
entropy

Article

Prediction and Evaluation of Zero Order Entropy
Changes in Grammar-Based Codes

Michal Vasinek * and Jan Platos

Department of Computer Science, FEECS, VSB-Technical University of Ostrava, 17. listopadu 15/12172,
Ostrava 708 33, Czech Republic; jan.platos@vsb.cz
* Correspondence: michal.vasinek@vsb.cz; Tel.: +420-597-323-971

Academic Editor: Raúl Alcaraz Martínez
Received: 30 January 2017; Accepted: 10 May 2017; Published: 13 May 2017

Abstract: The change of zero order entropy is studied over different strategies of grammar production
rule selection. The two major rules are distinguished: transformations leaving the message size intact
and substitution functions changing the message size. Relations for zero order entropy changes
were derived for both cases and conditions under which the entropy decreases were described.
In this article, several different greedy strategies reducing zero order entropy, as well as message
sizes are summarized, and the new strategy MinEnt is proposed. The resulting evolution of the
zero order entropy is compared with a strategy of selecting the most frequent digram used in the
Re-Pair algorithm.

Keywords: data compression; grammars; entropy; transformations; context; Re-Pair

1. Introduction

Entropy is a key concept in the measurement of the amount of information in information
theory [1]. From the data compression perspective, this amount of information represents the lower
limit of the achievable compression of some information source. Due to the well-known work by
Shannon [2], we know that using less bits than the amount given by entropy to represent a particular
message or process would necessarily lead to the loss of some information and as a consequence our
inability to properly recover the former structure of the message.

This work is focused on the study of entropy in data compression, and therefore, our discussion
will be restricted to only finite messages. These finite messages are formed by symbols, and in this
perspective, the entropy can be understood as the lowest number of bits needed on average to uniquely
represent each symbol in a message. There are messages for which the evaluation of entropy can be a
very hard task, and so, we are often forced to satisfy ourselves with some approximation of entropy.

The simplest approximation is the one based on the probability distribution of symbols in
a particular message. In this case, the symbols are viewed as independent entities, and their
mutual relationships are not taken into account. A better approximation of entropy is based on
the conditional probabilities when we also take into account how symbols follow each other. We can
also approximate entropy by computing bits per byte ratio of message encoded by state of the art data
compression algorithms.

In this article, we study entropy at the level of independent symbols. This approximation of
entropy is often called zero order entropy. There are two major data compression algorithms in use
that compress messages almost to the rate given by zero order entropy: Huffman [3] and arithmetic [4]
coding. The zero order entropy can be computed using the Shannon equation:

H(X) = − ∑
x∈Σ

p(x) log p(x) (1)

Entropy 2017, 19, 223; doi:10.3390/e19050223 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2017, 19, 223 2 of 23

where X stands for a random variable representing the probability distribution of symbols in the input
message m and p(x) is the probability of symbol x from alphabet Σ. The expected length of the code
for the particular symbol x is given by − log p(x). If the expected length of the code is multiplied by
its probability, we obtain the average number of bits needed to represent any symbol x ∈ Σ. The size
of the message using the expected lengths of codes is given as a product of the length of the message
|m|measured as a number of symbols and zero order entropy:

|m|H = |m|H(X) (2)

When we refer to the term entropic size of the message, we always mean the quantity given by
Equation (2), and it will be denoted using a superscript as |m|H . We study how the entropic size of the
message evolves when all occurrences of some m-gram are substituted for some other n-gram and vice
versa. We study two such substitutions: transformations and compression functions. Transformations
replace n-grams of the same length. Transformation leaves the message size intact, but since the
probability of symbols changes, the value of zero order entropy also has to change. Compression
functions replace m-grams for n-grams, where m > n, and leave the message size smaller, but the
change in zero order entropy also occurs.

The main idea behind the concept of transformations is the following: consider Huffman coding;
more probable symbols are encoded by shorter or at least by the same length prefix codes than the
lower probability ones, if the symbol β is more probable than the symbol γ, but in the context of some
symbol α, γ is more frequent than β, then if these symbols following α are exchanged, the longer
codes used for encoding γ will instead be encoded by shorter codes representing the encoding of
β. Under this assumption, it is possible to pre-process data so that the frequency of more frequent
symbols increases and the frequency of less frequent symbols decreases.

1.1. Notation and Terminology

• The alphabet of the input message m of the size |m| is denoted by Σ and its size by |Σ|.
• Greek symbols are used to denote variables representing symbols in the input message.

For instance, suppose two digrams αα, αβ and the alphabet Σ = {0, 1}. Then, αα ∈ {00, 11} and
αβ ∈ {00, 01, 10, 11}.

• When we refer to the term entropy, we always mean Shannon’s entropy defined by Equation (1).
• All logarithms are to base two.
• Any quantity Qi with a subscript i ∈ N denotes consecutive states of the quantity between

substitutions. For instance, a quantity Q0 is a value of the quantity before any substitution is
applied, and Q1 is a value of the quantity after some substitution is applied.

1.2. Order of Context and Entropy

1.2.1. Zero Order Context

When all symbols are interpreted as independent individual entities and no predecessors are
taken into consideration, such a case is called zero order context. Zero order entropy is then computed
as Shannon’s entropy of a random variable given by the probabilities of symbols in the input message.

1.2.2. N-th Order Context

In a case where the probability distribution of symbols following a particular fixed length prefix w
is taken into consideration, then if the length of the prefix is N, then the order of context is N, and the
N-th order entropy is computed as Shannon’s entropy of the conditional distribution of symbols
following all different prefixes wi.

Entropy 2017, 19, 223 3 of 23

2. Previous Work

The class of algorithms dealing with exchanges of different n, m-grams are called grammar-based
algorithms. Their purpose is to provide a set of production rules inferring the content of the message.
Using the Chomsky hierarchy, we identify two classes of formal grammars used in data compression:
context-free grammars (CFG) and context-sensitive grammars (CSG). Context transformations
presented in Section 3 belong to the CSG class; meanwhile, compression functions belong to the
CFG class. The problem of the search for the most compact context-free grammar representation of a
message is NP-hard, unless P = NP [5]. Instead of searching for the optimal solution, many heuristic
and greedy algorithms were proposed.

CFGs for data compression were first discussed by Nevill-Manning [6] followed by the proposal
of the SEQUITUR algorithm [7]. SEQUITUR reads the sentence in the left-right manner so that each
repeated pattern is transformed into a grammar rule. The grammar is utilized in such a way that the
two properties are fulfilled: a digram uniqueness (no pair of adjacent symbols appear more than once
in the grammar and a rule utility); every rule is used more than once. Kiefer and Yang [8] were the first
who addressed data compression using CFGs from the information theoretic perspective; they showed
that the LZ78 [9] algorithm can be interpreted as a CFG and that the proposed BISECTION algorithm
forms a grammar-based universal lossless source code. BISECTION repeatedly halves the initial
message into unique phrases of length 2k, where k is the integer.

In the work of Yang and He [10], the context-dependent grammars (CDG) for data compression
were introduced. In CSG, the context is present in both sides of production rules; meanwhile in CDG,
the context is defined only on the left side of the production rule.

One of the first concepts in greedy grammar-based codes was the byte pair encoding (BPE) [11].
The BPE algorithm selects the most frequent digram and replaces it with some unused symbol.
The main weakness of this approach is that the algorithm is limited to an alphabet consisting only of
byte values. The concept of byte pair encoding was later revised, and the limitation on the alphabet
size used was generalized independently by Nakamura and Murashima [12] and by Larsson and
Moffat [13]; the resulting approach is called Re-Pair [13]. Re-Pair stands for recursive pairing, and it is
a very active field of research [14,15]. It iteratively replaces the most frequent digrams with unused
symbols until there is no digram that occurs more than once.

Unlike BPE that codes digrams using only byte values, Re-Pair expects that the symbols of the
final message will be encoded using some entropy coding algorithm. Approaches derived from Re-Pair
are usually greedy, since each iteration of the algorithm is dependent on a successful search of the
extremal value of some statistical quantity related to the input message. The study of the Re-Pair
from the perspective of ergodic sources is discussed in [16,17]. Neither BPE nor Re-Pair compress the
message into the least possible size, but they rather form a trade-off between message and dictionary
sizes. Re-Pair-like algorithms are off-line, in the sense that they need more than one pass through the
input message; meanwhile, SEQUITUR incrementally builds the grammar in a single pass. The Re-Pair
algorithm is an algorithm with O(n) time complexity; it is easy to implement using linked lists and a
priority queue. Further, it was shown in [18] that it can compress an input message of length n over an
alphabet of size |Σ| into at most 2Hk + o(n log |Σ|) bits, where Hk is k-th order entropy.

Our recent studies were focused on a special class of grammar transforms that leave the message
size intact [19,20]. In the present paper, the class of grammar transformations is extended with a novel
concept of higher order context transformation [21]. We shall provide examples of transformations and
the evaluation of entropy resp. entropic size reduction to the class of grammar compression algorithms,
and we compare the evolution of entropy, entropic size and the resulting number of dictionary entries
for Re-Pair and our version of Re-Pair, called MinEnt, which is based on the selection of the pair of
symbols reducing the entropic size of the message the most. Re-Pair finds application in areas such
as searching in compressed data [22], compression of suffix arrays [23] or compression of inverted
indexes [24], to name a few. These areas are also natural application fields for MinEnt. From the

Entropy 2017, 19, 223 4 of 23

perspective of the number of passes through the message, the approaches discussed in this paper
belong to off-line algorithms.

3. Transformations and Compression Algorithms

In this section, we will describe and evaluate several invertible transformations T and substitution
functions F so that for any two consecutive states of the message, m0 and m1, before and after
application of T or F, the following relation holds:

|m1|H < |m0|H (3)

The measure of the size of the message by the entropic size of the message is preferred, since using
the arithmetic coding, one can achieve a compression rate very close to the zero order entropy, and so,
the size |m|H is in theory accessible. Further, it allows the comparison of two distinct substitutions
when their resulting sizes measured by the number of symbols are equal. The derivation of equations
for the computation of |m1|H , resp. ∆|m|H = |m0|H − |m1|H , are provided in Section 4.

3.1. Transformations

Consider transformation, where we replace all occurrences of some symbol β for some symbol γ

and vice versa; such a transformation is called a symmetry transformation, because it does not modify
any measurable quantities related to the amount of information. The information content is changed
when the replacement is taken in the context of an other symbol α. Such a transformation corresponds
to the exchange of all digrams αβ for αγ and vice versa. In this section, several different forms of
transformation are distinguished and briefly described. Some properties of transformations and their
proofs can be found in Appendix A.

3.1.1. Context Transformation

The concept of context transformations was first proposed in [25], and the results were presented
in [19]. It is the simplest transformation that assumes a pair of digrams beginning with the same
symbol when one of the digrams is initially missing in the input message.

Definition 1. Context transformation (CT) is a mapping CT(αβ→ αγ, w) : Σn → Σn that replaces all digrams
αβ for αγ, where p(α, γ) = 0 and β 6= γ. Σ is the alphabet of the input message w, and n is the length of w.

Let CT← be the context transformation applied from the end of the message to the beginning and
CT→ in the opposite direction. The context transformation CT→ is an inverse transformation of CT←.
The proof of this property with an explanation for why it is the only pair of the function and its inverse
is left to Appendix A. The application of two consecutive context transformations and their inverse
functions is presented in the following example:

Example 1.

abcdabacd|CT←(ab→ aa)

aacdaaacd|CT←(cd→ cc)

aaccaaacc|CT→(cc→ cd)

aacdaaacd|CT→(aa→ ab)

abcdabacd|

Entropy 2017, 19, 223 5 of 23

3.1.2. Generalized Context Transformation

Context transformations were restricted in cases where one of the digrams was missing in the input
message. This restriction is removed by the introduction of the generalized context transformations
first proposed in [20].

Definition 2. Generalized context transformation (GCT) is a mapping GCT(αβ↔ αγ, w) : Σn → Σn that
exchanges all occurrences of a digram αβ by a digram αγ and vice versa. Σ is the alphabet of the input message
w, and n is the length of w.

Example 2.

aabcabab|GCT←(ab↔ aa)

abacaaaa|GCT→(aa↔ ab)

aabcabab

Meanwhile, both transformations CT and GCT swap occurrences of two different digrams
beginning with the same symbol; they differ in the way they are applied and how the inverse
transformation is formed. GCT can be applied in both directions, and the inverse transformation
GCT−1 is always applied in the opposite direction, than the forward transformation direction.
The algorithm based on the CT and GCT works as follows:

1. Find and apply transformation T so that the change of the entropic size ∆|m|H = |m0|H − |m1|H
is maximal.

2. Repeat Step 1 until no transformation can decrease the entropic size of the message.

It is also possible to define a transformation and its inverse so that all symbols constituting replaced
pairs differ, for instance ab↔ cd; such a transformation is called generic transformation GT. In this
article, we have not proposed algorithms based on GT, but because the set of all generalized context
transformations is a subset of a set of generic transformations, the proof of the inverse transformation
existence is the same for both GCT and GT. The reader can find the proof in Appendix A.

3.1.3. Higher Order Context Transformation

Every time we apply any generalized context transformation GCT, we acquire knowledge about
the positions of two distinct digrams in the message. We can either discard this knowledge or we can
try to build on it. In the following definition, we define a transformation that is applied over positions
where some other transformation was applied before:

Definition 3. Let P(w, m) be a set of positions of the first symbol following the sub-message w in the message
m and w[i] 6= w[0], i > 0. If β, γ 6= w[0], then the higher order context transformation (HOCT) is a
mapping HOCT(wβ ↔ wγ, m, P(w, m)) : Σn → Σn that exchanges all sub-messages wβ for sub-messages
wγ and vice versa.

The restriction that the sub-message w has to satisfy is w[0] 6= w[i], where i > 0 is closely related
to the existence of the inverse transformation to HOCT. The properties related to the HOCT and their
proofs are left to Appendix A.

Let O = |w| be the size of the sub-message w from Definition 3, then O is an order of HOCT.
Any GCT(αβ ↔ αγ) is then the first order HOCT(αβ ↔ αγ, m, P(α, m)). Given that we just before
applied some transformation m1 = HOCT1(wβ ↔ wγ, m, P(w, m)), we can decide to collect the
positions of either w1 = wβ or w2 = wγ, collect the distribution of symbols in P(wi, m) and apply
another HOCT(wiρ↔ wi ϕ, m1, P(wi, m)). In this sense, HOCT is not used only to interchange different

Entropy 2017, 19, 223 6 of 23

sub-messages, but it also allows one to proceed with some other transformation HOCT of a higher order.
The application of two consecutive HOCT transformations is presented in the following example:

Example 3.

abcdabcd|HOCT(ab↔ ad, P(a, m) = {1, 5})
adcdadcd|HOCT(adc↔ add, P(ad, m) = {2, 6}))
adddaddd|

The HOCT transformation is a recursive application of GCT in the context of some prefix w.
The steps of the algorithm are outlined as follows:

1. Find and apply HOCT(αβ ↔ αγ) over the set of positions P(α), so that the change of entropic
size ∆|m|H = |m0|H − |m1|H is maximal and ∆|m|H > Lim.

2. If the frequency of αβ resp. αγ is larger than one, then repeat Step 1 over the set of positions
P(αβ) resp. P(αγ), i.e., positions where HOCT from Step 1 was applied; otherwise, repeat Step 1
over positions P(α) or return if no more HOCT passes the entropic size reduction conditions.

The algorithm above is iteratively called for symbols sorted from the most frequent one to the least
frequent one. The Lim variable can be used to restrict transformations whose entropic size reduction is
too small, so they cannot be efficiently stored in the dictionary.

3.2. Compression Functions

In the preceding section, we described three types of transformations that leave message size
intact. In this section, we will focus on a description of two approaches in the replacement of digrams
for a new symbol. First, we describe basic principles of the well-known algorithm Re-Pair, and then,
we will propose a modification of Re-Pair called MinEnt.

3.2.1. Re-Pair

The main idea behind the Re-Pair algorithm is to repeatedly find the most frequent digram and
replace all of its occurrences with a new symbol that is not yet present in the message. The algorithm
can be described in the following steps:

1. Select the most frequent digram αβ in message m.
2. Replace all occurrences of αβ for new symbol γ.
3. Repeat Steps 1 and 2 until every digram appears only once.

In Step 2 of the algorithm, the pair αβ together with a new symbol γ are stored in a dictionary.
The implementation details of the Re-Pair algorithm are left to Section 3.2.2 regarding the proposed
MinEnt algorithm.

3.2.2. MinEnt

The MinEnt algorithm proposed in this article is derived from the Re-Pair algorithm. The main
difference is in Step 1, where instead of the selection of the most frequent digram, we select a digram
that minimizes |m1|H from Equation (3):

1. Select digram αβ in message m0 so that the change of entropic size ∆|m|H = |m0|H − |m1|H
is maximal.

2. Replace all occurrences of αβ for new symbol γ.
3. Repeat Steps 1 and 2 until every digram appears only once.

Entropy 2017, 19, 223 7 of 23

More precisely, let m1 = MinEnt(m0, αβ → γ) be the application of Step 1 and Step 2 of the
MinEnt algorithm, then digram αβ fulfills:

arg min
α,β∈Σ0

|MinEnt(m0, αβ→ γ)|H (4)

where Σ0 is the alphabet of the message m0. To demonstrate the difference between Re-Pair and
MinEnt, consider the following example:

Example 4.
m0 = aababcdcdb

The entropic size of m0 is |m0|H = 19.71 bits. There are two non-overlapping digrams that occur twice:
ab and cd.

(m0, ab→ e) = aeecdcdb

(m0, cd→ e) = aababeeb

Based on the Re-Pair algorithm, we do not know which digram should be preferred, because both have
the same frequency. In the MinEnt case, we can compute |m1|H for both cases, yielding |m1|Hab = 18 bits
and |m1|Hcd = 12.49 bits, and so, the replacement cd→ e will be the preferred one.

The MinEnt and the Re-Pair strategies of digram selection are evaluated using the algorithm
described in [13]. In the initialization phase of the algorithm, the input file is transformed into the
linked list, and each input byte is converted into the unsigned integer value. In the next step, the linked
list is scanned, and the frequencies and positions of all digrams are recorded. Frequencies of digrams,
resp. the change of the entropic size of the message measured in bytes, are used as indices for the
priority queue. The size of the queue is limited to the maximal frequency, resp. in the case of the
MinEnt algorithm, the maximum entropic size decrease.

The algorithm iteratively selects the digram with the highest priority, replaces all occurrences
of the digram with the newly-introduced symbol, decrements counts of neighboring digrams and
increments counts of newly-introduced digrams. In the case of the MinEnt algorithm, we have to
recompute the change of the entropic size of all digrams in the priority queue. We restrict the number
of recomputed changes of the entropic size to the top 20 digrams with the highest priority, so that
the time complexity of this additional step remains O(1). Both algorithms are accomplished in O(n)
expected time; see [13] for details. The memory consumption is larger in the MinEnt case, because each
digram has to be assigned with the additional quantity: the value of the change of the entropic size of
the message.

3.3. Discussion of the Transformation and Compression Function Selection Strategies

To demonstrate the behavior of aforementioned algorithms, we proposed strategies for the
selection of transformations and compression algorithms. We compared the evolution of the entropy
of the alphabet, the entropic size of the message and the final size of the message given as the sum of
the entropic size of the message and the upper boundary on the size of the dictionary (Section 3.3.1).
The following strategies are being compared:

• GCT: selection of the generalized context transformation so that the decrease of entropy
is maximal.

• HOCT: selection of the higher order context transformation so that the decrease of entropy is
maximal in the context of prefix w.

• Re-Pair: selection of the most frequent digram and its replacement with an unused symbol.
• MinEnt: selection of the most entropic size reducing digram and its replacement with an

unused symbol.

Entropy 2017, 19, 223 8 of 23

3.3.1. The Upper Boundary on the Dictionary Entry Size

All transformations and compression functions are usually stored as an entry in a dictionary.
To be able to compare the effectiveness of transformations, we selected the worst case entropy of
each symbol, given by log |Σi|, where Σi is an alphabet and subscript i denotes the number of applied
transformations.

In the GCT and HOCT strategies, the size of the alphabet will be constant, unless some symbols
were completely removed, then the size of the alphabet decreases. Re-Pair and MinEnt algorithms,
which introduce new symbols, have an increasing alphabet size. The upper boundary on the resulting
size of each dictionary entry |D| for GCT and HOCT transformations is defined as:

|D| = 3 log |Σ0|

where |Σ0| is the size of the initial alphabet. The Larsson and Moffat [13] version of the Re-Pair
introduces several efficient ways of dictionary encoding: the Bernoulli model, literal pair enumeration
and interpolative encoding. In our experiments with Re-Pair and MinEnt, we used interpolative
encoding to encode dictionary.

3.3.2. Comparison of the Alphabet’s Entropy Evolution

Even though the transformations and compression functions pursue the same objective,
minimization of the entropic size of the message, they achieve that by a different evolution of zero order
entropy. Transformation-based strategies minimize zero order entropy; meanwhile, both compression
strategies introduce new symbols, and as a result, zero order entropy grows. The initial values of the
quantities of the examined test file are summarized in Table 1. The example of the comparison of the
zero order entropy evolution of different strategies is provided in Figure 1a.

Table 1. Characteristics of the paper5 file from the Calgary corpus: the initial size of alphabet |Σ|, the
initial file size |m0|measured in bytes, the initial entropy H0 measured in bits and the initial entropic
size |m0|H measured in bytes.

File Name |Σ| |m0| H0 |m0|H

paper5 91 11 954 4.936 7 376

(a) (b)

Figure 1. Comparison of zero order entropy evolution over the paper5 file from the Calgary corpus.
(a) Evolution of zero order entropy for different strategies; (b) evolution of zero order entropy for
different values of the limit (LIM) in the HOCT strategy.

Both compression functions achieve a very similar resulting value of zero order entropy.
The Re-Pair strategy begins with the highest growth of entropy, but the increase slows down with
the number of iterations as the frequency of each consecutive digram drops. As will be discussed
in Section 4.2.2, digrams consisting of symbols with a lower frequency will be preferred by MinEnt,

Entropy 2017, 19, 223 9 of 23

because they will be able to achieve a larger decrease of entropic size, and their replacement brings less
costs in the zero order entropy increase. This behavior can be observed especially in later iterations of
the Re-Pair and MinEnt algorithms.

Both transformations reduce the value of zero order entropy. GCT initially drops faster, but in the
end, it significantly slows down. The application of the HOCT strategy achieves the lowest resulting
value of entropy, and the interesting fact is that it decreases at an almost constant rate. The behavior of
entropy evolution for different values of the limit in HOCT is presented in Figure 1b. The unrestricted
case (Lim = 0) shows us the bottom limit of zero order entropy reduction using the HOCT strategy.

3.3.3. Comparison of Entropic Size Evolution

The selection of the most frequent digram will produce the largest decrease of the number of
symbols in each iteration. Surprisingly, the Re-Pair strategy does not necessarily have to converge
to its minimum in the lower number of iterations than MinEnt. Figure 2 presents this behavior for
the paper5 file of the Calgary corpus. Both approaches end with a similar number of symbols in the
resulting message.

Figure 2. Comparison of Re-Pair and MinEnt algorithms: evolution of the message size measured in
the number of symbols over the paper5 file from the Calgary corpus.

The MinEnt strategy achieves the lowest entropic size of the message, and at each iteration,
the entropic size of the message is lower than in the case of the Re-Pair strategy, see Figure 3. The overall
efficiency depends on our ability to compress the resulting dictionary.

Figure 3. Comparison of Re-Pair, MinEnt, GCT and HOCT algorithms: evolution of the entropic
message size measured in bits per byte over the paper5 file from the Calgary corpus.

A summary of different transformation strategies is provided in Table 2. A summary of compression
functions is then given in Table 3. The least number of iterations was achieved by HOCT with LIM = |D|;
this strategy also leads to the least final size |m f |, but it should be emphasized that the resulting
entropic size of the message |m f | is a very pessimistic estimate, due to the construction of the size
of dictionary entries.

Entropy 2017, 19, 223 10 of 23

Table 2. The comparison of transformation strategies using different criteria: LIM is the limiting size
of the dictionary entry in bytes, i is the number of iterations; Hi is the final entropy measured in bits;
|mi|H is the final entropic size measured in bytes; log |Σi| is the upper boundary on the amount of
information needed to store one symbol to dictionary; and |m f | is the final size of the file given as the
sum of the entropic size of the message and the size of the dictionary measured in bytes.

Strategy LIM i Hi |mi|H log |Σi| |m f |

GCT 0 2367 3.796 5674 6.508 11,451
GCT |D| 127 4.260 6366 6.508 6676

HOCT 0 3 821 2.786 4163 6.508 13,488
HOCT 4 1 143 3.528 5272 6.508 8061
HOCT 8 525 3.830 5713 6.508 6994
HOCT |D| 222 4.067 6078 6.508 6439

Table 3. The comparison of compression strategies using different criteria: i is the number of iterations;
|Σi| is the size of the final alphabet; |mi| is the resulting size of the file measured as the number of
symbols; Hi is the final entropy measured in bits; |mi|H is the final entropic size measured in bytes; |Di|
is the average number of bits needed to store one phrase in the dictionary; and |m f | is the final size of
the file given as the sum of the entropic size of the message and the size of the dictionary measured
in bytes.

Strategy i |Σi| |mi| Hi |mi|H |Di| |m f |

Re-Pair 1146 965 2832 9.283 3286 10.240 4753
MinEnt 1129 944 2798 9.395 3286 10.281 4737

Even though the achieved results of both approaches are similar, we see that the resulting message
size |m f | and alphabet size are lower in the case of MinEnt. The message size |m f | is given by the sum
of the entropic size of the message and the size of the dictionary stored by interpolative encoding.
Using values in the columns of Table 3, we express |m f | = |mi|Hi + i|Di|; the term i|Di| represents the
size of the dictionary given as a product of the total number of iterations and the average number of
bits needed to encode one iteration. See Tables 4 and 5 for more results on files from the Calgary and
Canterbury corpora.

Table 4. The comparison of strategies using different criterions, i is the number of iterations, |Σi| is
the size of the final alphabet, |mi| is the resulting size of file measured as the number of symbols, Hi is
the final entropy measured in bits, |mi|H is the final entropic size measured in bytes, |D|/|Σi| is the
average number of bytes needed to store one phrase into the dictionary and |m f | is the final size of the
file given as the sum of entropic size of the message and the size of the dictionary measured in bytes.

File Name |m0| Σ0 H0 i |Σi| |mi| Hi |mi|H |D|
|Σi| |m f |

Calgary corpus

bib 111,261 81 5.257 5469 4216 15,159 11.410 21,621 11.589 29,544
book1 768,771 82 4.528 23,587 22,649 128,059 13.422 214,859 11.904 249,957
book2 610,856 96 4.681 21,147 18,501 82,446 13.213 136,165 12.829 170,079
news 377,109 98 5.226 20,079 13,602 55,500 12.809 88,863 12.761 120,892
obj1 21,504 256 5.929 1650 1475 6464 9.888 7990 10.918 10,242
obj2 246,814 256 6.280 14,635 9569 35,540 12.323 54,743 13.044 78,607

paper1 53,161 95 4.967 3559 2678 8800 10.890 11,979 11.360 17,033
paper2 82,199 91 4.506 4297 3753 14,102 11.235 19,805 11.181 25,811
paper3 46,526 84 4.588 2989 2575 9061 10.767 12,195 10.791 16,227
paper4 13,286 80 4.602 1194 997 3136 9.622 3772 10.130 5284
paper6 38,105 93 5.000 2834 2108 6670 10.585 8826 11.220 12,801
progc 39,611 92 5.282 2854 2066 6526 10.641 8681 11.254 12,696
progl 71,646 87 4.830 4162 2577 7216 10.851 9788 12.003 16,033
progp 49,379 89 4.823 3147 1684 4528 10.272 5814 11.952 10,516
trans 93,695 99 5.545 5918 2505 6513 10.968 8929 12.419 18,116

Entropy 2017, 19, 223 11 of 23

Table 4. Cont.

File Name |m0| Σ0 H0 i |Σi| |mi| Hi |mi|H |D|
|Σi| |m f |

Canterbury corpus

alice29.txt 152,089 74 4.435 6733 6068 25,077 11.985 37,568 11.482 47,232
asyoulik.txt 125,179 68 4.889 5799 5293 23,532 11.774 34,634 10.932 42,559

bible.txt 4,047,392 63 4.260 81,229 71,256 386,094 15.017 724,728 14.525 872 215
cp.html 24,603 86 5.107 1785 1271 4242 9.590 5085 10.689 7470
E.coli 4,638,690 4 2.000 67,368 62,924 652,664 13.725 1,119,687 7.462 1182 530

fields.c 11,150 90 4.924 927 658 1503 9.304 1748 10.822 3002
kennedy.xls 1,029,744 256 3.584 2446 2545 160,177 9.788 195,978 8.274 198 508

lcet10.txt 426,754 84 4.627 14,515 12,395 55,691 12.759 88,823 12.426 111,369
ptt5 513,216 159 1.049 5995 5697 30,463 11.424 43,503 11.178 51,880

random.txt 100,000 64 6.000 5065 5126 54,182 11.182 75,731 3.983 78,253
sum 38,240 255 5.447 3116 1749 6251 10.290 8041 11.912 12,681

world192.txt 2,473,400 94 5.024 55,473 47,150 212,647 14.552 386,808 13.973 483 705
xargs.1 4227 74 4.863 468 384 990 8.255 1022 9.811 1596

Table 5. The comparison of the strategies using different criteria: i is the number of iterations; |Σi| is
the size of final alphabet; |mi| is the resulting size of the file measured as the number of symbols; Hi is
the final entropy measured in bits; |mi|H is the final entropic size measured in bytes; |D|/|Σi| is the
average number of bytes needed to store one phrase in the dictionary; and |m f | is the final size of the
file given as the sum of entropic size of the message and the size of the dictionary measured in bytes.

File Name |m0| |Σ0| H0 i |Σi| |mi| Hi |mi|H |D|
|Σi| |m f |

Calgary corpus

bib 111,261 81 5.201 5513 4150 15,103 11.307 21,346 11.717 29,421
book1 768,771 82 4.527 23,843 22,616 127,777 13.377 213,656 12.134 249,822
book2 610,856 96 4.793 20,852 17,997 80,814 13.170 133,045 12.847 166,533
news 377,109 98 5.190 20,118 13,388 55,347 12.697 87,845 12.918 120,333
obj1 21,504 256 5.948 1638 1418 6459 9.727 7853 11.135 10,133
obj2 246,814 256 6.260 14,673 9337 35,510 12.173 54,031 13.218 78,275

paper1 53 161 95 4.983 3579 2633 8726 10.741 11,716 11.413 16,822
paper2 82,199 91 4.601 4247 3612 13,797 11.088 19,123 11.221 25,080
paper3 46,526 84 4.665 3004 2529 8993 10.676 12,002 10.892 16,092
paper4 13,286 80 4.700 1136 930 3133 9.232 3615 10.288 5076
paper6 38,105 93 5.010 2841 2080 6662 10.398 8659 11.297 12,671
progc 39,611 92 5.199 2871 2034 6530 10.444 8525 11.307 12,583
progl 71,646 87 4.770 4175 2495 7134 10.742 9579 12.100 15,894
progp 49,379 89 4.869 3145 1631 4509 10.166 5730 12.194 10,524
trans 93,695 99 5.533 5916 2425 6515 10.736 8743 12.713 18,145

Canterbury corpus

alice29.txt 152,089 74 4.568 6649 5903 24,825 11.767 36,516 11.573 46,135
asyoulik.txt 125,179 68 4.808 5804 5220 23,359 11.563 33,764 11.018 41,758

bible.txt 4,047,392 63 4.343 77,117 66,593 386,092 14.649 706,991 14.543 847,187
cp.html 24,603 86 5.229 1748 1212 4313 9.462 5101 10.897 7482
E.coli 4,638,690 4 2.000 66,995 62,463 652,663 13.717 1,119,067 7.667 1,183,281

fields.c 11,150 90 5.008 868 587 1606 8.724 1751 11.013 2946
kennedy.xls 1,029,744 256 3.573 2612 2511 159,999 10.012 200,240 8.575 203,040

lcet10.txt 426,754 84 4.669 14,506 12,178 54,937 12.661 86,941 12.462 109,539
ptt5 513,216 159 1.210 23,203 6314 94,463 4.566 53,918 12.308 89,618

random.txt 100,000 64 5.999 5145 5209 54,011 11.235 75,854 4.075 78,475
sum 38,240 255 5.329 3130 1683 6245 10.034 7833 12.184 12,600

world192.txt 2,473,400 94 4.998 54,946 45,920 212,499 14.340 380,896 14.078 477,588
xargs.1 4227 74 4.898 342 326 1235 7.755 1197 9.988 1624

4. Zero Order Entropy and Entropic Message Size Reduction

The primary purpose of context transformation and other derived transformations is to reduce
the zero order entropy measured by Shannon’s entropy [2] defined in Equation (1). In this section,
we shall show under what conditions the transformation and compression function reduces zero order
entropy resp. the entropic size of the message. Suppose that H0 is a zero order entropy of message m,
and H1 is a zero order entropy after a transformation T is applied. The conditions under which the
following inequalities hold are the major subject of interest.

Entropy 2017, 19, 223 12 of 23

∆H = H0 − H1 = ∑
x∈Σ

p1(x) log p1(x)− ∑
x∈Σ

p0(x) log p0(x) > 0 (5)

Let ΣT ⊂ Σ be a set of symbols whose frequencies before and after transformation differ,
and ΣI ⊂ Σ is a set of symbols whose frequencies are intact. For transformations, the inequality (5) can
be further restricted only to the set of symbols ΣT , since the terms containing symbols from ΣI subtract:

∆H = ∑
x∈ΣT

p1(x) log p1(x)− ∑
x∈ΣT

p0(x) log p0(x) (6)

In the following paragraph, we will specify the forms of the set ΣT and the relations for the
probabilities of its symbols after transformations, so that the change of entropy given by Equation (6)
can be computed before any transformation actually occurs.

4.1. Transformation of Probabilities

We begin with the simplest case: suppose the context transformation CT(αβ→ αγ, w). Since only
the probabilities of symbols β and γ will change, then ΣCT = {β, γ}, and it is sufficient to express
probabilities only for β and γ:

pCT
1 (β) = p0(β)− p0(α, β) (7)

and:

pCT
1 (γ) = p0(γ) + p0(α, β) (8)

In the case of the generalized context transformation GCT(αβ↔ αγ, w), the set ΣCT = ΣGCT is
identical, and the probabilities transform according to:

pGCT
1 (β) = p0(β)− p0(α, β) + p0(α, γ) (9)

and:

pGCT
1 (γ) = p0(γ) + p0(α, β)− p0(α, γ) (10)

In the last case of higher order transformation, the probabilities transform according to:

pHOCT
1 (β) = p0(β)− p0(w, β) + p0(w, γ) (11)

and:

pHOCT
1 (γ) = p0(γ) + p0(w, β)− p0(w, γ) (12)

In all cases, the set ΣT forms a binary alphabet. The following theorem then describes the condition
for zero order entropy reduction:

Theorem 1. Suppose the generalized context transformation GCT(αβ ↔ αγ). Let p0(β) and p0(γ) be
the probabilities of symbols before the transformation is applied, and let p0,max = max{p0(β), p0(γ)}.
After the transformation, the associated probabilities are p1(β), p1(γ) and p1,max = max{p1(β), p1(γ)}.
If p1,max > p0,max, then the generalized context transformation T reduces entropy.

The proof of Theorem 1 is based on the properties of entropy when only two letters from alphabet
Σ are considered. Let p(β) + p(γ) = c, where c ≤ 1, c is invariant, it does not change during
the transformation. We can express one of these probabilities using the other one; for example,
let p(γ) = c− p(β); this allows us to express the entropy function as a function of only one variable.

Entropy 2017, 19, 223 13 of 23

A few examples of such functions are shown in Figure 4. The maximum value of the function is located
in the value c/2, and it has two minimums at zero and at c.

Figure 4. The entropy of two letters with different ci ∈ {0.25, 0.5, 1.0}.

Proof. Since the entropy function for two different letters is defined on the interval 〈0; c〉 and it is
concave with a maximum at c/2 and minimums at zero and c, then p0,max has to be located on the
interval p0,max ∈ 〈c/2; c〉; but on that particular interval, the higher the maximum is, the lower the
entropy is, so if we increase the maximum (or we can say increase the absolute value of the difference
|pβ − pα|), then the entropy will decrease.

4.2. General Entropy Change Relations

In this section, we generalize the notion of zero order entropy change on the exchange of any
two words. The solution is divided into three parts. The first part deals with the set of symbols ΣI

whose frequency does not change before and after the substitution function is applied; the second
part establishes relations for the set of symbols ΣT whose probability is changed, but their initial and
final frequencies are non-zero; the third part discusses symbols introduced to and removed from the
alphabet. Let ΣR be a set of removed symbols, and ΣN is a set of introduced symbols; then, we can
split the sum in Equation (1), yielding:

H(X) = − ∑
α∈{I,T,R,N}

∑
x∈Σα

p(x) log p(x) (13)

The four sets of symbols in Equation (13) exhibit different behaviors under the substitution
function, and they will be discussed in separate sections. The entropic size of the message |m|H can
also be handled separately; let H(p(Σα)) be a portion of entropy conveyed by symbols from alphabet
Σα, and let |m|H(Σα) be particular portions of the entropic size of the message; then, we can split the
resulting entropic size as we did before:

|m|H = |m|[H(p(ΣI)) + H(p(ΣT)) + H(p(ΣR)) + H(p(ΣN))]

= |m|H(p(ΣI)) + |m|H(p(ΣT)) + |m|H(p(ΣR)) + |m|H(p(ΣN))

= |m|H(ΣI) + |m|H(ΣT) + |m|H(ΣR) + |m|H(ΣN)

(14)

4.2.1. The First Part: Symbols Remaining Intact by the Substitution Function

We begin with symbols that are not part of either of the substituting words s1 or s2. Suppose that
the length |m0| of the message m0 turns into some message m1 of the size |m1|. Generally, |m0| 6= |m1|,
but in a special case of context transformations, these two quantities are equal. However, when the

Entropy 2017, 19, 223 14 of 23

compression or expansion of the message occurs, the part of the Shannon equation will also change
due to the change in the total number of symbols.

Suppose that the symbol x is initially in the message m0 with the probability p0(x). This probability
can be expressed using the frequency f0(x) and the size of the message as:

p0(x) =
f0(x)
|m0|

(15)

Later, after the transformation was applied, the probability changes to:

p1(x) =
f0(x)

|m0|+ ∆m
(16)

where ∆m is a change of the message size. In the case of context transformations where the message
size remains the same size, the probability remains the same, as well as the part of entropy formed by
non-transformed symbols.

When the two probabilities are placed in relation by some stretching factor c1 we arrange them
into the form:

p1(x) = c1 p0(x) (17)

The factor c1 (the introduction of c1 is motivated by the properties of logarithms if we would
actually stay with p1(x) given by Equation (16), we would get logarithm log f0(x)

|m0|+∆m = log f0(x)−
log (|m0|+ ∆m). If instead, we express p1 using (17), then the logarithm is in product form, and its
arguments are single numbers log cp0 = log c + log p0) can be expressed by substitution of pi(x) in
Equation (17) by the terms in Equations (15) and (16), leading to:

f0(x)
|m0|+ ∆m

= c1
f0(x)
|m0|

c1 =
|m0|

|m0|+ ∆m
(18)

Then, the relation for zero order entropy after transformation will have the form:

H(p1(ΣI)) = − ∑
x∈ΣI

c1.p0(x) log [c1.p0(x)]

= −c1 ∑
x∈ΣI

p0(x)[log c1 + log p0(x)]

= −c1 log c1 ∑
x∈ΣI

p0(x)− c1 ∑
x∈ΣI

p0(x) log p0(x)

= −c1 log c1 ∑
x∈ΣI

p0(x) + c1H(p0(ΣI))

= c1[H(p0(ΣI))− log c1 ∑
x∈ΣI

p0(x)]

(19)

The example of the behavior of H(p1(ΣI)) of the intact part is visualized in Figure 5. When the
compression of the message occurs, i.e., log c1 > 0, then the zero order entropy of intact symbols
increases. The less the probability is conveyed by symbols from ΣI , the more their zero order entropy
is sensitive to the change of c1.

Entropy 2017, 19, 223 15 of 23

Figure 5. The portion of entropy H(p1(ΣI)) given by symbols from ΣI as a function of c1 for the
constant H(p0(ΣI)) = 4 and ∑ p0(x) ∈ {0.2, 0.5, 0.8}.

The final entropic size is given as follows:

|m1|H,ΣI = |m1|H(p1) = |m1|c1[H(p0(ΣI))− log c1 ∑
x∈ΣI

p0(x)]

= |m0|H(p0(ΣI))− |m0| log c1 ∑
x∈ΣI

p0(x))

= |m0|H,ΣI − |m0| ∑
x∈ΣI

p0(x) log c1

= |m0|H,ΣI − log c1 ∑
x∈ΣI

f0(x)

(20)

If we apply one of transformations, then ∆m = 0, and as a consequence, c1 = 1; the last term on
the right will be zero due to log c1 = 0, so Equation (20) tells us that the entropic size of the message
carried by these symbols does not change during transformation. When |ΣT | is much smaller than
|ΣI |, it is convenient to rewrite Equation (20) in terms of ΣT :

|m1|H,ΣI = |m0|H,ΣI − log c1[|m0| − ∑
x∈ΣT

f0(x)] (21)

Corollary 1. No compression function ever increases the entropic size of the part of the message consisting of
intact symbols.

Proof. The compression function has the value of c1 larger than one, as a consequence log c1 > 0,
and so, |m1|H(ΣI) ≤ |m0|H(ΣI).

The equality in |m1|H,ΣI ≤ |m0|H,ΣI occurs when ∑x∈ΣI f0(x) = 0, i.e., when there are no
intact symbols. When the expansion of the message occurs, then log c1 < 0 and the second term
of Equation (20) on the right will change to a positive number. Expansion of the message leads to
the increase of the entropic size; meanwhile, compression leads to the decrease of the entropic size of
intact symbols.

In each iteration of the Re-Pair algorithm, the most frequent digram is selected. This corresponds
to the selection of a digram with maximal value of log c1, but it does not have to be the digram
minimizing the entropic size of this part of the resulting message the most. Consider two digrams d1

and d2, so that their frequencies are equal: f (d1) = f (d2); replacing them with a new symbol yields
the same stretching factor c1, but not necessarily ∑x∈ΣI f0(x). The larger reduction of the entropic size
of a message will be achieved when compressed digrams or words consist of less frequent symbols.

Entropy 2017, 19, 223 16 of 23

4.2.2. The Second Part: Symbols Participating in the Substitution Function

In the second case, the frequencies of symbols and their total number will change. The equation
for stretching factor c2 will be derived in the following way:

p1(x) =
f1(x)
|m1|

=
f0(x) + ∆ f (x)
|m0|+ ∆m

f0(x) + ∆ f (x)
|m0|+ ∆m

= c2
f0(x)
|m0|

The main difference in both cases is that c1 is a constant; meanwhile, c2 is a function of the
particular symbol x.

c2(x) =
(f0(x) + ∆ f (x))|m0|

f0(x)(|m0|+ ∆m)
=

f0(x) + ∆ f (x)
f0(x)

c1 = F(x)c1 (22)

where in the last step, we made the substitution: F(x) = (f0(x) + ∆ f (x))/ f0(x) The rest of the
derivation follows the derivation of Equation (19).

H(p1(ΣT)) = − ∑
x∈ΣT

p0(x)c2(x) log c2(x)− ∑
x∈ΣT

c2(x)p0(x) log p0(x) (23)

The behavior of Equation (23) for different values of p0(x) is visualized in Figure 6.
The substitution of less frequent symbols leads to a lower increase of zero order entropy.

Figure 6. Dependency of H(p1(ΣT)) on different values of c2 for three cases of p0(x) ∈ {0.05, 0.1, 0.2}.

The resulting entropic size simplifies given that:

|m1|c2(x)p0(x) = f0(x) + ∆ f (x) = f1(x) (24)

yields:

|m1|H = |m1|HT(p1)

= − ∑
x∈ΣT

[f0(x) + ∆ f (x)](log c2(x) + log p0(x)) (25)

We now analyze both terms in (25) from the perspective of different values of c2(x). We will
be particularly interested in compression functions. We know that for compression function c1 > 1,
symbols with ∆ f (x) < 0, i.e., symbols whose frequency decreases, will have F(x) < 1. The positivity
or negativity of log c2 then depends on the value of product F(x)c1.

Entropy 2017, 19, 223 17 of 23

The case when F(x)c1 = 1 has a solution F(x) = 1/c1, then log c2(x) = 0. The term log p0(x)
is always negative. The value of F(x) must be larger than 1/c1 to decrease the zero order entropy
conveyed by symbol x, since then, c2(x) > 1 and, as a consequence, log c2(x) > 0.

F(x) >
1
c1

f0(x) + ∆ f (x)
f0(x)

>
|m0|+ ∆m
|m0|

1 +
∆ f (x)
f0(x)

> 1 +
∆m
|m0|

∆ f (x)
f0(x)

>
∆m
|m0|

|∆ f (x)|
f0(x)

<
|∆m|
|m0|

|∆ f (x)|
|∆m| <

f0(x)
|m0|

= p0(x)

(26)

The introduction of the absolute value in the middle step of the derivation of Inequality (26) is
allowed since using compression functions values of ∆ f (x) and ∆m can only be negative. Suppose now
that we have a digram d = αβ, given that α 6= β, and we replace it by the newly-introduced γ,
then ∆m = ∆ f (α) = ∆ f (β). The left part of Inequality (26) becomes equal to one, so Inequality (26)
cannot be satisfied, and log c2(x) in this case will be negative and will always increase the amount of
information carried by the symbols α and β.

Finally, we state the condition for the entropic size decrease:

Corollary 2. The entropic size of the part of the message formed by symbol x decreases when:

∆ f (x)
f0(x)

< − log c2(x)
log c2(x) + log p0(x)

(27)

Proof.

|m1|H < |m0|H

[f0(x) + ∆ f (x)][log c2(x) + log p0(x)] < f0(x) log p0(x)

f0(x) log c2(x) + ∆ f (x) log p0(x) + ∆ f (x) log c2(x) < 0

∆ f (x)(log p0(x) + log c2(x)) < − f0(x) log c2(x)

∆ f (x)
f0(x)

< − log c2(x)
log c2(x) + log p0(x)

4.2.3. Third Part: Introduced and Removed Symbols

We begin with symbol x, which is completely removed from the message, so that initially,
p0(x) 6= 0, but p1(x) = 0. This case is trivial, and it has zero participation in the final value of the
entropy and the entropic size of message. The remaining case we have to deal with is a case when
initially symbol x has zero probability p0(x) = 0, but after substitution, its probability will increase to
some p1(x) 6= 0. The final probability is given as:

p1(x) =
∆ f (x)
|m0|+ ∆m

(28)

Entropy 2017, 19, 223 18 of 23

Since the symbol x initially has zero participation in entropy and entropic size, it will always lead
to the increase of both quantities. For the set ΣN of all such symbols, its portion on total entropy is
then given by:

H(p1(ΣN)) = − ∑
x∈ΣN

∆ f (x)
|m0|+ ∆m

log
∆ f (x)
|m0|+ ∆m

(29)

and the corresponding final entropic size will be given by:

|m1|H = |m1|HN(p1)

= − ∑
x∈ΣN

∆ f (x)[log ∆ f (x)− log (|m0|+ ∆m)] (30)

It is important to remark that it does not make much sense to introduce more than one symbol in
one substitution function, because both quantities would then add themselves twice.

4.3. Calculation of ∆|m|H

At first glance, it seems that we need to evaluate all symbols to predict zero order entropy,
but instead, it is possible to predict the exact change of the entropic size of the message after the
application of the compression function by the evaluation of entropic sizes given by Equations (21),
(25) and (30) dealing only with symbols x ∈ Σ \ ΣI . In the particular case of the Re-Pair algorithm,
there are only two symbols whose frequency knowledge is sufficient to evaluate the change of the
entropic size of the message; suppose a compression function CF(αβ→ γ) so that p1(α) 6= 0, p1(β) 6= 0
and p0(γ) = 0, then the resulting entropic size is given as:

∆|m|H = |m0| log c1 − log c1 ∑
x∈{α,β}

f0(x)

+ ∑
x∈{α,β}

f0(x) log c2(x) + ∆ f0(x) log p0(x) + ∆ f0(x) log c2(x)

− ∆ f (γ)[log ∆ f (γ)− log (|m0|+ ∆m)]

(31)

finally, for the Re-Pair, it holds that if α 6= β, then ∆m = ∆ f (α) = ∆ f (β) = ∆ f (γ) = f (α, β), and all
∆’s in (31) turn into f (αβ). If α = β, then ∆ f (α)/2 = ∆ f (γ).

5. Conclusions

We described three types of transformations for the preprocessing of messages so that the zero
order entropy of messages drops so the resulting message can be more efficiently encoded using zero
order entropy compression algorithms like Huffman or arithmetic coding.

We presented relations that govern the change of the message size for transformations and
compression functions. Transformations have the advantage that they do not modify the size of the
alphabet, especially in the case of digram substitution used by Re-Pair and our proposal of the MinEnt
strategy; the resulting size of the alphabet significantly grows, and it brings additional complexity in
the storage of the entropy coding model, i.e., the storage of the output alphabet.

The MinEnt strategy selects digrams to be replaced by the minimal entropic size of the resulting
message, and it is shown that in most cases, the resulting message size is smaller than the one
achieved by Re-Pair. We also showed that the two algorithms follow slightly different execution paths,
as MinEnt prefers digrams that consist of less frequent symbols; meanwhile, Re-Pair does not take this
into consideration.

The compression functions take advantage of transformations as they achieve a better resulting
compression ratio. In future work, we will focus on the storage of the dictionary that will be used in
transformation algorithms, because this area can significantly improve the resulting compression ratio.

Entropy 2017, 19, 223 19 of 23

Further, we will focus on the description of the relation between the entropy coding model of the final
message and the size of the final alphabet.

Acknowledgments: This work was supported by the project SP2017/100 Parallel processing of Big Data IV, of the
Student Grant System, VSB-Technical University of Ostrava. The costs for open access were covered.

Author Contributions: Michal Vasinek realized this work, proposed and developed the implementation of the
CT, GCT, HOCT and MinEnt algorithms. Jan Platos provided the guidance during the writing process and
revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The following sections present properties of transformations. Specifically for each type of
transformation we will provide a proof of the inverse transformation existence. Further we will
describe how the frequencies of symbols will be altered if the particular transformation is going to
be applied.

Appendix A.1. CT—Proof of the Correctness

This theorem defines the inverse transformation of the context transformation:

Theorem A1. The context transformation CT−1 ≡ CT→(αγ→ αβ) is inverse transformation of the context
transformation CT←(αβ→ αγ).

Proof. Let CT−1 ≡ CT→, if CT−1 is inverse then the following must be true for any message m:
CT−1(CT(m)) = m. Suppose that we are passing message m from the end to the beginning and
suppose that in positions i and i + 1 digram αβ is located, this digram is replaced by αγ, the next pair
of positions explored are i − 1 and i, but their value is independent of the preceding replacement,
because the replacement has taken place in position i + 1, so when CT−1 is applied in position i it will
find there the digram αγ and reverts it back to αβ.

Other combinations of directions do not form a pair of transformation and its inverse. We give
an example for each case showing this property: CT→(αβ → αα) and CT−1

← over the message
m = αβα: CT→(αβα) = ααα but CT−1

← (ααα) = αββ 6= αβα. Next consider CT→(αβ → αα) and
CT−1
→ over the message m = ααβ: CT→(ααβ) = ααα but CT−1

→ (ααα) = αβα 6= ααβ. And in the last
case let’s consider CT←(αβ → αα) and CT−1

← over the message m = αβα: CT→(ααβ) = ααα but
CT−1
→ (ααα) = αββ 6= ααβ.

Let f0(αγ, m) = 0 is a number of occurrences of particular digram αγ in a message m,
then the following corollary tells us how many digrams αγ is introduced by context transformation
CT→(αβ→ αγ):

Corollary A1. Under assumption that α 6= γ the number of occurrences of digrams αγ and αβ after application
of transformation CT→(αβ→ αγ) is f1(αγ, CT(m)) = f0(αβ, m) and f1(αβ, CT(m)) = 0.

Proof. A proof is a consequence of Theorem A1, since each replacement is independent of each other
and so each digram αβ is replaced by αγ leaving f1(αβ) = 0 and f1(αγ) = f0(αβ).

The corollary allows us to precisely predict not only the frequencies of the interchanged digrams αβ

and αγ but also as a consequence the frequencies of individual symbols after transformation. The special
case of transformations on a diagonal (see Definition A1) will be discussed in the next paragraph.

Appendix A.2. Diagonal Context Transformation

Diagonal transformation is a transformation where one of the digrams participating in the
transformation is of the form αα. The resulting frequency of such a digram is unpredictable without

Entropy 2017, 19, 223 20 of 23

knowledge of the distribution of all n-grams of the form αn, where n ≥ 2, but we show that for any
diagonal CT, it is possible to predict frequencies of symbols α and β. The problems with predictability
arise from the repetition of symbols.

Definition A1. Diagonal context transformation is a context transformation of the form CT←(αα→ αβ).

Consider two transformations, CT1 ≡ CT←(αα → αβ, ααα) = αββ and CT2 ≡ CT←(αβ →
αα, αβα) = ααα, if Corollary A1 would also be valid for diagonal transformations, then for instance in
the case of CT1, the frequency f1(αβ) = f0(αα) but this obviously is not true, instead we see that the
new frequency f (β) of symbol β is f1(β) = f0(αα).

Suppose we have a message s = αn, then CT1(s) = αβn−1, we clearly see that the frequency
f (αβ, CT1(s)) = 1 and f (ββ, CT1(s)) = n− 2, because the number of digrams in a message is given
by the length of the message minus one. We can now express the frequency f (αβ, CT1(m)) of the
newly introduced occurrences of digram αβ as a sum of all sub-messages enclosed in m in the form
xsx, where x 6= α for all n ≥ 2. So we see that it is possible to precisely predict the change of frequency
of αβ, but it demands knowledge of the distribution of all enclosed sub-messages s.

From the other perspective, since each occurrence of digram αα in the former message
is transformed into αβ we can see that the frequency f1(β, CT1(m)) = f0(β) + f0(αα) and
f1(α, CT1(m)) = f0(α, m)− f0(αα).

Very similar behavior is observed in the second case of CT2. The problem is in the repetition
of the pattern t = (αβ)n, then CT2(t) = α2n and f1(αα) = 2n− 1. Again without knowledge of all
sub-messages t enclosed in m we cannot predict the exact change of frequency of neither digram
αα nor αβ, but since we know that each pair αβ in the former message will be transformed to
αα, we can again precisely predict frequencies of individual symbols f1(α) = f0(α) + f0(α, β) and
f1(β) = f0(β)− f0(αβ).

With the knowledge of the preceding discussion and of Corollary A1 we conclude that for any
context transformation CT we are able to compute the frequency and corresponding probability of
arbitrary symbol after application of any CT from the knowledge of initial distribution of symbols
and digrams. In [26] we showed that under certain conditions it is possible to process several context
transformations simultaneously.

Appendix A.3. GCT—Frequencies Alteration

Corollary A2. Under assumption that α 6= γ, α 6= β and β 6= γ the number of occurrences of digrams
αγ and αβ after application of transformation GCT←(αβ ↔ αγ) is f1(αγ, GCT(m)) = f0(αβ, m) and
f1(αβ, GCT(m)) = f0(αγ, m).

Proof. Since each digram αβ resp. αγ is replaced by αγ resp. αβ, and neither of the digrams influence
the transformation of the other, their frequencies must interchange.

Appendix A.4. Generic Transformation—Proof of Correctness

Generic transformation GT exchanges any two digrams. In the design of algorithms, we prefer
GCT over GT since the space from which generic transformations are selected is in this case of order
the |Σ|4 and when alphabets of the large size are dealt with, the search in such a space would be
computationally very expensive.

Definition A2. Generic transformation (GT) is the mapping GT(αβ↔ γρ, w) : Σn → Σn, Σ is the alphabet
of the input message w and n is the length of the input message, that exchanges all digrams αβ for digram γρ

and vice-versa.

The inverse transformation of GCT and GT is defined by the following theorem:

Entropy 2017, 19, 223 21 of 23

Theorem A2. Generic transformation GT−1 ≡ GT←(αβ ↔ γρ) resp. GT−1 ≡ GT→(αβ ↔ γρ) is the
inverse of generic transformation GT→(αβ↔ γρ) resp. GT←(αβ↔ γρ)

Proof. First, we show that it is sufficient to prove that for any string s = xwx, it holds that
GT−1(GT(s)) = s, where x /∈ ΣGT = {α, β, γ, ρ} and w[i] ∈ ΣGT. Suppose that x is located in
position p then for digrams d in positions (p− 1, p) and (p, p + 1) it holds that GT(d) = d. So the
first possible application of GT can occur in positions (p− 2, p− 1) and (p + 1, p + 2) and these are
independent, i.e., non-overlapping.

Next, we show that each replacement made in the forward transformation will be reverted back by
inverse transformation. Take for example transformation GT←(αβ↔ γρ) the transformation is applied
in the right to left direction. The last applied forward transformation in positions (r, r + 1) replaces for
instance digram αβ for γρ leaving w[r, r + 1] = γρ, the inverse transformation, by definition the same
transformation applied in the opposite direction, reverts digram γρ back to αβ. Now consider any
triplet of positions (r− 1, r, r + 1) in a transformed message, the input of the inverse transformation in
(r, r + 1) is dependent on the result of the inverse transformation in the preceding pair of positions,
but as we saw the first applied inverse reverted digram back correctly so the state in positions
(r + 1, r + 2) is exactly like the one of the state left by forward transformation in these positions,
so any other digram will be reverted back correctly, because every preceding application of the inverse
leaves the state of the digram in the state that was left by the forward transformation and this digram
is trivially reverted back to initial state. The same rules are valid for GT in the opposite direction,
since the transformation GT←(m) = GT→(mT), where mT is a mirror message of m.

Appendix A.5. HOCT—Proof of the Correctness

The following trivial Lemma will help us to formulate a theorem about inverse transformation
to HOCT:

Lemma A1. Let T = HOCT(wβ↔ wγ, m, P(w, m)) is a higher order context transformation over the input
message m, given that we possess the knowledge of w and positions P(w, m), then T−1 = T.

Proof. Because we don’t have to pass through the whole message either in the forward or inverse
transformation case, but only through the set of positions P(w, m), then the symbol in position
i ∈ P(w, m), for instance m[i] = β will switch by HOCT to m[i] = γ and by repeated application of
HOCT it reverts back to m[i] = β.

The Lemma A1 is trivial but comes into play when P(w, m) is a product of some other higher
order context transformation, i.e., the one with an order lower by one.

Theorem A3. Let m1 = HOCT1(wα↔ wβ, m, P(w, m)) and m2 = HOCT2(wαγ↔ wαρ, m1, P(wα, m1))

are two higher order context transformations. Let T(m) = HOCT2(HOCT1(m)) be a transformation
composition of two higher order context transformations over input message m. Then HOCT−1

2 (wαγ ↔
wαρ, m3, P(wβ, m3)), such that m3 = HOCT1(m2)) then the transformation composition T−1 ≡
HOCT−1

2 (HOCT1(m2)) = m is the inverse transformation of T.

Several remarks to the formulation of Theorem A3: Transformations HOCT1 and HOCT2 are
applied over two consecutive states of the message. The positions P(wα, m1) correspond to the
positions P(wβ, m), since sub-messages wα have been replaced by wβ in the application of HOCT1.
The inverse transformation by HOCT−1

2 is applied instead over positions P(wβ, m3), since these
positions have already been reverted back by HOCT1.

The proof is based on the restriction that w[0] 6= w[i], i > 0, it can be viewed as we would split
the input message m to sub-messages si separated by w[0]. For instance, suppose that w[0] is a space
character in ordinary text, since, by Definition 3, no other character in w can be a space character,

Entropy 2017, 19, 223 22 of 23

it follows that the possible transformations are being applied on words following the space character.
Now using the fact that si is enclosed by w[0], i.e., they do not overlap, allows us to handle each
sub-message si independently.

Proof. For the two sets of positions, it holds that P(w, m) ∩ P(wα, m1) = ∅, because elements of the
former are predecessors of the latter and s does not overlap. The locations of w in m and m2 are
identical as they were not modified during HOCT, i.e., P(w, m) = P(w, m2). When we apply HOCT1

again it will simply revert the symbols in positions given by P(w, m) back according to Lemma A1
yielding the message state m3. In the forward transformation HOCT2 was applied over positions of
P(wα, m1), but these are the former positions of P(wβ, m), that are already transformed back by the
application of HOCT1, so P(wα, m1) is equal to P(wβ, m3) and when HOCT2 is applied over positions
P(wβ, m3) it exchanges symbols γ and ρ and eventually yields m.

The recursive application of Theorem A3 leads to the conclusion that this process can be repeated
until there is no other pair of symbols then these containing w[0] as one of the symbols α or β or we
simply reach the end of the message.

Corollary A2 about the prediction of frequencies in the case of GCT is also applicable in the case
of HOCT, because the principle that the exact number of replacements is known is also valid and we
are able to precisely compute the future probabilities of symbols before the arbitrary HOCT is applied.

If we implement the inverse algorithm as a sequential algorithm operating in the left-right manner,
it is possible to have one of the transformation symbols if β, γ is equal to w[0]. Suppose the following
example: m = abcabc, P(a, m) = {0, 3}, HOCT1(ab↔ aa) and HOCT2(aac↔ aaa) yielding the output
message m2 = aaaaaa. Now applying inverse transformation sequentially from left to right, we first
replace aa by ab yielding mi = abaaaa, then applying replacement aba for abc yielding mi+1 = abcaaa,
now because there is no other transformation that is induced from abc we know that the next a symbol
is w[0] and we can repeat the preceding process again starting from this a. The sufficient condition for
the introduction of w[0] as the transformation symbol β or γ is that w contains no other w[0] in w[i],
i > 0, because the inverse process removes all introduced w[0] symbols from the transformed message
during left to right sequential inverse transformation.

References

1. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and
Signal Processing); Wiley-Interscience: New York, NY, USA, 2006.

2. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423.
3. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. Inst. Radio Eng. 1952,

40, 1098–1101.
4. Witten, I.H.; Neal, R.M.; Cleary, J.G. Arithmetic Coding for Data Compression. Commun. ACM 1987,

30, 520–540.
5. Charikar, M.; Lehman, E.; Lehman, A.; Liu, D.; Panigrahy, R.; Prabhakaran, M.; Sahai, A.; Shelat, A.

The Smallest Grammar Problem. IEEE Trans. Inf. Theory 2005, 51, 2554–2576.
6. Nevill-Manning, C.G. Inferring Sequential Structure. Ph.D. Thesis, University of Waikato, Hamilton,

New Zealand, May 1996.
7. Nevill-Manning, C.G.; Witten, I.H. Identifying Hierarchical Structure in Sequences: A Linear-time Algorithm.

J. Artif. Int. Res. 1997, 7, 67–82.
8. Kieffer, J.C.; Yang, E.-H. Grammar Based Codes: A New Class of Universal Lossless Source Codes. IEEE Trans.

Inf. Theory 2000, 46, 737–754.
9. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory

1978, 24, 530–536.
10. Yang, E.; He, D. Efficient universal lossless data compression algorithms based on a greedy sequential

grammar transform 2. With context models. IEEE Trans. Inf. Theory 2003, 49, 2874–2894.
11. Gage, P. A New Algorithm for Data Compression. C Users J. 1994, 12, 23–38.

Entropy 2017, 19, 223 23 of 23

12. Nakamura, H.; Marushima, S. Data Compression by Concatenation of Symbol Pairs. In Proceedings of the
IEEE International Symposium on Information Theory and Its Applications, Paris, France, 13–17 September
1996; pp. 496–499.

13. Larsson, N.J.; Moffat, A. Off-line dictionary-based compression. Proc. IEEE 2000, 88, 1722–1732.
14. Claude, F.; Farina, A.; Navarro, G. Re-Pair Compression of Inverted Lists. arXiv 2009, arXiv:cs.IR/0911.3318.
15. Masaki, T.; Kida, T. Online Grammar Transformation Based on Re-Pair Algorithm. In Proceedings of the

Data Compression Conference (DCC), Snowbird, UT, USA, 29 March–1 April 2016; pp. 349–358.
16. Grassberger, P. Data Compression and Entropy Estimates by Non-sequential Recursive Pair Substitution.

Physics 2002, arXiv:physics/0207023.
17. Calcagnile, L.M.; Galatolo, S.; Menconi, G. Non-sequential recursive pair substitutions and numerical

entropy estimates in symbolic dynamical systems. arXiv 2008, arXiv:cond-mat.stat-mech/0809.1342.
18. Navarro, G.; Russo, L. Re-pair Achieves High-Order Entropy. In Proceedings of the Data Compression

Conference, DCC 2008, Snowbird, UT, USA, 25–27 March 2008; p. 537.
19. Vasinek, M.; Platos, J. Entropy Reduction Using Context Transformations. In Proceedings of the Data

Compression Conference (DCC), Snowbird, UT, USA, 26–28 March 2014; p. 431.
20. Vasinek, M.; Platos, J. Generalized Context Transformations—Enhanced Entropy Reduction. In Proceedings

of the Data Compression Conference (DCC), Snowbird, UT, USA, 7–9 April 2015; p. 474.
21. Vasinek, M.; Platos, J. Higher Order Context Transformations. arXiv 2017, arXiv:cs.IT/1701.01326.
22. Kida, T.; Matsumoto, T.; Shibata, Y.; Takeda, M.; Shinohara, A.; Arikawa, S. Collage System: A Unifying

Framework for Compressed Pattern Matching. Theor. Comput. Sci. 2003, 298, 253–272.
23. González, R.; Navarro, G. Compressed Text Indexes with Fast Locate. In Proceedings of the 18th

Annual Conference on Combinatorial Pattern Matching, CPM’07, London, ON, Canada, 9–11 July; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 216–227.

24. Claude, F.; Farina, A.; Navarro, G. Re-Pair compression of inverted lists. arXiv 2009, arXiv:0911.3318.
25. Vasinek, M. Kontextove Mapy a Jejich Aplikace. Master’s Thesis, Vysoka Skola Banska—Technicka

Univerzita Ostrava, Ostrava, Czech Republic, 2013.
26. Vasinek, M.; Platos, J. Parallel Approach to Context Transformations. Available online: http://ceur-ws.org/

Vol-1343/paper4.pdf (accessed on 11 May 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://ceur-ws.org/Vol-1343/paper4.pdf
http://ceur-ws.org/Vol-1343/paper4.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation and Terminology
	Order of Context and Entropy
	Zero Order Context
	N-th Order Context

	Previous Work
	Transformations and Compression Algorithms
	Transformations
	Context Transformation
	Generalized Context Transformation
	Higher Order Context Transformation

	Compression Functions
	Re-Pair
	MinEnt

	Discussion of the Transformation and Compression Function Selection Strategies
	The Upper Boundary on the Dictionary Entry Size
	Comparison of the Alphabet's Entropy Evolution
	Comparison of Entropic Size Evolution

	Zero Order Entropy and Entropic Message Size Reduction
	Transformation of Probabilities
	General Entropy Change Relations
	The First Part: Symbols Remaining Intact by the Substitution Function
	The Second Part: Symbols Participating in the Substitution Function
	Third Part: Introduced and Removed Symbols

	Calculation of |m|H

	Conclusions
	
	CT—Proof of the Correctness
	Diagonal Context Transformation
	GCT—Frequencies Alteration
	Generic Transformation—Proof of Correctness
	HOCT—Proof of the Correctness

