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Abstract: Stochastic distribution control (SDC) systems are a group of systems where the outputs
considered is the measured probability density function (PDF) of the system output whilst subjected
to a normal crisp input. The purpose of the active fault tolerant control of such systems is to use
the fault estimation information and other measured information to make the output PDF still track
the given distribution when the objective PDF is known. However, if the target PDF is unavailable,
the PDF tracking operation will be impossible. Minimum entropy control of the system output can
be considered as an alternative strategy. The mean represents the center location of the stochastic
variable, and it is reasonable that the minimum entropy fault tolerant controller can be designed
subjected to mean constraint. In this paper, using the rational square-root B-spline model for
the shape control of the system output probability density function (PDF), a nonlinear adaptive
observer based fault diagnosis algorithm is proposed to diagnose the fault. Through the controller
reconfiguration, the system entropy subjected to mean restriction can still be minimized when fault
occurs. An illustrative example is utilized to demonstrate the use of the minimum entropy fault
tolerant control algorithms.
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1. Introduction

Fault diagnosis (FD) and fault-tolerant control (FTC) has long been regarded as an important and
integrated part in control systems. The research of this aspect has been carried out for nearly thirty
years, where the major research is aimed at deterministic systems. However, most practical systems
are subjected to random inputs from sensor noises [1], random disturbances [2] or random parameter
changes. In order to improve the reliability of the control system, the research of fault diagnosis and
fault-tolerant control for stochastic dynamic systems has been one of the liveliest research areas in
control theory and practice [3]. For stochastic systems, the so-far obtained FDD (fault detection and
diagnosis) approaches can be classified as

1. The system identification technique [4];
2. Observer or filter-based method [5];
3. The statistic approach based on the Bayesian theorem, Monte Carlo approach, likelihood method,

and hypothesis test technique [6].

Moreover, in a safety-critical system, the role of a fault-tolerant control system is extremely
important. One of its functions is to steer the process to a safe state whenever undesirable events occur.
A fault-tolerant controller can be able to attenuate the effects caused by random variables.
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For most control algorithms, it is supposed that system noise obeys Gaussian distribution.
Traditional statistics such as mean and variance can be used to represent the randomness of
the system output. However, for non-Gaussian systems, the variance cannot fully represent the
randomness of the system output. A more general measure, rather than just the variance of the system
output, needs to be considered for the randomness of the system output of non-Gaussian stochastic
systems. Therefore, entropy concept [7] is proposed to measure the uncertainty of the system output of
stochastic systems.

In existing FTC results of SDC systems, it is assumed that the target PDF is pre-specified.
Nonlinear filters are designed to detect and diagnose the fault of the stochastic distribution system
based on square-root approximation [8]. However, fault tolerant control is not considered. A nonlinear
adaptive observer-based fault diagnosis algorithm is proposed to diagnose the fault in the dynamic
part of the non-Gaussian SDC systems based on the rational square-root B-spline approximation
model [9]. Through the controller reconfiguration, a good output PDF tracking can still be realized
when fault occurs. An iterative learning observer based fault estimation algorithm is proposed [10]
and the fault tolerant controller is designed so as to make the post-fault PDF still track the given
distribution. However, in most cases, the objective PDF can’t be determined in advance and, as a result,
the reasonable fault tolerant tracking controller cannot be designed. Therefore, minimum entropy
control of the system output can be considered as an alternative strategy. A minimum entropy control
method of closed-loop tracking errors is proposed [11]. A nonlinear observer is designed to obtain
the pseudo-weights vector [12]. Then, the PDF tracking control and the minimum entropy control
are developed. An integrated design of fault diagnosis and fault tolerant control (FTC) for nonlinear
systems using Takagi–Sugeno (T–S) fuzzy models is proposed in [13]; meanwhile in the presence of the
model uncertainty along with actuator/sensor faults and external disturbance. An augmented state
unknown input observer is proposed to estimate the fault and the system state simultaneously, and
using the fault estimation information, an FTC controller is developed to ensure the robust stability of
the closed-loop system. The design scheme of thruster failure tolerant control for underwater vehicles
is proposed [14], where each thruster of the underwater vehicle can rotate, offering a significant
advantage to optimize its control. Active and passive fault-tolerant control systems (FTCSs) aer
demystified by examining the similarities and differences between these two approaches from both
philosophical and practical points of view in [15]. A new method is proposed [16] to minimize the
closed loop randomness for general dynamic stochastic systems using the entropy concept. However,
a fault item is not involved in this literature. This forms the point of this paper, where the entropy
concept is used for design of the required fault tolerant controllers of stochastic systems.

In this paper, the rational square-root B-spline model [17] is used to represent the dynamics
between the output PDF and input. The considered system in [17] is subjected to any arbitrary bounded
random input and the purpose of the control input design is to make the output probability density
function of the system output track a given distribution function as close as possible, that different
from the objective PDF known in literature [17], the target PDF in this paper can not be determined in
advance. Considering the existence of the fault, a nonlinear adaptive observer based fault diagnosis
algorithm is proposed to diagnose the fault. Through the controller reconfiguration, the system entropy
can still be minimized when fault occurs. The contribution of this paper is that the entropy concept is
introduced to design of fault tolerant control for non-Gaussian stochastic distribution systems when
the objective PDF can not be determined in advance.

The rest of this paper is organized as follows. Section 2 presents the model description, where
a nonlinear dynamic relationship is considered. An observer is constructed in Section 3 for fault
detection. In Section 4, the nonlinear adaptive observer based fault diagnosis algorithm is proposed,
and the rational square-root B-spline model, which is different from that in [10], is used for the
shape control of the system output PDF. Section 5 gives the design process of fault tolerant control.
Simulation results of FD and FTC are presented in Section 6, followed by some concluding remarks in
Section 7.
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2. Model Description

Denote η ∈ [a, b] as a uniformly bounded stochastic process variable and assume that it represents
the output of a stochastic system at sample time t. Denote u(t) as the control input that controls the
distribution of η(t). At any time, η(t) can be characterized by its probability density function γ(y, u(t)),
which is defined by

P(a ≤ η(t) < ε|u(t)) =
∫ ε

a
γ(y, u(t))dy,

where P(a ≤ η(t) < ε|u(t)) represents the probability of the output y(t) lying inside the interval [a, ε)

when u(t) is applied to the system. It also means that the shape of the output probability density
function, γ(y, u(t)), is controlled by a crisp input u(t). It is assumed that interval [a, b] is known and
the output probability density functions γ(y, u(t)) is continuous and bounded. Using the rational
square-root B-spline function approximation principle [17], the rational square-root B-spline expansion
as follows,

√
γ(y, u(t)) =

m
∑

i=1
ωi(u(t))φi(y)√

m
∑

i,j=1
ωi(u(t))ωj(u(t))

∫ b
a φi(y)φj(y)dy

, (1)

where φi(y)(i = 1, · · ·, m) are the pre-specified basis functions defined on [a, b] and ωi(i = 1, · · ·, m)

are the corresponding weights.
For most systems, a dynamic relationship between ωi and u is expressed. In this paper, a nonlinear

dynamic relationship will be considered. This leads to the following model for the considered dynamic
stochastic system:

ẋ(t) = Ax(t) + Hg(x(t)) + Bu(t) + GF(t),
V(t) = Dx(t),

(2)

√
γ(y, u(t)) =

C(y)V(t)√
V(t)TEV(t)

, (3)

where x(t) ∈ Rn is the state vector, V(t) ∈ Rm is the output weight vector, u(t) ∈ Rr is the control
input vector and F(t) ∈ Rn is the fault vector. A ∈ Rn×n, B ∈ Rn×r, D ∈ Rm×n, E ∈ Rm×m, H ∈ Rn×n

and G ∈ Rn×n are system parameter matrices. Equation (2) represents the dynamic model of the
weights vector. Equation (3) describes the static output PDF model using the rational square-root
B-spline expression, where

V(t) = [ω1(u(t)), ω2(u(t)), ..., ωm(u(t))]T ∈ Rm, V(t) 6= 0,

C(y) = [φ1(y), φ2(y), ..., φm(y)] ∈ R1×m,

E =
∫ b

a
C(y)TC(y)dy.

Assumption 1. The nonlinear function g(x(t)) should satisfy the following Lipschitz condition:

‖g(xi)− g(xj)‖ ≤ tmx‖xi − xj‖,

where mx is a Lipschitz constant.
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3. Fault Detection

The purpose of the fault detection is to use input vector in Equation (2) and output probability
density function γ(y, u(t)) to detect the fault F. In order to detect such a fault, an observer is
constructed [18] as follows:

˙̂x(t) = Ax̂(t) + Hg(x̂(t)) + Bu(t) + Kεd(t),
εd(t) =

∫ b
a σ(y)[

√
γ̂(y, u(t))−

√
γ(y, u(t))]dy,

(4)

√
γ̂(y, u(t)) =

C(y)V̂(t)√
V̂(t)TEV̂(t)

, (5)

where x̂(t) ∈ Rn is the estimated state, εd(t) is the residual signal, σ(y) is the pre-specified weighting
vector defined on [a, b] and K is the gain of the observer.

Denote the observation error vector as

ed(t) = x̂(t)− x(t).

The residual signal can be calculated as follows:

εd(t) =
∫ b

a σ(y)[
√

γ̂(y, u(t))−
√

γ(y, u(t))]dy

=
∫ b

a σ(y)C(y)dy[
V̂(t)√

V̂(t)TEV̂(t)
− V(t)√

V(t)TEV(t)
]dy

=
ΣDed(t)√

V̂(t)TEV̂(t)
+

ΣV(t)√
V̂(t)TEV̂(t)

− ΣV(t)√
V(t)TEV(t)

,

(6)

where Σ =
∫ b

a σ(y)C(y)dy.
Using Equations (2) and (4), the error dynamic system can be formulated that

ėd(t) = ˙̂x(t)− ẋ(t)
= Ae + H[g(x̂(t))− g(x(t))]− GF(t) + Kεd(t)

= Ae + H[g(x̂(t))− g(x(t))]− GF(t) +
KΣDed(t)√
V̂(t)TEV̂(t)

+ K(
ΣV(t)√

V̂(t)TEV̂(t)
− ΣV(t)√

V(t)TEV(t)
).

(7)

Assume that the basis function φi(y) and σ(y) are selected such that the pair (A, Σ) is observable.
The gain L1 can be selected such that matrix M = A + L1ΣD is Hurwitz.

Lemma 1. There exists a λ1 ( T1 = λmin(E)/λmax(E), T2 = λmax(E)/λmin(E)), T1 ≤ |λ1| ≤ T2) such
that the following equation

√
VTEV −

√
V̂TEV̂ = λ1(

√
VTV −

√
V̂TV̂) = λ1(‖V‖ − ‖V̂‖) (8)

holds.

Theorem 1. It is supposed that there exist two positive definite matrices P and Q such that the
following equalities

MT P + PM = −Q, P = PT > 0, Q = QT > 0 (9)

hold, and then the observation error system is asymptotically stable.

Proof. When no fault occurs, F = 0. Denote K = L1

√
V̂(t)TEV̂(t), and L1 is the gain matrix of the

observer. Then, the error dynamic system can be further formulated as
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ėd(t) = (A + L1ΣD)ed(t) + H[g(x̂(t))− g(x(t))] + L1ΣV(t)(
‖V(t)‖ − ‖V̂(t)‖√

V(t)TEV(t)
). (10)

The Lyapunov function is selected as follows:

π =
1
2

eT
d (t)Ped(t).

It can be shown that

π̇ =
1
2

ėT
d (t)Ped(t) + 1

2 eT
d (t)Pėd(t)

= −1
2

eT
d (t)Qed(t) + eT

d (t)PH[g(x̂(t))− g(x(t))] + eT
d (t)PL1ΣV(t)(

λ1(‖V(t)‖ − ‖V̂(t)‖)√
V(t)TEV(t)

)

≤ −1
2
(λmin(Q)− 2T2‖PL1ΣD‖√

‖E‖
− 2mx‖PH‖)‖ed(t)‖2,

(11)

when

λmin(Q) ≥ 2T2‖PL1ΣD‖√
‖E‖

+ 2mx‖PH‖ (12)

hold, and then π̇ < 0. The proof is completed.

The fault can be detected when ‖εd(t)‖ > τ, where τ(τ > 0) is a pre-specified threshold.

4. Fault Diagnosis Algorithm

Once the fault has been detected, the fault diagnosis needs to be carried out in order to estimate
the size of the fault. A fault diagnosis observer is constructed [19] as follows:

˙̂xm(t) = Ax̂m(t) + Hg(x̂m(t)) + Bu(t) + Kdεm(t) + GF̂(t)
εm(t) =

∫ b
a σ(y)[

√
γm(y, u(t))−

√
γ(y, u(t))]dy√

γm(y, u(t)) =
C(y)Vm(t)√

Vm(t)TEVm(t)
,

(13)

where F̂ is the estimation of F. It is assumed that em = x̂m − x, F̃ = F̂− F, and then

εm(t) =
∫ b

a
σ(y)[

√
γm(y, u(t))−

√
γ(y, u(t))]dy

=
ΣDem√

Vm(t)TEVm(t)
+

ΣV(t)√
Vm(t)TEVm(t)

− ΣV(t)√
V(t)TEV(t)

.

Denote Kd = L2
√

Vm(t)TEVm(t), and the gain L2 can be selected such that matrix (A + L2ΣD) is
Hurwitz. Then, the error dynamic system can be obtained as follows:

ėm = Aem + H[g(x̂m(t))− g(x(t))] + Kdεm(t) + GF̃(t)

= (A + L2ΣD)em + H[g(x̂m(t))− g(x(t))] + GF̃ + L2ΣV(t)(
λ2(‖V(t)‖ − ‖Vm(t)‖)√

V(t)TEV(t)
). (14)

Assumption 2. Suppose that ‖F(t)‖ ≤ N
2 , where N is a positive constant.

Theorem 2. It is supposed that there exist constant Γ > 0 and two positive definite matrices P1, Q1 such that
the following equality holds:

(A + L2ΣD)T P1 + P1(A + L2ΣD) = −Q1, (15)
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and the adaptive tuning law is selected as follows:

dF̂
dt

=

{
−Γ
√

Vm(t)TEVm(t)εm (‖F̂‖ ≥ N
2 ),

0 (‖F̂‖ ≤ N
2 ),

(16)

and then the error dynamic system (14) is stable.

Proof. The Lyapunov function is selected as follows:

π1 =
1
2

eT
mPem +

1
2

F̃T F̃, (17)

and then the first derivative of π1 is formulated as follows:

π̇1 =
1
2

ėT
mP1em +

1
2

eT
mP1 ėm + F̃T ˙̃F

=
1
2

eT
m[(A + L2ΣD)T P1 + P1(A + L2ΣD)]em + eT

mP1H[g(x̂m(t))− g(x(t))]

+ eT
mP1GF̃(t) + F̃T ˙̃F + eT

mP1L2ΣV(t)
λ2(‖V(t)‖ − ‖Vm(t)‖)√

V(t)TEV(t)

≤ −1
2
(λmin(Q1)− 2

‖P1L2Σ‖‖D‖T2√
‖E‖

− 2mx‖P1H‖)‖em‖2

+ ‖em‖(‖P1G− DTΣTΓ‖+ ‖ΓΣD‖T2√
‖E‖

)‖F̃‖

= −δ1‖em‖2 + δ2‖em‖‖F̃‖,

(18)

where

δ1 =
1
2
(λmin(Q1)− 2

‖P1L2Σ‖‖D‖T2√
‖E‖

− 2mx‖P1H‖),

δ2 = (‖P1G− DTΣTΓ‖+ ‖ΓΣD‖T2√
‖E‖

).

From Assumption 2 and Theorem 2, it can be obtained that

π̇1 ≤ −δ1(‖em‖ −
Nδ2

2δ1
)2 +

N2(δ2)
2

4(δ1)2 . (19)

When ‖em‖ ≥
Nδ2(δ1 +

√
δ1)

2δ1
, it can be obtained that π̇1 ≤ 0. This means that when fault occurs

in system (2), the observation error system is stable.

5. Fault Tolerant Control

Once the fault has been diagnosed, the controller that is designed for the healthy system should
be modified so as to compensate for the performance losses caused by the fault in the system.

When the objective PDF can not be determined in advance, or no objective PDF can be used, control
target of the SDC system can be translated into controlling the entropy of the system output. It has
been pointed out that the entropy has been used to characterize the uncertainty of the output variables
for non-Gaussian stochastic systems. Thus, the uncertainty is expected to be as small as possible.

When the position of the output variable’s PDF is not determined, the minimum entropy of the
output variables is generally difficult to be determined in practice. Therefore, control target subjected
to mean constraint will be suitable for the solution of the minimum entropy controller.
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Since the mean and entropy of a non-Gaussian stochastic variable are independent of each other,
these two terms may be addressed separately. For this purpose, the following performance function
is used

J(u(t)) = (µ− µg)
2 −

∫ b
a γ(y, u(t))lnγ(y, u(t))dy +

1
2

uT(t)Ru(t). (20)

It can be seen that the first term in Equation (20) is the error between the mean and its target
value µg, where µ =

∫ b
a yγ(y, u)dy. The second term is the Shannon entropy of the output variables,

and the third term is a natural quadratic constraint for the control input, where R = RT > 0.
The purpose of the controller design is to find the required optimal control input such that the

performance index function is minimized. This purpose can be realized by selecting a control input
such that the performance function does not increase. The performance index of the close-loop system
can be seen as a Lyapunov function. In order to minimize J in Equation (20), the first order derivative
of J can be readily formulated that

dJ
dt =

∂(µ− µg)
2

∂V(t)
V̇(t) + uT(t)Ru̇(t)−

∫ b
a

∂γ(y, u(t))
∂V(t)

V̇(t)(lnγ(y, u(t)) + 1)dy. (21)

At this stage, by selecting the following control input

uT(t)Ru̇(t)t = −λ|µ− µg| −
∂(µ− µg)

2

∂V(t)
V̇(t) +

∫ b
a

∂γ(y, u(t))
∂V(t)

V̇(t)(lnγ(y, u(t)) + 1)dy

= (
∫ b

a
∂γ(y, u(t))

∂V(t)
(lnγ(y, u(t)) + 1)dy−

∂(µ− µg)
2

∂V(t)
)V̇(t)− λ|µ− µg|,

(22)

where λ > 0, it can then be formulated that

dJ
dt

= −λ|µ− µg| < 0. (23)

Therefore, the performance index is convergent.
From Equation (2), it can be obtained that

V̇(t) = Dẋ(t) = DAx(t) + DHg(x(t)) + DBu(t) + DGF(t). (24)

From Equation (3), it can be obtained that

γ(y, u(t)) =
(V(t)T(C(y))T)(C(y)V(t))

V(t)TEV(t)
µ =

∫ b
a yγ(y, u(t))dy

=
∫ b

a y
[V(t)T(C(y))T ][C(y)V(t)]

V(t)TEV(t)
dy

=
V(t)T(

∫ b
a y(C(y))TC(y)dy)V(t)

V(t)TEV(t)
,

(25)

and then

∂γ(y, u(t))
∂V

=
2(V(t)TC(y)T)(C(y)(V(t)TEV(t))− (C(y)V(t))(V(t)TE))

(V(t)TEV(t))2 ,

∂µ(t)
∂V(t)

=
2V(t)T ∫ b

a yC(y)TC(y)dy(V(t)TEV(t)−V(t)(V(t)TE))
(V(t)TEV(t))2 .

(26)
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When no fault occurs, F = 0, using Equation (24), it can be obtained that

uT(t)Ru(t) = −λ|
∫ b

a yγ(y, u(t))dy− µg|+
∫ b

a [
2(V(t)TEV(t))[V(t)T(C(y))T ]C(y)

(V(t)TEV(t))2

−2[V(t)T(C(y))T ][C(y)V(t)](V(t)TE)
(V(t)TEV(t))2 ](ln γ(y, u(t)) + 1)dy

×(DAx(t) + DHg(x(t)) + DBu(t))− 2(µ− µg)

×[
2(V(t)TEV(t))V(t)T ∫ b

a y(C(y))TC(y)dy
(V(t)TEV(t))2

−
2V(t)T ∫ b

a y(C(y))TC(y)dyV(t)(V(t)TE)
(V(t)TEV(t))2 ]

×(DAx(t) + DHg(x(t)) + DBu(t)).

(27)

When the fault occurs and has been diagnosed, it can then be rewritten as

uT
1 (t)Ru1(t) = −λ|

∫ b
a yγ(y, u1(t))dy− µg|+

∫ b
a [

2(Vm(t)TEVm(t))[Vm(t)T(C(y))T ]C(y)
(Vm(t)TEVm(t))2

−2[Vm(t)T(C(y))T ][C(y)Vm(t)](Vm(t)TE)
(Vm(t)TEVm(t))2 ](ln γ(y, u1(t)) + 1)dy

×(DAxm(t) + DHg(xm(t)) + DBu1(t) + DGF̂(t))

−2(µ− µg)[
2(Vm(t)TEVm(t))Vm(t)T ∫ b

a y(C(y))TC(y)dy
(Vm(t)TEVm(t))2

−
2Vm(t)T ∫ b

a y(C(y))TC(y)dyVm(t)(Vm(t)TE)
(Vm(t)TEVm(t))2 ]

×(DAxm(t) + DHg(xm(t)) + DBu1(t) + DGF̂(t)),

(28)

where u1 is the reconfigured controller. The state x and fault F can be substituted by the state of the
fault diagnosis observer state xm and the fault estimation F̂, respectively.

6. Simulation Example

The following B-spline is selected as φi(y)(i = 1, 2, 3)

φ1(y) = (
1
6

y3 +
3
2

y2 +
9
2

y +
9
2
)I1 + (−1

2
y3 − 5

2
y2 − 7

2
y− 5

6
)I2

+(
1
2

y3 +
1
2

y2 − 1
2

y +
1
6
)I3 + (−1

6
y3 +

1
2

y2 − 1
2

y +
1
6
)I4,

φ2(y) = (
1
6

y3 + y2 + 2y +
4
3
)I2 + (−1

2
y3 − y2 +

2
3
)I3

+(
1
2

y3 − y2 +
2
3
)I4 + (−1

6
y3 + y2 − 2y +

4
3
)I5,

φ3(y) = (
1
6

y3 +
1
2

y2 +
1
2

y +
1
6
)I3 + (−1

2
y3 +

1
2

y2 +
1
2

y +
1
6
)I4

+(
1
2

y3 − 5
2

y2 +
7
2

y− 5
6
)I5 + (−1

6
y3 +

3
2

y2 − 9
2

y +
9
2
)I6,

(29)

where

Ii(y) =

{
1 y ∈ [i− 4, i− 3]

0 otherwise
(i = 1, 2, 3, 4, 5, 6),

Σ =
∫ b

a σ(y)C(y)dy =
(

1 1 1
)

.
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It is assumed that the system dynamics can be represented as
ẋ(t) = Ax(t) + Hg(x(t)) + Bu(t) + GF(t)
V(t) = Dx(t)√

γ(y, u(t)) = C(y)V(t)√
V(t)T EV(t)

,

where g(x(t)) = sin(0.8x(t)),

A =

(
−3.1866 −1.0208
−0.2857 −3.5050

)
, B =

(
2.6 1
1 −2.3

)
,

G =

(
1
1

)
, D =

 0.1 0.9
0.2 0.1
1 0.6

 , H =

(
1.9 0
0 −0.505

)
.

Positive definite matrices P1 and Q1 are selected as follows:

P1 =

(
0.3505 0.0958
0.0958 0.5123

)
, Q1 =

(
1 0
0 1

)
.

It can be solved via linear matrix inequality (LMI) related to Equations (9) and (15) to obtain the

detect observer gain L1 =

(
0.3
−3.15

)
diagnostic observer gain L2 =

(
0.3036
1.1448

)
and the parameters

of fault estimation adaptive tuning rule Γ = 7.95.

To simulate the algorithm, it is assumed that the three types of faults are constructed as follows:

The step fault:

F1 =

{
0 t < 5s

1 t ≥ 5s,

The intermittent fault:

F2 =

{
1, 2 < t < 12; 25 < t < 35; 45 < t < 50
0, else,

The incipient fault:
F3 = 1 + 0.3sin(−0.5(t− 40)),

The ramp-like fault:

F4 =


1 t < 10

1 + 0.4(t− 10) 10 ≤ t < 25
7− 0.2(t− 25) 25 ≤ t ≤ 50.

Case 1: When a step fault occurs, the fault detection signal is shown in Figure 1 and the fault
diagnosis result is shown in Figure 2. From the two figures, it can be concluded that desired fault
detection and diagnosis results have been obtained. If the system works normally, then we have
F1 = 0. Figure 3 shows the result of the output entropy and Figure 4 shows the result of the output
PDF. Figure 5 presents the response of the mean. In the simulation, fault F1 is set to 1 after 5 s. Figure 6
shows the changes of the entropy when a fault has occurred in the system. It can be seen that the
control input is driving the system towards the direction of less randomness. From Figure 7, it can be
seen that the post-fault PDF can still follow the faultless PDF, leading to good fault tolerant control
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results. Figure 8 presents the response of the mean when a fault has occurred in the system, and it can
be seen that the mean value levels off and approaches the objective value.

Case 2: When the intermittent fault, incipient fault and ramp-like fault occur, the fault diagnosis
results are shown in Figures 9–11. From the three figures, it can be concluded that diagnosis results
have been obtained. Figures 12–14 show the change of the entropy when the three faults have occurred
in the system. It can be seen that the control input is driving the system towards the direction of
less randomness.
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Figure 1. Fault detection signal.
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Figure 2. The fault and fault estimation.
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Figure 3. The response of entropy when system is normal.
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Figure 4. The response of the output PDF when F = 0.
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Figure 5. The response of the mean when system is normal.
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Figure 6. The response of entropy after fault-tolerant control.
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Figure 7. The output PDF with fault-tolerant control.
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Figure 8. The response of the mean after fault-tolerant control.
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Figure 9. The intermittent fault and fault estimation.
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Figure 10. The incipient fault and fault estimation.
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Figure 11. The ramp-like fault and fault estimation.
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Figure 12. The response of entropy after fault-tolerant control for intermittent fault.
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Figure 13. The response of entropy after fault-tolerant control for incipient fault
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Figure 14. The response of entropy after fault-tolerant control for ramp-like fault.

7. Concluding Remarks

In this paper, when objective PDFs can not be determined in advance, the entropy concept
is applied to the design of a fault tolerant controller for a non-Gaussian stochastic distribution
system. The mean represents the center location of the stochastic variable, and it is reasonable that a
minimum entropy fault tolerant controller can be designed under the restriction of the mean. A rational
square-root B-spline function approximation model and the nonlinear dynamic system have been used
to formulate the stochastic distribution system. A performance function that includes the entropy term
and a mean constraint term is used to design the fault tolerant controller. The performance index is
regarded as a Lyapunov function. Using the Lyapunov stability criterion, the stability of the whole
system can be guaranteed. Furthermore, through the controller reconfiguration, the system entropy
can still be minimized. The simulations have further confirmed the proposed fault diagnosis and fault
tolerant control results.
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