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Abstract: In this work, we present a numerical study of the influence of matrix degrading
enzyme (MDE) dynamics and haptotaxis on the development of vessel networks in tumor-induced
angiogenesis. Avascular tumors produce growth factors that induce nearby blood vessels to emit
sprouts formed by endothelial cells. These capillary sprouts advance toward the tumor by chemotaxis
(gradients of growth factor) and haptotaxis (adhesion to the tissue matrix outside blood vessels).
The motion of the capillaries in this constrained space is modelled by stochastic processes (Langevin
equations, branching and merging of sprouts) coupled to continuum equations for concentrations
of involved substances. There is a complementary deterministic description in terms of the density
of actively moving tips of vessel sprouts. The latter forms a stable soliton-like wave whose motion
is influenced by the different taxis mechanisms. We show the delaying effect of haptotaxis on the
advance of the angiogenic vessel network by direct numerical simulations of the stochastic process
and by a study of the soliton motion.

Keywords: tumor-induced angiogenesis; haptotaxis; chemotaxis; soliton; collective coordinates;
ensemble average
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1. Introduction

When an avascular tumor surpasses some 2 mm, normal tissue vasculature can no longer support
its growth. The tumor cells then lack oxygen and nutrients and produce vessel endothelial growth
factors and other tumor angiogenic factors (TAF). These substances reach nearby blood vessels
that emit blood vessel sprouts as a response. The vessels reach the tumor bringing oxygen and
nutrients that allow it to get bigger and proliferate. In this case, a tumor induces the growth of
blood vessels, a process called angiogenesis [1]. While angiogenesis is a natural process responsible
for organ growth and repair, imbalance between stimulating and inhibiting factors contributes to
numerous malignant, inflammatory, ischaemic, infectious, and immune disorders [2]. While tumor
cells do not become malignant due to angiogenesis, this process promotes tumor progression and
metastasis [1,2]. Angiogenesis encompasses multiple scales, from cellular and subcellular micron
scales to the mesoscopic dynamics of millimeter sized blood vessels. Involved time scales also vary
widely from seconds to days [3,4]. Many aspects of angiogenesis have been discovered by combining
laboratory experiments and results from computational models; see the review paper [4].
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The complexity of angiogenesis requires posing hybrid models that combine a detailed description
of individual vessel sprouts (or even individual cells) with continuum descriptions of the growth
factors and of the extracellular matrix (ECM) over which vessels advance in a constrained space.
Most work consists of comparing numerical simulations of these hybrid models to experimental
results, whereas deeper analyses are lacking. Among hybrid models, the simplest ones are called tip
cell models [4]. They assume that the endothelial cells (ECs) at the tip of a blood vessel are highly
motile, do not proliferate and respond to the growth factors and chemical cues that lead them to
the tumor. Other endothelial (stalk) cells proliferate and doggedly follow tip cells, constructing the
vessel in the meantime on their wake. We can treat the tips of the sprouting blood vessels as particles
subject to different forces (chemotaxis, haptotaxis, . . . ) that link them to continuum fields (representing
growth factors, inhibitors, ECM, . . . ) and consider their trajectories as the expanding angiogenic vessel
network. It turns out that vessel tips may branch (thereby creating new active vessel tips) or merge
with existing vessels when they reach them, in a process called anastomosis. In the latter case, the tip
cells of the merged vessel cease to be active.

The earlier stochastic tip cell model was proposed by Stokes and Lauffenburger in 1991. They
considered the capillary sprouts as particles of unit mass subject to chemotactic, friction and white noise
forces [5,6]. Associated to each sprout, its cell density satisfies a rate equation that takes into account
proliferation, elongation, redistribution of cells from the parent vessel, branching and anastomosis.
They did not consider the depletion effect that advancing sprouts would have on the TAF concentration.
Later tip cell models combined a continuum description of fields influencing cell motion (chemotaxis,
haptotaxis, . . . ) with random walk motion of individual sprouts that experience branching and
anastomosis [4]. Capasso and Morale [7] used ideas from these approaches to propose a hybrid model
of Langevin—Ito stochastic equations for the sprouts undergoing chemotaxis, haptotaxis, branching
and anastomosis coupled to reaction—diffusion equations for the continuum fields. In this model,
the evolution of the continuum fields is influenced by the growing capillary network through smoothed
(or mollified) versions thereof [8]. Capasso and Morale also attempted to derive a continuum equation
for the density of moving tip cells from the stochastic equations but could not account for branching
and anastomosis [7]. Recently, we have derived a deterministic description for the average vessel tip
density of a related hybrid stochastic tip cell model for tumor-induced angiogenesis that includes
chemotaxis but not haptotaxis [9,10]. We have shown that the density of active vessel tips advances
toward the tumor as a soliton-like wave [11,12]. Besides branching and anastomosis, in this model, tip
cells experience a chemotactic force that leads them toward increasing values of the TAF concentration,
plus friction and Brownian motion. The TAF diffuses and is consumed by the motion of the tip
cells. This picture ignores that the ECs have to move over the ECM. They do so by using adhesion
(haptotaxis) in response, e.g., to fibronectin gradients and releasing matrix degrading enzymes to
corrode the ECM. One simple way to model haptotaxis is to model fibronectin (FN) concentration
and matrix degrading enzymes (MDE) as continuum fields satisfying reaction–diffusion equations,
as postulated in [7]. Space inhomogeneity of the ECM-fibronectin network affects the speed and
density of sprout formation, particularly when we consider cellular and sub-cellular length scales.
In our model, we only consider larger mesoscopic scales. Sprout branching depends only on the
local TAF concentration. As TAF is consumed by the moving sprouts, inhomogeneity induced by
the encroaching vessel network is considered albeit in a primitive fashion. Within the bounds of our
mesoscopic model, we could include additional heterogeneity effects by making the branching rate
dependent on fibronectin and by using an initial fibronectin distribution that mimics a pre-established
ECM distribution. We will ignore these considerations for the sake of simplicity and because their
influence on soliton motion is small. To properly account for these effects, we would need detailed
models that include them at the cellular level and to derive mesoscopic models from them. Such
analyses are work for the future.

Other models assume that vessel tips follow a reinforced random walk [13–16], which, within
appropriate limits, yields Langevin equations [17]. In more detailed models, endothelial cells change
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form and move over the extracellular matrix by Monte Carlo dynamics of a cellular Potts model [18].
In appropriate long time limits, the corresponding discrete time random walk reduces to Langevin
equations [17,19]. Thus, the ideas presented in this paper might be useful when considering other
related angiogenesis models.

There are other processes that are relevant in later stages of angiogenesis and that we do not
consider in the present work. Once a vascular network is being created, blood flows through the
capillaries, anastomosis enhances the flow in some of them and secondary angiogenesis may start in
new vessels. Pries and coworkers have modeled blood flow in a vascular network and the response
thereof to changing conditions such as pressure differences and wall stresses [20,21]. This response may
remodel the vascular network by changing the radii of certain capillaries and altering the distribution
of blood flow [20,21]. McDougall, Anderson and Chaplain [22] have used this formulation to add
secondary branching from new capillaries induced by wall shear stress to the original random walk
tip cell model [13]. Blood flows according to Poiseuille’s law, mass is conserved, there are empirical
expressions for blood viscosity and for the wall shear stresses, and radii of capillaries adapt to local
conditions. Secondary vessel branching may occur after the new vessel has reached a certain level
of maturation and before a basal lamina has formed about it [15,22]. During such a time interval,
the probability of secondary branching increases with both the local TAF concentration and the
magnitude of the shear stress affecting the vessel wall. McDougall et al.’s model can be used to figure
out how drugs could be transported through the blood vessels and eventually reach a tumor [15,22].
In dense vessel networks, secondary branching may have little effect on the number of active tips
at a given time, as anastomosis could eliminate secondary branches quickly. Thus, we may ignore
secondary branching when considering the density of active tips in such networks. Of course, we
cannot ignore it when describing blood flow and network remodeling. One missing feature of these
angiogenesis models that take blood flow into account seems to be pruning. It is known that capillaries
with insufficient blood circulation may atrophy and disappear. Pruning such blood vessels is an
important mechanism to achieve a hierarchical vascular network with optimized transport, as recent
global optimization and adaptation algorithms have shown for a number of biological vascular
systems [23,24].

The purpose of this paper is to derive a deterministic description of tumor-induced angiogenesis
using the Capasso–Morale stochastic tip cell model that includes both chemotaxis and haptotaxis [7].
We do not consider blood circulation and later stages of remodeling and pruning the angiogenic
network. We find that the density of active vessel tips obeys an integropartial differential equation
coupled to reaction–diffusion equations for the concentrations of TAF, FN and MDE. After an initial
stage, the density forms a stable two-dimensional lump (angiton) that moves toward the tumor.
A one-dimensional profile of the angiton is a soliton-like wave whose size and velocity change slowly
according to differential equations that depend on spatial averages involving the TAF, FN and MDE
concentrations and describe the advancing angiogenic network. Thus, haptotaxis can be incorporated
to a similar framework as the model including only chemotaxis. Its effects can be ascertained by
studying the motion of the soliton as given by the solution of the collective coordinate equations.
We confirm this picture by comparing the results to simulations of the stochastic process.

2. The Stochastic Model

The stochastic part of the hybrid model consists of Langevin equations for the extension of vessels,
a tip branching process, and anastomosis (namely, the destruction of tips that merge with existing
vessels). For details on the latter two ingredients, we refer to [10]. Let Xi(t) and vi(t) be the position
and the velocity of the ith tip at time t. The extension of this vessel is given by

dXi(t) = vi(t) dt,

dvi(t) =
[
−k vi(t) + F

(
C(t, Xi(t)), f (t, Xi(t))

) ]
dt + σ dWi(t), (1)
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for t > Ti (Ti is the random birth time of the ith tip). At time Ti, the velocity of the newly created tip is
selected out of a normal distribution with mean v0 (|v0| is measured in units of 40 µm per hour [5]
according to Table 1) and variance σ2

v , while the probability that a tip branches from one of the existing
ones during an infinitesimal time interval (t, t + dt] is proportional to ∑

N(t)
i=1 α(C(t, Xi(t)))dt, where

N(t) is the number of tips at time t, α(C) = α1C/(C + CR), and α1 and CR are positive constants.
The tip i disappears at a later random time Θi, either by reaching the tumor or by anastomosis, i.e., by
meeting another capillary. At time t, anastomosis for the ith tip occurs at a point x such that Xi(t) = x
and Xj(s) = x for another tip that was at x previously, at time s < t. In Equation (1), Wi(t) are i.i.d.
Brownian motions, and k (friction coefficient) and σ are positive parameters (see Table 2).

Table 1. Units to non-dimensionalize the model equations.

x v t C f m

L ṽ0
L
ṽ0

CR fR mR
mm µm/h h mol/m2 mol/m2 mol/m2

2 40 50 10−16 10−16 10−16

Table 2. Parameters appearing in the model equations, taken from [10]. Here, σ2 = kṽ2
0.

1
k σ2 α1 D1CR D2 fR ηc

h 10−21 m2/s3 10−20 m2/s3 µm2/h2 µm2/h2 µm
8.5 4.035 1.538 2400 800 4

We assume that tip cell migration is controlled by two main mechanisms, namely, (i) chemotaxis,
in response to a TAF, which is released by tumor cells and has concentration C(t, x); and (ii) haptotaxis,
in response to the gradient of FN, which is present in the ECM and has concentration f (t, x). The force
F appearing in Equation (1) is then

F(C, f ) =
D1

1 + γ1C
∇xC + D2∇x f , (2)

where D1, γ1, and D2 are positive parameters (see below). A similar description can be found in [7].
The fields appearing in Equation (2) satisfy continuum equations as follows:

• Tumor angiogenic factor. The TAF diffuses and is consumed by advancing vessel tips according to [10]

∂C
∂t

(t, x) = dc∆xC(t, x)− ηcC(t, x)

∣∣∣∣∣N(t)

∑
i=1

vi(t) δσx (x− Xi(t))

∣∣∣∣∣. (3)

Here, dc and ηc are positive parameters (see below), while δσx (x) is a regularized delta function
(e.g., a Gaussian with standard deviation σx). The TAF is consumed in the process of enlarging
the capillary: at the time interval (t, t + dt), the ith tip advances to vi(t) dt, which adds
a length |vi(t)| dt to the capillary. Thus, the consumption term should be proportional to
C(t, x)∑

N(t)
i=1 |v

i(t)| δσx (x−Xi(t)). For the slab configuration (see below) and the parameter values
considered in this paper, the difference with the smaller sink term included in Equation (3) is very
small. The sink term is local in space because the region about the tips affecting TAF consumption
is of the same order as the tip cell size (microns), which is very small compared to the millimeter
lengths described by our model.
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• Fibronectin. Following [7], FN is an adhesive substance attached to the ECM that does not
diffuse. In addition, FN is also produced by vessel tips and its degradation depends on the MDE
concentration m(t, x) produced by the ECs themselves. Hence, we have

∂ f
∂t

(t, x) = β f

N(t)

∑
i=1

δσx (x− Xi(t))− η f m(t, x) f (t, x) , (4)

where β f and η f are positive parameters (see Section 3).

• Matrix degrading enzyme. As mentioned in [15], TAF and FN bind to specific membrane receptors
on ECs. The latter produce a MDE, which enhances their attachment to FN contained in the
extracellular matrix. The ECs are then able to exert the traction forces required to propel
themselves during migration. Here, we consider the model proposed in [7], which includes
diffusion, production, and degradation of MDE as

∂m
∂t

(t, x) = dm∆xm(t, x) + βm

N(t)

∑
i=1

δσx (x− Xi(t))− ηm m(t, x) , (5)

where dm, βm, and ηm are positive parameters (see Section 3). A more elaborated model can be
found in [25].

Initial and boundary conditions for the TAF field C have been proposed in [10]. The initial and
boundary conditions for Equations (4) and (5) will be specified later.

In order to obtain in the next section dimensionless equations to perform our numerical simulations,
we consider the values shown in Table 1. The parameters appearing in the equations of the model are
taken from [10] and listed in Table 2.

Remark 1. The reference values for x, v, t, and C are those considered in [10], as we will use the same numerical
setting. These values are consistent with Stokes and Lauffenburger’s experiments [5].

Remark 2. As suggested at page 866 of [13], we take a reference concentration fR for FN equal to the reference
concentration CR for the TAF field.

3. Dimensionless Equations

Using Table 1, we get the following equations for the vessel extension:

dXi(t) = vi(t) dt,

dvi(t) = β

[
δ1

1 + Γ1C
∇xC + δ2∇x f − vi(t)

]
dt +

√
β dWi(t) . (6)

The dimensionless parameters appearing in Equation (6) are given in Table 3. We are assuming
D2 = D1/3, which implies δ2 = δ1/3.

Table 3. Dimensionless parameters in the hybrid model as given in [10,13,15].

δ1 δ2 β Γ1 κc χc µ f χ f κm µm χm A σv

D1CR
kLṽ0

D2 fR
kLṽ0

kL
ṽ0

γ1CR
dc

ṽ0 L
ηc
L

β f
ṽ0 L fR

η f L mR
ṽ0

dm
ṽ0 L

βm
ṽ0 L mR

ηm L
ṽ0

α1 L
ṽ3

0
1.5
β

1
2β 5.88 1 0.0045 0.002 0.04 0.1 0.01 10−6 3 22.42 0.08
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The nondimensional equations for TAF, FN and MDE are

∂C
∂t

(t, x) = κc∆xC(t, x)− χcC(t, x)

∣∣∣∣∣N(t)

∑
i=1

vi(t) δσx (x− Xi(t))

∣∣∣∣∣ , (7)

∂ f
∂t

(t, x) = µ f

N(t)

∑
i=1

δσx (x− Xi(t))− χ f m(t, x) f (t, x) , (8)

∂m
∂t

(t, x) = κm∆xm(t, x) + µm

N(t)

∑
i=1

δσx (x− Xi(t))− χm m(t, x) , (9)

respectively. Here, δσx (x) = 400 e−(x/0.15)2−(y/0.05)2
/(3π). The dimensionless parameters appearing in

these equations are listed in Table 3.

4. Deterministic Description for the Average Density of Active Vessel Tips

There is a counterpart to the stochastic model for the densities of vessel tips and the vessel tip
flux, defined as ensemble averages over a sufficient number N of replicas (realizations) ω of the
stochastic process:

pN(t, x, v) =
1
N

N
∑

ω=1

N(t,ω)

∑
i=1

δσx (x− Xi(t, ω)) δσv(v− vi(t, ω)), (10)

p̃N (t, x) =
1
N

N
∑

ω=1

N(t,ω)

∑
i=1

δσx (x− Xi(t, ω)), (11)

jN (t, x) =
1
N
N
∑

ω=1

N(t,ω)

∑
i=1

vi(t, ω)δσx (x− Xi(t, ω)). (12)

As N → ∞, these ensemble averages tend to the tip density p(t, x, v), the marginal tip density
p̃(t, x), and the tip flux j(t, x), respectively. Numerical simulations are based on the Euler–Maruyama
method to solve the stochastic Equation (6), explicit finite-difference schemes to solve Equations (7)–(9)
with appropriate boundary conditions as specified below, and stochastic branching and anastomosis
of vessel tips as described above. Initially, there are 2N0 vessel tips whose location on the primary
vessel depends on the geometry of the angiogenic system with appropriately distributed random
velocities (see below). We carry out numerical simulations for N different randomly selected initial
conditions. The ensemble averages are calculated at each time step by using Equations (10)–(12) with
N = 400 [10].

In [10], it is shown that the angiogenesis model has a deterministic description for the average
density of active vessel tips, p(t, x, v), (in brief, deterministic description) based on the following equation:

∂
∂t p(t, x, v) = α(C(t, x)) p(t, x, v)δσv(v− v0)− Γ p(t, x, v)

∫ t
0 p̃(s, x) ds− v · ∇x p(t, x, v)

−β∇v · [(F(C(t, x), f (t, x))− v)p(t, x, v)] + β
2 ∆v p(t, x, v),

(13)

p̃(t, x) =
∫

p(t, x, v′) dv′, (14)

α(C) =
A C

1 + C
, F(C, f ) =

δ1

1 + Γ1C
∇xC + δ2∇x f . (15)

The two first terms on the right-hand side of Equation (13) correspond to vessel tip branching
and anastomosis, respectively.

Here, we consider a slab geometry with the primary vessel located at x = 0 and the tumor at
x = 1, as illustrated in Figure 1. For the sake of simplicity, we assume that v0 in this configuration
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is independent from the direction of the parent vessel and forms a small angle π/10 with the x-axis.
Other possible choices change the birth term a little in Equation (13), but their effects on the marginal
density p̃(t, x, y) are small for the slab configuration. The boundary conditions for the tip density are [9]

p+(t, 0, y, v, w) =
e−|v−v0|2∫ ∞

0

∫ ∞
−∞ v′e−|v′−v0|2 dv′ dw′

[
j0(t, y)−

∫ 0

−∞

∫ ∞

−∞
v′p−(t, 0, y, v′, w′)dv′dw′

]
, (16)

p−(t, 1, y, v, w) =
e−|v−v0|2∫ 0

−∞

∫ ∞
−∞ e−|v′−v0|2 dv′ dw′

[
p̃(t, 1, y)−

∫ ∞

0

∫ ∞

−∞
p+(t, 1, y, v′, w′)dv′dw′

]
, (17)

p(t, x, v)→ 0 as |v| → ∞, (18)

where p+ = p for v > 0 and p− = p for v < 0, v = (v, w). An absorbing boundary condition p = 0 on
the tumor surface would be more realistic than Equation (17). This would be computationally more
costly as we would need to include a slab that extends beyond x = 1. However, the difference with the
results of Equation (17) would be appreciable at the last stage when the vessel tips arrive at the tumor,
which we do not study specifically in the present paper. The tip flux density at x = 0, j0(t, y), obtained
by integrating Equation (16) over 0 < v < ∞ and −∞ < w < ∞, is [9]

j0(t, y) = v0α(C(t, 0, y)) p(t, 0, y, v0, w0) θ(τ− t), (19)

for the vector velocity v0 = (v0, w0), with |v0| = 1. Different from [9], we have included the step
function θ(τ − t) in Equation (19). With τ = ∞ as in [9,10], the primary vessel keeps injecting tip
density for all time. However, this may be artificial, as the primary vessel does not inject any more
vessels after t = 0+ in many experiments on early stage angiogenesis. Then, τ in Equation (19) may be
a small time of the order of the time step used in a numerical code. The original boundary condition
in [9] did not include the unit step function θ(τ− t) and, as a consequence, the deterministic description
given by the tip density equation and its boundary conditions had an artificial injection of tip density
at x = 0 for all t > 0.

x/L

y
/L

0 0.5 1
−0.5

0

0.5

x/L

y
/L

0 0.5 1
−0.5

0

0.5

x/L

y
/L

0 0.5 1
−0.5

0

0.5

x/L

y
/L

0 0.5 1
−0.5

0

0.5

(a) (b)

Figure 1. Comparison between the vessel networks of two replicas after 36 h for the model with
chemotaxis (a), and for the model with chemo and haptotaxis (b). The TAF level curves have also
been depicted.

The anastomosis coefficient, Γ, has to be fitted using the stochastic description, [10]. For τ = ∞,
there is an extra tip density injection at the primary vessel as compared to the case of a finite and
very small τ > 0. This implies that the anastomosis coefficient in the deterministic description is
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larger for τ = ∞ (as in [10]) than for the small τ > 0 that resembles more accurately the stochastic
description. As the anastomosis coefficient affects the shape of the soliton appearing in the next section,
we have selected a smaller value for Γ that is 75% of the deterministic anastomosis coefficient in [10],
i.e., Γ = 0.109. Equations (7)–(9) become

∂C
∂t

(t, x) = κc∆xC(t, x)− χcC(t, x) |j(t, x)|, (20)

∂ f
∂t

(t, x) = µ f p̃(t, x)− χ f m(t, x) f (t, x), (21)

∂m
∂t

(t, x) = κm∆xm(t, x) + µm p̃(t, x)− χmm(t, x), (22)

where j(t, x) is the current density (flux) vector at any point x and any time t ≥ 0,

j(t, x) =
∫

v′p(t, x, v′) dv′. (23)

The boundary conditions for the TAF concentration are

∂C
∂x

(t, 0, y) = 0,
∂C
∂x

(t, 1, y) = ae−y2/b2
(24)

(a = 1.1 and b = 0.3 is half the tumor width) and limy→±∞ C = 0. The boundary conditions for MDE
are zero-flux at x = 0 and x = 1 and limy→±∞ m = 0. As initial conditions, we use m(0, x, y) = 1,

C(0, x, y) = a e−[(x−1)2/c2+y2/b2], f (0, x, y) = e−x2/d2
, (25)

for c = 1.5, d2 = 0.45 [10,13]. The initial tip density is

p(0, x, y, v, w) =
e−x2/l2

x

π3/2lx
e−|v−v0|2

N0

∑
i=1

1√
πly

(e−|y−yi |2/l2
y + e−|y+yi |2/l2

y ), (26)

with lx = 0.06, ly = 0.08 in our nondimensional units. This initial condition corresponds to the
following initial condition for the stochastic process: There are 2N0 = 20 initial tips at x = 0, with
vertical positions ±yi equally spaced on the interval [−Ly, Ly] (Ly = 0.3), whose initial velocities
are normally distributed about v0 with standard deviation 1. Note that, as lx and ly tend to
zero, Equation (26) becomes

p(0, x, y, v)=δσv=1(v− v0)δ(x)
N0

∑
i=1

[δ(y− yi) + δ(y + yi)]. (27)

The system of Equations (13) and (20) with appropriate initial and boundary conditions and
without haptotaxis has a unique solution, as proved in [26,27].

5. Soliton and Collective Coordinates

In the overdamped limit, it is possible to derive the following reduced equation for the marginal
tip density [12],

∂ p̃
∂t

+∇x · (F p̃)− 1
2β

∆x p̃ = µ p̃− Γ p̃
∫ t

0
p̃(s, x) ds, (28)

µ =
α

π

[
1 +

α

2πβ(1 + σ2
v )

ln
(

1 +
1
σ2

v

)]
. (29)
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For constant F = (Fx, Fy), µ, and zero diffusion, 1/β = 0, Equation (28) has the following
soliton-like solution on −∞ < x < ∞:

p̃s =
(2KΓ + µ2)c
2Γ(c− Fx)

sech2

[√
2KΓ + µ2

2(c− Fx)
(x− X(t))

]
, Ẋ ≡ dX

dt
= c, (30)

where K is a constant. Numerical simulations on a slab geometry show that the marginal tip density
evolves toward (30) after an initial stage [11,12]. The profile (30) ceases to be a good approximation
to the solution of (28) when X(t) is close to x = 1. For the rest of this section, we shall consider the
intermediate stage after the soliton has formed and before it reaches the tumor at x = 1.

A small diffusion and slowly varying continuum fields C, f , m produce evolution equations for
the collective coordinates K, c, and X. Then, the marginal density profile at y = 0 can be reconstructed
from (30) with spatially averaged Fx and µ [12]. Note that p̃s is a function of ξ = x− X and also of x
and t through C(t, x) and f (t, x),

p̃s = p̃s

(
ξ; K, c, µ(C), Fx

(
C,

∂C
∂x

,
∂ f
∂x

))
. (31)

We assume that the time and space variations of C and f , which appear when p̃s is differentiated
with respect to t or x, produce terms that are small compared to ∂ p̃s/∂ξ. As explained in [12],
we shall consider that µ(C) is approximately constant, ignore ∂C/∂t because the TAF concentration
varies slowly (the dimensionless coefficients κc and χc appearing in the TAF Equation (20) are very
small according to Table 3) and ignore ∂2 p̃s/∂i∂j, where i, j = K, Fx. We now insert (30) into (28),
thereby obtaining

(
Fx − Ẋ

) ∂ p̃s
∂ξ + ∂ p̃s

∂K K̇ + ∂ p̃s
∂c ċ + p̃s∇x · F− 1

2β

(
∂2 p̃s
∂ξ2 + 2 ∂2 p̃s

∂ξ∂Fx
∂Fx
∂x + ∂ p̃s

∂Fx
∆xFx

)
+ ∂ p̃s

∂Fx

(
∂Fx
∂t + F · ∇xFx

)
= µ p̃s − Γ p̃s

∫ t
0 p̃sdt.

(32)

Equation (28) with 1/β = 0 and constant F and µ, has the soliton solution (30). Using this
fact, (32) becomes

∂ p̃s

∂K
K̇ +

∂ p̃s

∂c
ċ = A, (33)

A =
1

2β
∂2 p̃s
∂ξ2 − p̃s∇x ·F− ∂ p̃s

∂Fx

[
F·∇xFx−δ2χ f

∂(m f )
∂x −

1
2β ∆xFx

]
− δ2µ f

(
∂ p̃s
∂Fx

)2
∂Fx
∂x

+ 1
β

∂2 p̃s
∂ξ∂Fx

∂Fx
∂x − δ2µ f

∂ p̃s
∂ξ

∂ p̃s
∂Fx

.
(34)

We now find collective coordinate equations (CCEs) for K and c. As the lump-like angiton moves
on the x-axis, we set y = 0 to capture the location of its maximum. On the x-axis, the profile of
the angiton is the soliton (30). We first multiply (33) by ∂ p̃s/∂K and integrate over x. We consider
a fully formed soliton far from primary vessel and tumor. As it decays exponentially for |ξ| � 1,
the soliton is considered to be localized on some finite interval (−L/2,L/2). The coefficients in the
soliton formulas (30) and the coefficients in (33) depend on the TAF, FN and MDE concentrations at
y = 0; therefore, they are functions of x and time and get integrated over x. TAF, FN and MDE vary
slowly on the support of the soliton, and therefore we can approximate the integrals over x by

∫
I

F( p̃s(ξ; x, t), x)dx ≈ 1
L

∫
I

(∫ L/2

−L/2
F( p̃s(ξ; x, t), x)dξ

)
dx. (35)

The interval I over which we integrate should be large enough to contain most of the soliton,
of extension L. Thus, the CCEs hold only after the initial soliton formation stage. Near the primary
vessel and near the tumor, the boundary conditions affect the soliton and we should exclude intervals
near them from I . We shall specify the integration interval I in the next section. Acting similarly, we
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multiply (33) by ∂ p̃s/∂c and integrate over x. From the two resulting formulas, we then find K̇ and ċ
as fractions. The factors 1/L cancel out from their numerators and denominators. As the soliton tails
decay exponentially to zero, we can set L → ∞ and obtain the following CCEs [12]:

K̇ =

∫ ∞
−∞

∂ p̃s
∂K Adξ

∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ−

∫ ∞
−∞

∂ p̃s
∂c Adξ

∫ ∞
−∞

∂ p̃s
∂K

∂ p̃s
∂c dξ∫ ∞

−∞

(
∂ p̃s
∂K

)2
dξ
∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ−

(∫ ∞
−∞

∂ p̃s
∂c

∂ p̃s
∂K dξ

)2 , (36)

ċ =

∫ ∞
−∞

∂ p̃s
∂c Adξ

∫ ∞
−∞

(
∂ p̃s
∂K

)2
dξ−

∫ ∞
−∞

∂ p̃s
∂K Adξ

∫ ∞
−∞

∂ p̃s
∂K

∂ p̃s
∂c dξ∫ ∞

−∞

(
∂ p̃s
∂K

)2
dξ
∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ−

(∫ ∞
−∞

∂ p̃s
∂c

∂ p̃s
∂K dξ

)2 . (37)

In these equations, all terms varying slowly in space have been averaged over the interval I .
The last two terms in (34) are odd in ξ and do not contribute to the integrals in (36) and (37), whereas
all other terms in (34) are even in ξ and do contribute. Most integrals appearing in (36) and (37) are
calculated in [12]. The resulting CCEs are

K̇ = (2KΓ+µ2)2

4Γβ(c−Fx)2

4π2
75 +1

5+
(

2Fx
5c −

2π2
75 −

9
10

)
Fx
c(

1− 4π2
15

)(
1− Fx

2c

)2 +
δ2µ f c(2KΓ+µ2)2

30Γ2(c−Fx)3
1+ 2π2

105 (4π2−1)−4Fx
c(

1− 4π2
15

)(
1− Fx

2c

) ∂Fx
∂x

− 2KΓ+µ2

2Γc
(

1− Fx
2c

)(c∇x · F+F·∇xFx −δ2χ f
∂(m f )

∂x − ∆x Fx
2β

)
,

(38)

ċ = − 7(2KΓ+µ2)

20β(c−Fx)

1− 4π2
105(

1− 4π2
15

)(
1− Fx

2c

)− 7δ2µ f c(2KΓ+µ2)

30Γ(c−Fx)2
1− 2π2

735 (4π2−1)(
1− 4π2

15

)(
1− Fx

2c

) ∂Fx
∂x

+
F·∇x Fx−(c−Fx)∇x·F−δ2χ f

∂(m f )
∂x −

∆x Fx
2β

2− Fx
c

,
(39)

g(x, y) =
1
I

∫
I

g(x, 0) dx, (40)

in which the functions of C(t, x, y), m(t, x, y) and f (t, x, y) have been averaged over the interval I after
setting y = 0. We expect the CCEs (38) and (39) to describe the mean behavior of the soliton whenever
it is far from primary vessel and tumor.

6. Numerical Results

In this section, we shall solve numerically the full stochastic model and obtain the marginal vessel
tip density, the TAF, FN and MDE densities by ensemble averages as explained in [10]. Numerical
simulations indicate that, for the selected initial configuration of fibronectin that decreases away from
the primary vessel, haptotaxis delays the advance of the vessel network compared to the model with
only chemotaxis (see Figure 1). This is further illustrated by Figure 2 that compares the profiles of the
marginal tip density (at y = 0) including and excluding haptotaxis for two different times. Figure 3
shows how the advancing angiogenic network consumes fibronectin at a smaller rate as it approaches
the tumor because the MDE concentration decreases rapidly with time according to (9) and Table 3.

Numerical simulations show that the density of active tips approaches the soliton described in
the previous section after an initial formation stage and before the soliton is too close to the tumor at
x = 1. The stable soliton instantaneously adapts its shape and velocity according to the solution of the
CCEs (38) and (39). From these simulations, we obtain the evolution of the soliton collective coordinates
and reconstruct the marginal tip density at y = 0 from (30). As shown in Figure 4, the soliton produces
a simple description of tumor induced angiogenesis that agrees with numerical simulations of the
stochastic process, provided the maximum of the marginal tip density is not close to the tumor.
The simulations show that the soliton is formed after some time t0 = 0.2 (10 h) following angiogenesis
initiation. To find the soliton evolution afterwards, we need to solve the CCEs (38) and (39) whose
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coefficients are spatial averages (40) that depend on the TAF, FN and MDE concentrations and their
derivatives calculated at y = 0.
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(a) (b)

Figure 2. Effect of haptotaxis on the profile of p̃(t, x, 0) (calculated by ensemble average over
400 realizations) at times 24 h (a) and 36 h (b). Solid line: profile including haptotaxis, dashed
line: profile without haptotaxis.

Figure 3. Normalized consumption of fibronectin given by f (t, x, y)m(t, x, y)/[ f (0, x, y)m(0, x, y)], cf.
Equation (8), by the angiogenic network calculated for a single replica in panels (a) 24 h and (b) 36 h.
Panels (c) and (d) correspond to (a) and (b) but now the consumption has been calculated by ensemble
averages over 400 replicas.
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Figure 4. Comparison between the profile of p̃(t, x, 0) (solid line, calculated by ensemble average over
400 realizations) and its reconstruction from the soliton collective coordinates (dashed line) at times:
(a) 12 h; (b) 18 h; (c) 24 h; (d) 30 h.

The averaging interval I should exclude regions affected by boundaries. We calculate the spatially
averaged coefficients in (38) and (39) by: (i) approximating all differentials by second order finite
differences; (ii) setting y = 0; and (iii) averaging the coefficients from x = 0.24 to 0.6 by taking the
arithmetic mean of their values at all grid points in the interval I = [0.24, 0.6]. For x > 0.6 (resp.
x < 0.24), the boundary condition at x = 1 (resp. x = 0) influences the outcome, and, therefore,
we leave values for x < 0.24 and x > 0.6 out of the averaging. The initial conditions for the CCEs
Ẋ = c, (38) and (39) are set as follows: X(t0) = X0 is the location of the marginal tip density maximum,
p̃(t0, x = X0, 0). We find X0 = 0.18, set c(t0) = c0 = X0/t0. K(t0) = K0 is determined so that the
maximum marginal tip density at t = t0 coincides with the soliton peak. This yields K0 = 196.

Using the soliton collective coordinates, we reconstruct the marginal vessel tip density and find
its maximum value and the location thereof for all times t > t0. Figure 5 shows that the location of
the soliton as predicted from the CCEs (38) and (39) compares very well with the marginal tip density
obtained by ensemble averages (over 400 replicas) of the stochastic process during the 20 h time interval
when boundaries do not affect soliton motion. There is a large discrepancy between the maximum
marginal tip density as predicted by the soliton and by the stochastic process during the first 10 h
of angiogenesis, which clearly marks the duration of the initial stage of soliton formation. After this
stage, we note that the location of the maximum of the marginal tip density is very closely predicted
by the location of the soliton peak as a function of time. However, the soliton density is noticeably
wider than the ensemble averaged marginal density (see Figure 4). This is perhaps not so surprising.
(i) The soliton is an approximate solution of Equation (28) for the marginal density that, in itself, is
an approximation of (13) valid for large friction. A direct simulation of an overdamped Langevin
model (1) with dvi(t) = 0 may provide better quantitative agreement with the soliton. Note that we do
not have to select the velocity of the new tip branching from a given one in the overdamped case and
that the injecting boundary condition (16) becomes −∂ p̃/∂x = 2βj0 given by (19) at x = 0 [12]. With a
few exceptions [5–7,9], most models in the literature are overdamped. (ii) The soliton is an approximate
solution for an unbounded slab and the influence of the boundaries has to be eliminated by selecting
the interval I for spatial averaging. In view of Figure 5, we expect that the soliton approximation will
improve if we increase the slab size so as to minimize the influence of boundaries.
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In addition, and as it also happens in the simpler model of angiogenesis without haptotaxis [12],
the maximum marginal tip density of different single realizations of the stochastic process (defined
by (11) with N = 1) is well predicted by the position of the soliton peak density (see Figure 6).
To explain this observation is an open problem.
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Figure 5. Comparison between the maximum value of p̃(t, x, 0) (calculated by ensemble average over
400 realizations) and its value as predicted by soliton collective coordinates. (a): evolution of the
maximum value of the marginal tip density (relative error smaller than 5.8% for times between 10
and 30 h); (b): evolution of the position of the maximum marginal tip density on [0, 1] (at t = 22 h,
the absolute error is the space step in the numerical method, ∆x = 0.02; at t = 30 h, the error is 3∆x).
We have used an anastomosis coefficient Γ = 0.109.
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Figure 6. Position of the soliton peak compared to that of the maximum marginal tip density for
different replicas of the stochastic process.

7. Conclusions

In this paper, we have analyzed the influence of the haptotaxis mechanism in the first stages of
tumor-induced angiogenesis following the Capasso–Morale model [7]. Blood circulation, secondary
branching, remodeling and pruning of capillaries [22,23] are not considered in this mesoscopic model,
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nor are microscopic features such as cell size, shape and cellular mechanics [4,18]. The purpose of
this paper is to show that the reduction of complex stochastic angiogenesis dynamics to the simpler
soliton description of the angiogenic network allows incorporation of other transport mechanisms
in addition to chemotaxis. As expected, including endothelial cell motion in an adverse fibronectin
gradient through the extracellular matrix results in longer time scales for angiogenesis. As in previous
work [9,10], there is a deterministic description associated to the full stochastic model: the density of
active vessel tips satisfies an integrodifferential equation of Fokker–Planck type with a linear birth term
and a nonlinear death (anastomosis) term. This equation is coupled to reaction–diffusion equations for
the continuum fields (TAF, FN, MDE). Numerical simulations of the stochastic process show that, after
an initial formation stage, the marginal tip density advances towards the tumor as a moving angiton
whose longitudinal profile along the x-axis is soliton-like. Following the methodology explained
in [11,12], we find an analytical formula for the soliton and collective coordinate equations that control
shape and velocity of the soliton. When the soliton is about to reach the tumor, we need to study
a different stage of soliton absorption by the tumor that is not contemplated in the present work.
The detailed dynamics for TAF, FN and MDE as well as the chemotactic and haptotactic forces affecting
vessel extension modify and influence the collective coordinate equations, which could be used to
discuss possible anti-angiogenic strategies [28]. The description of angiogenesis in terms of soliton
dynamics is confirmed by comparison with numerical simulations of the full stochastic model.
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