indicated that the proposed classifier can monitor
different operative conditions of rolling bearings with higher identification rates than BP and SVM.
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