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Abstract: Asymptotic behavior of qualitative variation statistics, including entropy measures, can be
modeled well by normal distributions. In this study, we test the normality of various qualitative
variation measures in general. We find that almost all indices tend to normality as the sample
size increases, and they are highly correlated. However, for all of these qualitative variation
statistics, maximum uncertainty is a serious factor that prevents normality. Among these, we study
the properties of two qualitative variation statistics; VarNC and StDev statistics in the case of
maximum uncertainty, since these two statistics show lower sampling variability and utilize all
sample information. We derive probability distribution functions of these statistics and prove that
they are consistent. We also discuss the relationship between VarNC and the normalized form of
Tsallis (α = 2) entropy in the case of maximum uncertainty.

Keywords: maximum entropy; measures of qualitative variation; VarNC statistic; StDev statistic;
Tsallis entropy; power-divergence statistic

1. Introduction

Whenever the scale of measurement is nominal or ordinal, the classical measures of dispersion,
like standard deviation and variance, cannot be used. In such cases, the only way to measure dispersion
is to use measures, which involve frequencies of random observations. Wilcox [1] made the first attempt
to gather some of the qualitative variation indices together pointing out the utility of these measures
for statistical handling of qualitative data. One of the rare attempts of deriving probability functions
for qualitative measures can be seen in Swanson [2].

Qualitative measures are widely used in social and biological sciences. Appropriate for the area
of application, qualitative variation indices are preferred compared to diversity indices, or vice versa.
A diversity index is a quantitative measure that accounts for the number of categories in a dataset.
Measures of diversity are distinguished from measures of variation such that the former refers to
counting numbers of discrete types [3]. Diversity is the antonym of concentration, whilst a near
synonym of variety. The term concentration is more common in some areas of ecology, and economics.
Diversity is more likely in sociology and communication [4]. For example, in economics, concentration
is a measure of competitiveness in a market. The more concentrated the market, the less competitive it
will be. Heip et al. [5] introduced a list of diversity and evenness indices, most of which could also be
seen as qualitative variation indices. The same parallelism between qualitative variation indices and
diversity indices can be found in [6–10] as well.

Although there are some differences in explanations of these measures, some mathematical
analogies between them are straightforward for some inferential purposes. For this reason it is
not surprising to find a concentration measure, which was originally proposed for measuring
diversity before it was reversed (a measure is “reversed” by taking its reciprocal, or subtracting
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it from its maximum value, etc.). For example, Simpson’s D statistic is a measure of diversity,
and “the reversed form” of it gives the Gini concentration index, which is a special case of Tsallis
entropy. The Herfindahl-Hirschmann concentration index is obtained by subtracting Simpson’s D from 1.

Statistical entropy is a measure of uncertainty of an experiment as well as being a measure of
qualitative variation. Once the experiment has been carried out, uncertainty is not present [11]. Thus,
it can also be evaluated as the measure of information; one can get through sampling, or ignorance,
before experimentation [12]. Jaynes [13] proposes that the maximizing of Shannon’s entropy provides
the most appropriate interpretation for the amount of uncertainty. The principle of maximum entropy
also coincides with Laplace’s well–known principle of insufficient reasoning. Pardo [14] and Esteban
and Morales [15] provide theoretical background for different entropy measures.

In our study, we first present the three most common entropy measures, namely Shannon, Rényi,
and Tsallis entropies with their variances, and then we discuss their asymptotic behaviour. Moreover,
we list various qualitative variation indices as axiomatized by Wilcox [1], including Shannon and Tsallis
entropies, and VarNC and StDev statistics. By simulations we check the normality of these measures
for various entropy assumptions. We observe that maximum entropy is a serious factor, which prevents
normality. We formulate the probability density functions of VarNC and StDev statistics and the first
two moments under the assumption of maximum uncertainty. We also show that VarNC is special
case of normalized Tsallis (α = 2) entropy under the same assumptions. We discuss the relationship
between qualitative variation indices and power divergence statistics since entropy measures the
divergence of a distribution from maximum uncertainty.

2. Entropy and Qualitative Variation

2.1. Common Entropy Measures

There are various entropy measures formulated by various authors in literature. Most commonly
used ones are Shannon, Rényi, and Tsallis entropies. We give basic properties of these three
measures below.

2.1.1. Shannon Entropy

In his study on mathematical theory for communication, Shannon [16] developed a measure of
uncertainty or entropy, which was later named as “Shannon entropy”. If the discrete random variable
X takes on the values x1, x2, . . . , xK with respective probabilities p1, p2, . . . , pK, Shannon entropy is
defined as:

H = −
K

∑
i=1

pi log pi. (1)

In case of maximum uncertainty (i.e., the case in which all probabilities are equal), this becomes
Ĥs = log K. The upper limit of Shannon entropy depends on the number of categories K. The estimator
of Shannon entropy, Ĥ, is calculated by using sample information as:

Ĥ = −
K

∑
i=1

p̂i log p̂i (2)

where probabilities p̂i are estimated by maximum likelihood method. Although this estimator is
biased, the amount of bias can be reduced by increasing the sample size [17]. Zhang Xing [18] gives
the variance of Shannon’s entropy with sample size n as follows:

Var
(

Ĥ
)
=

1
n

(
K

∑
i=1

pi ln2 pi − Ĥ
2
)
+

K− 1
2n2 + O

(
n−3

)
. (3)
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2.1.2. Rényi Entropy

Rényi entropy [19] is defined as:

HR =
log ∑K

i=1 pα
i

1− α
for α > 0 and α 6= 1. (4)

Shannon entropy is a special case of Rényi entropy for α→ 1 . The variance of Rényi entropy
estimator can be approximated by:

Var
(

ĤR

)
=

1
n

( α

α− 1

)2
(

K

∑
i=1

pα
i

)−2
 K

∑
i=1

p2α−1
i −

(
K

∑
i=1

pα
i

)2
. (5)

2.1.3. Tsallis Entropy

Another generalization of Shannon entropy is mainly due to Constantino Tsallis. Tsallis entropy
is also known as q-entropy and is a monotonic function of Rényi entropy. It is given by (see [20]):

HT =
1−∑K

i=1 pα
i

α− 1
=

1− e(1−α)HR

α− 1
, for α > 0 and α 6= 1. (6)

For α = 2, Tsallis entropy is identical to Gini Concentration Index [21]. The variance of this
entropy estimator is given by [14]:

Var
(

ĤT

)
=

1
n

( α

α− 1

)2
 K

∑
i=1

p2α−1
i −

(
K

∑
i=1

pα
i

)2
. (7)

2.1.4. Asymptotic Sampling Distributions of Entropy Measures

Agresti and Agresti [22] present some information about sampling properties of Gini concentration
index. They also introduce some tests to compare the qualitative variation of two groups.
Magurran [23] discusses some statistical tests for comparing the entropies of two samples. Agresti [24]
provides the method of deriving sampling distributions for qualitative variation statistics. Pardo [14]
emphasizes that entropy-based uncertainty statistics can also be derived from divergence statistics.
He also discusses some inferential issues in detail. For the asymptotic behaviour of entropy
measures, one may refer to Zhang Xing [18] and Evren and Ustaoğlu [25] under the condition of
maximum uncertainty.

2.2. Qualitative Variation Statistics

In this section we give a list of qualitative variation indices axiomatized by Wilcox [1] and discuss
sampling properties and relationship with power divergence statistic. Wilcox [1] notes that in textbook
treatments of measures of variation, range, semi-interquartile range, average deviation and standard
deviation are presented and discussed. However, the presentation and discussion of measures of
variation suitable for a nominal scale is often completely absent. His paper represents a first attempt to
gather and to generate alternative indices of qualitative variation at introductory level.

2.2.1. Axiomatizing Qualitative Variation

Wilcox points out that any measure of qualitative variation must satisfy the following:

1. Variation is between zero and one;
2. When all of the observations are identical, variation is zero;
3. When all of the observations are different, the variation is one.
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2.2.2. Selected Indices of Qualitative Variation

A list of selected qualitative variation statistics, some of which might have already been called
differently by different authors in various economical, ecological, and statistical studies, are listed in
Table 1.

Table 1. A list of selected qualitative variation indices ( fi denotes the frequency of category i, n is the
sample size and K is the number of categories).

Index Defining Formula Min Max Explanation

Variation ratio or
Freeman’s index (VR) 1− fmode

n 0 (K−1)
K

fmode is the frequency of the
modal class.

Index of deviations from
the mode (ModVR)

nK−K fmode
n(K−1) 0 1 Normalized form of the

variation ratio.
Index based on a range of

frequencies (RanVR)
fmin
fmode

0 1 fmin, fmode are minimum
and maximum frequencies.

Average deviation
(AVDEV)

1−∑K
i=1| fi− n

K |
2 n

K (K−1)
0 1

Analogous to mean
deviation. K is the number

of categories.
Variation index based on

the variance of cell
frequencies (VarNC)

1− ∑K
i=1( fi− n

K )
2

n2(K−1)
K

0 1
Normalized form of Tsallis

entropy when α = 2.
Analogous to variance.

Std deviation (StDev) 1−
√

∑K
i=1( fi− n

K )
2

n2(K−1)
K

0 1 Analogous to standard
deviation.

Shannon entropy (H) −
K
∑

i=1
pilogpi 0 logK The base of the logarithm

is immaterial.

Normalized entropy
(HRel) − 1

logK

K
∑

i=1
pilogpi 0 1

Normalization is used to
force the index between

0 and 1.

B index

1−√√√√1−
[

K

√
K
∏
i=1

fi
K
n

]2
0 1

B index considers the
geometric mean of cell

probabilities.

M1 (Tsallis entropy for
α = 2) 1−

K
∑

i=1
p2

i 0 (K−1)
K

It is also known as Gini
Concentration Index.

Heip Index (HI) exp(H)−1
K−1 0 1 If Shannon entropy is based

on natural logarithms.

2.2.3. Normalizing (Standardizing) an Index

In general, if an index I fails to satisfy any of the requirements in Section 2.2.1, the following
transformation can be used for remedy:

IT =
I − Imin

Imax − Imin
. (8)

Note that this has the same form as the distribution function of a uniform distribution. Since any
distribution function is limited between 0 and 1, this transformation is useful in improving the
situation. The term “normalization” or “standardization” is not related to normal distribution. Rather,
it is intentionally used to indicate that any “normalized” index takes values from the interval [0, 1].
For example, VR = 1− fmode

n and whenever all observations come from one category, (Variation ratio)
VR is zero. On the other hand, when fi = n

K for i = 1, 2, . . . , K, VR = K−1
K . Dividing VR by K−1

K
normalizes VR. In other words, normalizing VR this way produces the index (Index of deviations from
the mode) ModVR.
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2.2.4. Power-Divergence Statistic and Qualitative Variation

Loosely speaking, for discrete cases, a statistic of qualitative variation measures the divergence
between the distribution under study, and the uniform discrete distribution. For the general exposition
of statistical divergence measures, one may refer to Basseville [26] and Bhatia and Singh [27].
Cressie and Read [28] show that ordinary chi-square and log-likelihood ratio test statistics for
goodness of fit can be taken as the special cases of power-divergence statistic. Chen et al. [29] and
Harremoës [30] explain the family of power-divergence statistics based on different parametrizations.
Power-divergence statistic is an envelope for goodness of fit testing and is defined as:

PD(λ) =
2

λ(λ + 1) ∑K
i=1 fi

[(
fi
ei

)λ

− 1

]
(9)

where fi is the observed frequency, ei is the expected frequency under the null hypothesis, and λ is
a constant. Under the assumption of maximum uncertainty ei =

n
K , it becomes fi = npi and:

PD(λ) =
2n

λ(λ + 1)

[
Kλ ∑K

i=1 pλ+1
i − 1

]
. (10)

By substituting α = λ + 1 in Equation (6), Tsallis entropy can be formulated alternatively as:

HT(λ + 1) =
1−∑K

i=1 pλ+1
i

λ
, for λ > 1 and λ 6= 0. (11)

The normalized Tsallis entropy (HTN) can also be found as:

HTN(λ + 1) =
1−∑K

i=1 pλ+1
i

1− K−λ
, for λ > 1 and λ 6= 0. (12)

From Equation (12), we obtain the power-divergence statistic as:

PD(λ) =
2n
(
Kλ − 1

)
(1−HTN(λ + 1))

λ(λ + 1)
. (13)

This result is in agreement with intuition. In the case of maximum entropy, normalized Tsallis
entropy will be equal to one and PD(λ) = 0 as expected.

3. Normality Tests for the Various Measures of Qualitative Variation

3.1. Tests for Normality and Scenarios Used for the Evaluation

In order to test the normality of the above given qualitative indices under various entropy
values, distributions with four, six and eight categories are studied. These distributions are chosen
to investigate the differences between the behaviour of these indices in cases of both maximum
entropy and lower entropy. Samples of 1000, 2000, and 5000 units are taken with corresponding
runs for all distributions. The distributions are shown in Table 2, labelled from 1 to 6. Note that
odd-numbered distributions correspond to maximum entropy cases. We have observed that none of
the indices distribute normally for maximum entropy distributions no matter how large the sample
size is. Therefore, we present only the results for lower entropy distributions.
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Table 2. Six parent discrete distributions used in the simulations.

Distribution 1 2 3 4 5 6

X f (x) f (x) f (x) f (x) f (x) f (x)
1 0.25 0.35 0.166 0.5 0.125 0.05
2 0.25 0.1 0.166 0.2 0.125 0.65
3 0.25 0.45 0.166 0.1 0.125 0.05
4 0.25 0.1 0.166 0.1 0.125 0.05
5 - - 0.166 0.05 0.125 0.05
6 - - 0.166 0.05 0.125 0.05
7 - - - - 0.125 0.05
8 - - - - 0.125 0.05

3.2. Test Results for General Parent Distributions

To test the asymptotic normality of the indices, Schapiro-Wilk W, Anderson-Darling,
Martinez-Iglewicz, Kolmogorov-Smirnov, D’Agostino Skewness, D’Agostino Kurtosis, and D’Agostino
Omnibus tests are used. Success rates of these tests are shown in percentages for the non-maximum
uncertainty distributions 2, 4, and 6 in Table 3. For instance, a rate 71% means five of the above
mentioned seven tests accepted normality (5/7 = 0.714; the numbers are rounded to the nearest integer).

Table 3. Normality results in percentages for 2nd, 4th, and 6th distributions.

Index
Distribution 2 Distribution 4 Distribution 6

n = 1000 n = 2000 n = 5000 n = 1000 n = 2000 n = 5000 n = 1000 n = 2000 n = 5000

Variation ratio 71 86 100 100 100 100 86 100 100
ModVR 71 86 100 100 100 100 86 100 100
RanVR 100 71 100 100 71 100 100 86 43

Average Deviation 100 71 100 86 100 100 86 100 100
VarNC 57 100 100 14 100 100 100 100 100
StDev 100 100 100 86 100 100 100 100 100

Shannon entropy 71 100 100 14 100 100 100 100 100
HRel 71 100 100 14 100 100 100 100 100

B index 100 71 100 100 100 100 100 100 57
M1 57 100 100 14 100 100 100 100 100

Heip index 28 100 100 57 100 100 100 100 100

As a general tendency as the sample size increases, nine of the eleven indices tend to normality
for all non-maximum entropy distributions. Nevertheless the normality of two indices, namely RanVR
and the B index, is affected by dimensionality and sample size. Moreover, sampling variability of these
two indices is found to be considerably higher as compared to the other nine indices. This phenomenon
can be seen in the coefficient variation diagrams of indices in Figure 1 for the six distributions in Table 2
with three different sample sizes.

3.3. Test Results for Cases of Maximum Entropy

When the entropy is at the maximum, the variability of VarNC, StDev, Shannon, Hrel, and M1
statistics is comparatively low, as seen in Figure 1. On the other hand when the level of uncertainty is
lower, the variability of VarNC and StDev statistics is still one among the lower scores. In addition,
because of the close relationship between VarNC and StDev statistics with the chi-square distribution
in case of maximum entropy, sampling properties of these two statistics can be deduced exactly;
we address this issue in Section 4.
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Figure 1. Sampling variability of qualitative variation statistics. The vertical axis represents the
coefficient of variation: (a) Distribution 1; (b) Distribution 2; (c) Distribution 3; (d) Distribution 4;
(e) Distribution 5; (f) Distribution 6.

4. Sampling Properties

4.1. VarNC Statistic

The VarNC statistic is the analogous form of variance for analysing nominal distributions. It also
equals the normalized form of Tsallis entropy when α = 2. The VarNC statistic can be evaluated in
analogy to the variance of discrete distributions. It is defined as:

VarNC = 1− ∑K
i=1
(

fi − n
K
)2

n2(K−1)
K

. (14)

Under maximum entropy assumption, the quantity:

X =
∑K

i=1
(

fi − n
K
)2

n
K

(15)
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fits a chi-square distribution with K − 1 degrees of freedom [1]. Thus, the probability density of VarNC
statistics can be written as:

f (x) =
x

K−1
2 −1 e−

x
2

2
K−1

2 Γ
(

K−1
2

) , x > 0. (16)

If we let Z = VarNC = a + bX for a = 1 and b = −1
n(K−1) , then with f (z) = f (x)

∣∣∣ dx
dz

∣∣∣ we obtain:

f (z) = c ∗ (1− y)
K−3

2 e−
n(K−1)(1−y)

2 for 0 < y < 1 (17)

where c = 1
Γ( K−1

2 )

(
n(K−1)

2

) (K−1)
2 .

It can be shown that VarNC equals the normalized version of Tsallis (α = 2) entropy with fi = npi;

∑K
i=1

(
fi −

n
K

)2
= ∑K

i=1

(
npi −

n
K

)2
= n2 ∑K

i=1

(
pi −

1
K

)2
(18)

∑K
i=1

(
pi −

1
K

)2
= ∑K

i=1 p2
i −

1
K

(19)

VarNC = 1−
n2
(

∑K
i=1 p2

i −
1
K

)
n2(K−1)

K

=
K

K− 1

(
1−

K

∑
i=1

p2
i

)
. (20)

VarNC is also inversely proportional to the variance of cell probabilities of a multinomial
distribution. The variance of Tsallis (α = 2) entropy can be found by direct substitution of α = 2
in Equation (7):

Var(VarNC) =
1
n

(
K

K− 1

)2
 K

∑
i=1

p3
i −

(
K

∑
i=1

p2
i

)2
 (21)

which is larger than the variance of Tsallis (α = 2) entropy.
By deriving moments, one can show the consistency of VarNC statistics:

E(VarNC) = 1− 1
n(K− 1)

(K− 1) =
n− 1

n
(22)

Var(VarNC)) =
2(K− 1)

n2(K− 1)2 =
2

n2(K− 1)
(23)

Under the assumption of maximum entropy, VarNC is biased since E(varNC) 6= 1; however,
it is consistent since lim

n→∞
E(VarNC) = 1, and lim

n→∞
Var(VarNC) = 0 (see [31]). Finally, it can be noted

that for larger K values, VarNC can be approximated by a normal distribution with µ = (n−1)
n and

σ2 = 2
n2(K−1) .

4.2. StDev Statistic

The StDev statistic was proposed by Wilcox [1] as the analogous formulation of ordinary standard
deviation for qualitative distributions. It is defined as:

StDev = 1−

√√√√∑K
i=1
(

fi − n
K
)2

n2(K−1)
K

. (24)
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The statistic Y = StDev is a function of X =
∑K

i=1( fi− n
K )

2

n
K

as it holds Y = 1−
√

X
n(K−1) . That means

that Y is a−
√

bX with a = 1 and b = 1
n(K−1) where X has the same probability density function as in

Equation (16). Then by the transformation of probability densities one obtains:

f (y) = c ∗ (1− y)K−2e−
n(K−1)(1−y)2

2 for 0 < y < 1 (25)

where c = 2
3−K

2 (n(K−1))(K−1)/2

Γ( K−1
2 )

.

By deriving moments, one can show the consistency of StDev statistics. By Equation (24), we write:

E(Y) = 1− E

[√
X

n(K− 1)

]
. (26)

If we let g(x) =
√

X
n(K−1) , by Taylor series expansion we have:

E(g(X)) ∼= E

(
g(x0) + g′(x0)(x− x0) + g′′ (x0)

(x− x0)
2

2!

)
. (27)

For x0 = E(X) = K− 1, we get g(x0) =
1√
n , g′(x0) =

1
2
√

n(K−1) , and g′′ (x0) = − 1
4(K−1)2√n

.

Then we obtain:

E(Y) = E(StDev) ∼= 1− 1√
n

[
1− 1

4(K− 1)

]
. (28)

Similarly, ignoring the quadratic and higher terms in the Taylor-series expansion yields:

Var(Y) = Var(StDev) = Var(g(X)) ∼=
(

g′(x0)
)2Var(X) =

1
2n(K− 1)

. (29)

StDev is biased, but consistent since, as n→ ∞ , it holds E(Y)→ 1 and lim
n→∞

Var(Y) = 0.

4.3. Probability Distribution of VarNC and StDev under Maximum Entropy

The probability distributions of the statistics VarNC and StDev under the assumption of maximum
entropy are shown in Figure 2, for two different n and K values.
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For = E( ) = − 1, we get ( ) = √ , ( ) = √ ( ) and ( ) = − ( ) √ .  

Then we obtain:  																																																														E( ) = E(StDev) ≅ 1 − 1√ 1 − 14( − 1) .																																														(28) 
Similarly, ignoring the quadratic and higher terms in the Taylor-series expansion yields: 																																	Var( ) = Var(StDev) = Var ( ) ≅ ( ) Var( ) = 12 ( − 1)	.																								(29) 
StDev is biased, but consistent since, as → ∞, it holds E( ) → 1 and lim→ Var( ) = 0.  

4.3. Probability Distribution of VarNC and StDev under Maximum Entropy 

The probability distributions of the statistics VarNC and StDev under the assumption of 
maximum entropy are shown in Figure 2, for two different n and K values. 
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Figure 2. The probability distributions of the statistics VarNC and StDev under the assumption of 
maximum uncertainty for various selected parameters n and K: (a) n = 10, K = 5; (b) n = 50, K = 5;  
(c) n = 10, K = 10; (d) n = 50, K = 10. 

5. Discussion 

All categorical distributions can be modelled by multinomial distribution. As the sample size 
increases indefinitely, multinomial distribution tends to a multivariate normal distribution. All 
qualitative variation statistics discussed are functions of cell counts of multinomial distribution. This 
fact implies the asymptotic normality of various qualitative variation measures which are simply the 
functions of cell counts or probabilities, themselves. In our simulation studies, we have observed this 
tendency for most of the investigated qualitative variation statistics whenever the uncertainty is not 
at maximum, except for RanVR and the B index for some dimensionalities and sample sizes. The 
RanVR statistic mainly uses two special numbers, the minimum and maximum frequencies. In other 
words, the RanVR statistic is not sufficient since it does not use all relevant sample information. For 
this reason, higher sampling variability is expected a priori. This situation is especially important as 
dimensionality (K) increases. On the other hand, the B Index is a function of the geometric mean of 
the probabilities. This way of multiplicative formulation of uncertainty causes higher sampling 
variability and may be a factor preventing normality. 

None of the indices which we studied distribute normally in the case of maximum entropy, no 
matter how large the sample size is. This implies that maximum entropy is a factor preventing 
normality. Secondly, when there is little or no information about cell probabilities of multinomial 
distribution, the principle of insufficient reasoning justifies assuming maximum entropy 
distributions. In such cases, VarNC and StDev may be used in modelling the qualitative variation, 
since the probability distributions of these two statistics can be derived based on the relation between 
VarNC, StDev, and chi-square distribution. In this study we have derived the probability functions 
of these two statistics and shown that both statistics discussed are consistent. We have also shown 
that the variance of VarNC is less than that of StDev statistic and VarNC has some additional 
appealing properties because it is simply the normalized version of Tsallis (α = 2)  when the 
uncertainty is at maximum. 

Author Contributions: Atıf Evren and Erhan Ustaoğlu contributed to the theoretical work, simulations and the 
writing of this article. All authors have read and approved the final manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wilcox, A.R. Indices of Qualitative Variation; Oak Ridge National Lab., Tenn: Oak Ridge, TN, USA, 1967. 
2. Swanson, D.A. A sampling distribution and significance test for differences in qualitative variation.  

Soc. Forces 1976, 55, 182–184. 
3. Gregorius, H.R. Linking diversity and differentiation. Diversity 2010, 2, 370–394. 
4. McDonald, D.G.; Dimmick, J. The Conceptualization and Measurement of Diversity. Commun. Res. 2003, 

30, 60–79.  
5. Heip, C.H.R.; Herman, P.M.J.; Soetaert, K. Indices of diversity and evenness. Oceanis 1998, 24, 61–88. 

0
2
4
6
8

10

0 0.5 1

StDev

0

20

40

0 0.5 1

VarNC StDev

Figure 2. The probability distributions of the statistics VarNC and StDev under the assumption of
maximum uncertainty for various selected parameters n and K: (a) n = 10, K = 5; (b) n = 50, K = 5;
(c) n = 10, K = 10; (d) n = 50, K = 10.

5. Discussion

All categorical distributions can be modelled by multinomial distribution. As the sample
size increases indefinitely, multinomial distribution tends to a multivariate normal distribution.
All qualitative variation statistics discussed are functions of cell counts of multinomial distribution.
This fact implies the asymptotic normality of various qualitative variation measures which are simply
the functions of cell counts or probabilities, themselves. In our simulation studies, we have observed
this tendency for most of the investigated qualitative variation statistics whenever the uncertainty
is not at maximum, except for RanVR and the B index for some dimensionalities and sample sizes.
The RanVR statistic mainly uses two special numbers, the minimum and maximum frequencies.
In other words, the RanVR statistic is not sufficient since it does not use all relevant sample information.
For this reason, higher sampling variability is expected a priori. This situation is especially important
as dimensionality (K) increases. On the other hand, the B Index is a function of the geometric mean
of the probabilities. This way of multiplicative formulation of uncertainty causes higher sampling
variability and may be a factor preventing normality.

None of the indices which we studied distribute normally in the case of maximum entropy,
no matter how large the sample size is. This implies that maximum entropy is a factor preventing
normality. Secondly, when there is little or no information about cell probabilities of multinomial
distribution, the principle of insufficient reasoning justifies assuming maximum entropy distributions.
In such cases, VarNC and StDev may be used in modelling the qualitative variation, since the
probability distributions of these two statistics can be derived based on the relation between VarNC,
StDev, and chi-square distribution. In this study we have derived the probability functions of these two
statistics and shown that both statistics discussed are consistent. We have also shown that the variance
of VarNC is less than that of StDev statistic and VarNC has some additional appealing properties
because it is simply the normalized version of Tsallis (α = 2) when the uncertainty is at maximum.
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