
entropy

Article

Symbolic Analysis of Brain Dynamics Detects
Negative Stress

Beatriz García-Martínez, Arturo Martínez-Rodrigo *, Roberto Zangróniz, José Manuel Pastor
and Raúl Alcaraz

Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La
Mancha, 16071 Cuenca, Spain; Beatriz.Garcia58@alu.uclm.es (B.G.-M.); roberto.zangroniz@uclm.es (R.Z.);
josemanuel.pastor@uclm.es (J.M.P.); raul.alcaraz@uclm.es (R.A.)
* Correspondence: arturo.martinez@uclm.es; Tel.: +34-969-179-100 (ext. 4862)

Academic Editor: Kevin H. Knuth
Received: 3 March 2017; Accepted: 26 April 2017; Published: 28 April 2017

Abstract: The electroencephalogram (EEG) is the most common tool used to study mental disorders.
In the last years, the use of this recording for recognition of negative stress has been receiving growing
attention. However, precise identification of this emotional state is still an interesting unsolved
challenge. Nowadays, stress presents a high prevalence in developed countries and, moreover,
its chronic condition often leads to concomitant physical and mental health problems. Recently,
a measure of time series irregularity, such as quadratic sample entropy (QSEn), has been suggested
as a promising single index for discerning between emotions of calm and stress. Unfortunately,
this index only considers repetitiveness of similar patterns and, hence, it is unable to quantify
successfully dynamics associated with the data temporal structure. With the aim of extending
QSEn ability for identification of stress from the EEG signal, permutation entropy (PEn) and its
modification to be amplitude-aware (AAPEn) have been analyzed in the present work. These metrics
assess repetitiveness of ordinal patterns, thus considering causal information within each one of
them and obtaining improved estimates of predictability. Results have shown that PEn and AAPEn
present a discriminant power between emotional states of calm and stress similar to QSEn, i.e.,
around 65%. Additionally, they have also revealed complementary dynamics to those quantified by
QSEn, thus suggesting a synchronized behavior between frontal and parietal counterparts from both
hemispheres of the brain. More precisely, increased stress levels have resulted in activation of the left
frontal and right parietal regions and, simultaneously, in relaxing of the right frontal and left parietal
areas. Taking advantage of this brain behavior, a discriminant model only based on AAPEn and
QSEn computed from the EEG channels P3 and P4 has reached a diagnostic accuracy greater than
80%, which improves slightly the current state of the art. Moreover, because this classification system
is notably easier than others previously proposed, it could be used for continuous monitoring of
negative stress, as well as for its regulation towards more positive moods in controlled environments.
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1. Introduction

Nowadays, the electroencephalogram (EEG) plays a key role in research concerning dozens of
psychological processes and mental disorders [1]. By simple visual inspection, experts are able to
obtain useful information to manage diagnosis and therapy for many brain diseases [2]. Moreover,
application of signal processing tools to this recording has also proven an interesting ability to reveal
hidden insights related to the underlying brain behavior under a variety of scenarios [3]. Indeed,
the EEG has been characterized both from linear and nonlinear points of view. Most linear techniques
proposed for the EEG processing are mainly based on the computation of its power spectral density
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(PSD), as well as the symmetry among different frequency bands [4–8]. However, these tools have only
reported limited information with regards to the EEG nonlinear analysis in numerous mental disorders,
such as epilepsy [9], Alzheimer’s [10], depression [11,12], schizophrenia [13] and alcoholism [14].
This outcome is not surprising because individual neurons, as well as interactions among them,
present highly heterogeneous conducts, which are far from being linear [15,16]. Indeed, neurons are
governed by threshold and saturation phenomena. Additionally, large networks of interconnected
neurons are likely candidates for self-organized criticality, which refers to large systems with local
nonlinear interactions where a slow build-up of some energy value is altered with brief bursts of
energy redistribution [17].

The interest in automatic recognition of emotions from the EEG has also grown notably in the
last years [18]. Indeed, nonlinear analysis of this signal has provided a better ability to discern among
many emotional states than other physiological recordings, including the electromyogram (EMG),
the electrocardiogram (ECG) or the electro-dermal activity (EDA) signal [19,20]. Nonetheless, further
research in this field is still necessary, since the proposed systems are not completely effective [20].
Moreover, they also require advanced combinations of a large number of features [21], thus making
it difficult to improve current knowledge about the brain behavior under different emotions. In this
respect, clinical meaning of each variable is fully blurred within complex classifiers. However, accurate
understanding of how the brain works in response to different affective stimuli is essential to enhance
efficiency and flexibility of human–computer interfaces [21]. In fact, these systems need self-adaptation
capability, which can only be reached by considering the human agent emotional state [22].

Some issues hampering automatic identification of emotions are the high intercorrelation among
them, as well as the lack of a standardized model for their definition [20]. Indeed, single emotions are
weirdly described in affective arousal studies [23]. Moreover, a stimulus can elicit different emotional
states in different subjects [23]. Indeed, it is well-known that emotional response of every individual is
highly dependent on their personality and previous experiences, as well as on other social and cultural
aspects [23,24]. Nonetheless, several theories and classification models of emotions can be found
in the literature. For instance, Ekman [25] has defined six basic emotions, i.e., happiness, sadness,
anger, disgust, surprise and fear, which can be combined to describe more complex affective states.
On the other hand, Russell [26] has proposed a model based on two dimensions, which is currently the
most used one. In this case, every emotion is classified according to its levels of valence and arousal.
The dimension of valence refers to how pleasant or unpleasant a stimulus is, whereas the level of
arousal is related to the excitement or calmness that it provokes.

Among all emotions, negative stress (also named distress) deserves special attention due to
its current prevalence in developed countries [27,28]. Continuous atmosphere of competitiveness,
job pressure, economic status and social judgement in modern societies leads many people to a frenetic
life rhythm, thus favoring the appearance of stress [29]. As an example, according to the American
Institute of Stress (AIS), about 75% of the U.S. population suffers from psychological or physical
consequences of this emotional state [30]. Although short-term distress is not today considered as a risk
factor for health, a chronic condition of this emotion often causes or aggravates physical problems,
such as hypertension and coronary artery disease [31], irritable bowel syndrome, gastroesophageal
reflux disease or back pain [32,33]. Additionally, some mental disorders, like depression or anxiety,
also appear frequently associated with long periods of negative stress [34]. On the other hand,
this emotional state has also been identified as a relevant risk factor in particular situations, e.g.,
driving tasks, clinical interventions, military operations, etc. [35]. To avoid these concomitant issues to
the negative stress, its automatic identification is highly interesting. However, it is still an unsolved
challenge [36].

To the best of our knowledge, a few nonlinear indices, including correlation dimension (CD),
fractal dimension (FD) and high order crossings (HOC) have been mainly applied to the EEG recording
for discerning between emotional states of calm and distress [37–39]. Unfortunately, they have
presented poor single discriminant powers, thus requiring their combination with advanced algorithms
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to reach classification results between 65% and 80% [37–39]. More recently, the well-known sample
entropy (SEn) and two modifications, i.e., quadratic SEn (QSEn) and distribution entropy (DEn),
have been examined in a systematic and thorough study [40]. In this case, QSEn has shown an ability
to discriminate between emotional states of calm and distress about 70%, moreover highlighting
clear differences in regularity of time series obtained from different brain areas. In view of these
outcomes, QSEn could be considered as one of the most promising single indices presented to date
for automatic identification of distress [40]. However, this metric has only been defined to estimate
regularity of time series [41], thus discarding other information contained by the data [42]. Precisely,
since QSEn only considers the absolute distance between patterns to compute their similarity and
repetitiveness, this index ignores temporal relationships among values of the time series. Hence, it is
unable to quantify structure and possible temporal patterns in the data [43].

In contrast to QSEn, some symbolic entropies have proven ability to assess order relation and
time scales from the analyzed dynamics, thus revealing information about the data time structure [43].
These metrics are based on the original time series transformation into a sequence of symbols,
whose distribution is mainly characterized through common measures of entropy, such as the
Shannon approach [44]. Interestingly, the information collected from the EEG signal with these
indices has resulted in being complementary to the one obtained by SEn and QSEn in a variety
of clinical contexts [42]. Hence, the main goal of the present work is to complement the previous
QSEn analysis for automatic identification of distress by exploring the popular permutation entropy
(PEn) and its most recent modification to consider data amplitude [45,46]. PEn is a simple and
fast method that transforms the original time series into a symbolized sequence without any prior
knowledge [45]. Basically, it compares the order of neighboring relative values, thus providing entropy
estimates robust to observational and dynamic noises [45].

The remainder of manuscript is organized as follows. Section 2 describes the database analyzed in
the study, as well as the processing applied to the EEG recordings and the algorithms used to compute
the permutation entropies. The main results are next introduced in Section 3 and then discussed in
Section 4. Finally, the most remarkable conclusions are depicted in Section 5.

2. Methods

2.1. Study Population

To ensure reproducibility of this work, a publicly available dataset was used. Indeed, EEG recordings
from the Database for Emotion Analysis using Physiological Signals (DEAP) [47] were analyzed.
These signals, together with other peripheral recordings such as the EMG, blood volume pressure and
galvanic skin response, were acquired by means of a Biosemi ActiveTwo system during an experiment
of emotional elicitation with audiovisual stimuli. Precisely, a set of 32 healthy volunteers (between
19 and 37 years, mean of 26.9 years, 50% men) visualized forty 1 min-length music videos with
emotional content. The procedure was divided into two parts, such that the volunteers first visualized
20 videos and, after a brief break, displayed the other 20 ones. Hence, a total of 1280 samples from
a broad variety of affective states were recorded. After each video, levels of valence, arousal and
dominance subjectively perceived by each participant were also collected through self-assessment
manikins (SAM). These graphical tests allow for expressing up to nine levels of pleasure (valence),
excitation (arousal) and dominance [48]. Furthermore, individuals also rated their level of liking and
familiarity after the visualization of each video. More detailed information about the DEAP database
can be found in [47].

In this experiment, audiovisual stimuli were chosen to cover the whole valence-arousal space.
However, only the samples corresponding to emotional states of calm and negative stress were
considered in the present study. They were selected according to previous works also dealing with
automatic identification of distress [37,39,40,49]. Thus, the group of negatively stressed subjects was
formed by 133 samples rated with levels of valence lower than 3 and arousal higher than 5. Regarding
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the group of calm individuals, 146 samples with levels of valence between 4 and 6 and arousal lower
than 4 were collected. A total of 279 samples were finally analyzed.

2.2. Preprocessing Applied to the EEG Recording

A sampling rate of 512 Hz was used to acquire the EEG signal from 32 electrodes distributed
on the scalp, according to the standardized 10–20 system [50]. As in previous works [40,47], the last
30 second-length interval from each recording was selected for its analysis. It was first preprocessed
to remove typical noise and nuisance interferences. Thus, the signal was initially referenced to the
mean of all electrodes [47]. Thereafter, forward/backward high-pass (3 Hz cut-off frequency) and
low-pass (45 Hz cut-off frequency) filtering approaches were used to remove baseline and power-line
interferences [47], respectively. Note that this preprocessing preserves the frequency band of most
interest in the EEG [1]. Next, the contamination from the electrical activity of other physiological
systems (e.g., eyes, heart, etc.), as well as some technical artifacts, like electrode-pops, were reduced
making use of independent component analysis (ICA) [51,52]. Thus, independent components were
obtained from the EEG signal by means of a extended ICA algorithm and, then, visually revised to
remove those containing noise and interferences. Some interferences causing a high-amplitude noise
were unsuccessfully removed in this way and, then, the clean signal was estimated by interpolation
from adjacent electrodes [53].

2.3. Permutation Entropy

PEn was initially introduced by Bandt and Pompe [45]. Assuming a time series of N samples in
length, i.e., x(n) = {x(1), x(2), . . . , x(N)}, the first step to compute this entropy is to form N −m + 1
vectors of size m samples, such that Xm(i) = {x(i), x(i + 1) . . . , x(i + m− 1)}, for 1 ≤ i ≤ N −m + 1.
Next, an ordinal pattern is associated with each vector Xm(i), which is defined as the permutation
κi = {r0, r1, . . . , rm−1} of {0, 1, . . . , m − 1} that fulfills x(i + r0) ≤ x(i + r1) ≤ . . . ≤ x(i + rm−2) ≤
x(i + rm−1). Thus, m! different ordinal patterns, referred to as πk, can be obtained from vectors Xm.
For instance, six different ordinal patterns can be considered for m = 3 , such as π1 = {0, 1, 2},
π2 = {0, 2, 1}, π3 = {1, 0, 2}, π4 = {1, 2, 0}, π5 = {2, 0, 1} and π6 = {2, 1, 0}. The appearance
probability of each pattern πk can then be estimated by its relative frequency, such that

p(πk) =
∑N−m+1

i=1 δ(πk, κi)

N −m + 1
, (1)

where δ(u, v) is the Kronecker delta function modified to work with patterns, i.e.,

δ(u, v) =

{
1, if u(i) = v(i), for every i = 1, 2, . . . , m; and
0, for otherwise.

(2)

Finally, PEn is obtained by computing Shannon entropy from the probability distribution for all
the symbols, and, then, it is normalized by its highest value, i.e., ln(m!), such that

PEn(m) = − 1
ln(m!)

m!

∑
k=1

p(πk) · ln
(

p(πk)
)
. (3)

This index is able to provide well-interpretable estimates of time series predictability [42]. Indeed,
when only a pattern can be found in a completely predictable time series, PEn provides a value of 0.
Contrarily, if all symbols πk present the same occurrence probability, the largest value of 1 is obtained.

Although PEn has been able to reveal interesting information from real-world time series,
including physiological signals and data from time course of stock markets [43], it presents a major
limitation. Thus, given that PEn only considers ordinal structure of patterns, the amplitude of each
sample is discarded. As an example, vectors Xm(i) = {1, 7, 4} and Xm(j) = {23, 34, 28} produce the
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same ordinal pattern πk = {0, 2, 1}, thus contributing equally to the final value of PEn [46]. Different
alternatives to overcome this problem have been proposed [46,54,55], but they make use of a very
similar mathematical basis. Hence, the most recently proposed amplitude-aware PEn (AAPEn) has
been considered in this study [46]. Briefly, the repetition probability of each pattern πk is estimated by
considering its relative frequency, as well as the average absolute (AA) and relative amplitudes (RA)
associated with the vectors Xm. For a specific vector Xm(i), that amplitudes can be obtained as

AAi =
1
m

m

∑
l=1
|x(i + l − 1)|, and (4)

RAi =
1

m− 1

m

∑
l=2
|x(i + l − 1)− x(i + l − 2)|, (5)

respectively. Then, the occurrence probability of πk can be computed as

p∗(πk) =
∑N−m+1

i=1 δ(πk, κi) ·
(

K · AAi + (1− K) · RAi

)
∑N−m+1

i=1 K · AAi + (1− K) · RAi
, (6)

where K is an adjusting coefficient, ranging from 0 to 1, to weight properly the terms AA and RA.
According to the authors, this parameter makes AAPEn flexible for its application to a broad variety
of time series [46]. Nonetheless, for AAPEn computation from EEG signals, a value of K = 0.5 has
been recommended [46] and, therefore, used in this work. Finally, Shannon Entropy is again used to
compute AAPEn, such that

AAPEn(m) = − 1
ln(m!)

m!

∑
k=1

p∗(πk) · ln
(

p∗(πk)
)
. (7)

A proper selection of m is key to obtaining robust entropy estimates from both PEn and AAPEn.
To this respect, higher values of m allow for considering a greater number of different patterns, thus
normally yielding more reliable outcomes. In this line, some previous works have proven that N � m!
to discern properly between stochastic and deterministic dynamics [43]. Nonetheless, if m is too
large, entropy estimation requires long computation times and, therefore, a trade-off between these
aspects has to be considered [46]. In fact, only values of m between 3 and 7 have been previously
recommended [42,43,45].

2.4. Performance Assessment

As previously commented, QSEn could be considered as one of the most promising single indices
to identify automatically distress from the EEG recording [40]. Hence, this metric is here computed as
a reference. In brief, repetitiveness of vectors Xm is obtained by computing the maximum absolute
distance between scalar components, i.e.,

d[Xm(i), Xm(j)] = max
l=1,2,...,m

(
|x(i + l − 1)− x(j + l − 1)|

)
, (8)

such that Xm(i) and Xm(j) are considered similar if this distance is lower than a tolerance r.
Next, the number of vectors similar to Xm(i), i.e., Bm

i (r), has to be computed by excluding self-matches.
Then, the average share for all vectors of length m can be estimated as

Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r)

N −m− 1
. (9)
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Repeating the process for vectors of length m + 1, QSEn can be computed as [56]

QSEn(m, r, N) = − ln
(Bm+1(r)

Bm(r)

)
+ ln(2r). (10)

As for PEn and AAPEn, optimal selection of m and r is also essential in QSEn computation.
To this respect, García-Martínez et al. [40] have already studied the effect of these parameters on the
recognition of negative stress, and, therefore, the values recommended by these authors were used in
this study. Thus, QSEn was computed with values of m = 2 and r = 0.25 times the standard deviation
of the original data [40].

On the other hand, note that the statistical differences between the entropy values obtained from
emotional states of calm and distress were evaluated making use of a one-way analysis of variance
(ANOVA) test. The selection of this parametric test was based on the verification of normal and
homoscedastic distributions for PEn, AAPEn and QSEn through Shapiro–Wilks and Levene analyses,
respectively. A value of statistical significance ρ < 0.05 was considered significant. Moreover,
to estimate the discriminant power of each index between emotional states of calm and stress,
a stratified 10-fold cross-validation approach was used. It is a robust way to train and test a classifier
with all the available samples and minimizing every bias in classification [57]. Briefly, the database is
first divided into 10 sets, which have to contain a balanced representation from all the classes. Then,
a classifier is trained and tested 10 times, such that, for each iteration, a fold is used for testing and
the remaining ones for training. Finally, global classification is obtained by averaging results from the
10 iterations. In this study, a receiver operating characteristic (ROC) curve was used as classifier. It is a
graphical representation of sensitivity (i.e., the true positive rate) versus specificity (i.e., true negative
rate) for several thresholds or cut-off points. The percentage of distressed subjects properly identified
was considered as sensitivity, whereas the rate of calm individuals correctly detected was defined as
specificity. The total number of samples rightly recognized was taken as diagnostic accuracy, such that
the cut-off point maximizing this share was chosen as the optimal threshold for classification.

Finally, a forward stepwise variable selection (FSVS) approach was used to analyze the relevance
in distress recognition of the spatial information contained by the values of PEn, AAPEn and QSEn
obtained from the different brain regions. Thus, the first selected variable was the one providing the
lowest statistical significance at univariate analysis. Next, for each step, a variable with a value of
ρ < 0.2 at univariate analysis was included in the model, but it only remained when the Wald static
was minimized. Finally, since the variables chosen in this way are characterized by only containing
complementary information, a support vector machine (SVM) classifier, with Gaussian kernel and
a scaling factor of 0.35, was used for exploring the discriminant ability of their combination.

3. Results

To analyze EEG epochs as stationary as possible and, moreover, to provide time-invariant
estimates of entropy, PEn, AAPEn and QSEn were computed and averaged from six non-overlapped
five-second-length intervals for each EEG channel. It should be noted that non-overlapped intervals
of 7.5, 10 and 30 s in length were also analyzed, but no significant differences among the entropy
values were noticed for any index. Thus, very similar results were observed in all cases. Furthermore,
given the importance of m to compute PEn and AAPEn, values ranging from 3 to 7 were considered [43].
Indeed, Figure 1 shows boxplots of the entropy values obtained as a function of m for emotional states
of calm and stress. Note that the EEG channel P3 provided the highest statistical differences between
groups of emotions and, therefore, only information from this signal is shown in the figure. Anyway,
consistent entropy values can be observed for every m. Indeed, regardless of this parameter, calm
subjects provided higher values of PEn and AAPEn than distressed individuals. Additionally, the
decreasing trend in entropy values as a function of m could be considered as expected. Indeed,
although the repetition likelihood of a specific pattern decreases when m increases (because there
are more potential patterns) and the entropy should increase, this rising is counterbalanced by the
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increasing normalization factor of ln(m!) [55]. Anyway, it is worth noting that the highest statistical
differences between both emotional states were noticed for m = 7 and, therefore, the remaining results
are only presented for this parameter.

PE
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Figure 1. Distribution of entropy values obtained with different values of m for (a) PEn and (b) AAPEn
from emotional states of calm (white box) and negative stress (shadow box). Statistically significant
differences between groups are marked with ∗.

On the other hand, the distributions of the average values of PEn and AAPEn computed from
the 32 EEG channels are presented in Figure 2. As can be seen, very similar layouts are noticed for
both metrics from emotional states of calm and distress. Indeed, notable differences are only observed
in the central brain region, where AAPEn is able to define more clearly areas with more predictable
activity for distressed subjects. Beyond this finding, the most remarkable result is that both indices
present higher entropy values from every EEG channel for the emotional state of calm than distress.
Nonetheless, two clear zones are identified for both emotions, such that the circle covering central,
fronto-central and parietal areas shows a notably more predictable activity than the remaining ones.

In agreement with these observations, statistically significant differences between calm and
distressed subjects were reported for most of the EEG channels (21 out of 32). As aforementioned,
the highest statistical differences were provided by the channel P3 both for PEn (ρ = 5.62× 10−5) and
AAPEn (ρ = 2.71× 10−6). This channel also showed the best classification outcomes between both
emotional states, thus yielding values of sensitivity, specificity and accuracy of 78.17%, 48.46% and
64.11% for PEn and 78.83%, 50.05% and 65.39% for AAPEn, respectively. As can also be seen in Table 1,
other EEG channels both from PEn and AAPEn only provided a diagnostic accuracy slightly lower
than P3, ranging from 60% to 65%. The remaining EEG recordings reported discriminant abilities
lower than 60%.

Regarding QSEn, 27 out of 32 EEG channels reported values of ρ < 0.05. According to
García-Martínez et al.’s work [40], the most statistically significant differences were found for the
right parietal channel P4 (ρ = 8.87× 10−7) and the left frontal channel F3 (ρ = 4.78× 10−6). These EEG
signals also yielded the best classification outcomes between emotions of calm and negative stress, thus
providing values of sensitivity, specificity and accuracy of 55.32%, 81.35% and 67.24% for P4 and 57.92%,
66.71% and 62.94% for F3, respectively. Note that these results were remarkably different from those
reported by PEn and AAPEn. In the same line, the mean values of QSEn also displayed a distribution
on the brain completely contrary to the permutation entropies, such as Figure 3 shows. Although two
different areas are still clearly identified, the previous circular zone now presents a elliptical shape
because the right parietal region shows a considerably high irregular activity. More notably, QSEn
values were higher in emotional state of distress than calm for every EEG channel.
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Figure 2. Visual representation on the brain of the average values of (a) PEn and (b) AAPEn for
emotional states of calm and distress.

Table 1. Outcomes of ρ, sensitivity (Se), specificity (Sp) and accuracy (Acc) obtained from the most
statistically significant EEG channels.

Entropy EEG ρ ROC Analysis

Metric Channel Value Se (%) Sp (%) Acc (%)

P3 5.62× 10−5 78.17 48.46 64.11
PO3 8.14× 10−5 62.85 59.00 61.42

PEn P8 2.16× 10−3 65.74 55.79 61.03
CP5 5.95× 10−4 66.47 53.32 60.28
FC1 1.85× 10−3 67.23 52.55 60.19

P3 2.71× 10−6 78.83 50.05 65.39
FC2 1.34× 10−3 73.74 48.42 61.89
F8 1.85× 10−3 71.54 50.83 61.81

AAPEn PO3 6.53× 10−5 58.42 64.87 61.43
CP5 5.31× 10−4 70.13 50.86 61.07
P8 2.07× 10−3 65.77 56.64 60.92

FC1 1.64× 10−3 70.12 50.01 60.64
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Figure 3. Visual representation on the brain of the average QSEn values for emotional states of calm
(left panel) and distress (right panel).

The described results suggest that QSEn and the permutation entropies may contain complementary
information and, thus, AAPEn and QSEn computed from all the EEG channels were introduced in
a FSVS approach. Given that PEn reported a high similarity with AAPEn, presenting cross-correlation
coefficients higher than 95% for every EEG signal, this index was not considered in this analysis. At the
end, only two variables were identified as independent indicators of distress, i.e., AAPEn computed
from the channel P3 and QSEn obtained from the recording P4. Then, their combination by means of
a SVM classifier improved notably the classification results of each single index, thus reporting values
of sensitivity, specificity and accuracy of 90.15%, 66.35% and 81.31%, respectively.

4. Discussion

Within nonlinear symbolic analysis, PEn is a very popular index that has been recently used
to characterize the EEG recording from a broad variety of mental problems, including Alzheimer’s
disease [58], Parkinson’s disease [59], epileptic seizure [60], depth of anesthesia [55], consciousness
disorders [61] and obsessive compulsive disorders [62], among others. However, to the best of our
knowledge, no thorough study has previously considered this entropy for automatic recognition
of emotions. Hence, the present work has introduced for the first time the use of PEn to identify
automatically negative stress from the EEG recording. A modification of this index to take into
consideration the time series amplitude has also been studied. No great differences between both
metrics have been noticed, but a more clear identification of brain areas presenting activity with
different levels of predictability has been reached by AAPEn. This outcome is in line with previous
works where AAPEn has resulted as more useful than PEn [46,54,55]. As a consequence, it could be
pointed out that, beyond the underlying dynamics presented by the EEG, its amplitude also seems to
contain interesting information for automatic recognition of distress.

Interestingly, PEn and AAPEn have also reported classification results similar to QSEn from some
EEG channels. Indeed, whereas the highest accuracy provided by QSEn was about 67%, this value
was around 65% for both permutation entropies. Hence, just as QSEn, these two metrics could also
be considered promising indicators of negative stress from the EEG recording. Indeed, although in
previous works a greater discriminant ability between emotions of calm and stress has been reported,
combinations of several dozens of variables through advanced classifiers have been required [37–39].
Unfortunately, discriminant models resulting in this way are only able to provide a classification
outcome, thus burying potential insights associated with the brain behavior under different affective
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states. Contrarily, the analysis of single metrics, such as QSEn or AAPEn, may result as more useful,
since they can be easily interpretable from a clinical point of view.

In this last respect, the average values of AAPEn and QSEn seem to suggest a contradictory brain
behavior under negative stress. Indeed, according to the distress definition entailing a concentration
increase to protect organism integrity against external stimuli [28], QSEn has yielded higher entropy
values from every EEG channel for distress than for calm. However, the opposite tendency has been
noticed for PEn and AAPEn. It has to be remarked that these metrics are based on different approaches
to compute regularity of patterns in time series. Thus, whereas PEn and AAPEn estimate repetition of
ordinal patterns [45,46], QSEn computes repetition of patterns with a absolute distance lower than
a threshold, which can even change notably among successive EEG segments [56]. In this way,
QSEn obtains estimates of time series irregularity, but it is unable to give accurate information
about the data time structure. Hence, the findings revealed by these metrics could be considered
as complementary, instead of contradictory. Indeed, PEn and QSEn have previously reported
complementary information in several clinical contexts, thus suggesting that these indices (and,
consequently, AAPEn) should be jointly considered for a thorough analysis of complex time series [42].

This lack of consensus about how the brain works under negative stress has also been previously
highlighted in the literature. Indeed, according to AAPEn, CD has elucidated a more complex
activity from most of the brain regions for calm than for distress [37,63]. Contrarily, in line with QSEn,
an increased spectral power in some EEG channels has been noticed for patients suffering from stressful
situations, post-traumatic stress disorders and chronic hyperarousal [64]. Other nonlinear indices,
like Lyapunov exponents and SEn, have also reported a complexity reduction in many brain time
series for stressed subjects undergoing relaxing treatments based on meditation, restful music or foot
reflexology [65,66]. However, analyzing the spatial distribution of the differences between the average
values of QSEn and AAPEn for both emotional states, displayed in Figure 4, it could be observed that
both kinds of dynamics are compatible. Indeed, the greatest differences for AAPEn are seen in the
left centro-parietal (channel P3) and right frontal (channels F4, FC2 and FC6) regions, and, for QSEn,
they are observed in the right parietal (channel P4) and left frontal (channel F3) areas. Interestingly,
these zones are completely symmetrical for each hemisphere and, therefore, complementary.
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Figure 4. Visual representation on the brain of the differences between the average values of (a) AAPEn
and (b) QSEn computed for calm and negatively stressed subjects.

Somehow, these findings may point towards a synchronized conduct for opposite frontal and
parietal areas from each hemisphere under negative stress. Thus, an increase of distress seems to
cause a more irregular activity in the left frontal and right parietal regions and, simultaneously, more
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predictable dynamics in their counterparts. These two observations have been previously reported in
isolation. In this respect, whereas stressful experiences and anxiety have proven to increase complexity
in the dynamics observed from the right parietal lobe, relaxing stimulation has shown the opposite
effect [67]. On the other hand, a higher activation has been observed during normal non-depressed
and reasonably positive moods in the left hemisphere than in the right one [67,68]. In the same line,
meditation has also been characterized by increasing activity of the left parietal region compared
with its right counterpart [69]. More interestingly, other works have also reported a synchronized
relationship between the frontal and parietal brain areas under stimulation of distress or calm. In fact,
Davidson verified some years ago that a relative left frontal activation is balanced by a relative right
parietal activation and vice versa [68]. A similar cross relation has also been observed in other studies
where patients with different mental disorders are conducted to practice meditation [70]. Finally,
the existence of anatomical cortico-cortical connections between frontal and parietal lobes was also
proposed many years ago [71].

Another sign of complementarity among the brain dynamics quantified by AAPEn and QSEn
is that both indices have been selected as independent indicators of distress by an FSVS approach.
Precisely, these metrics computed from the channels P3 (left parietal area) and P4 (right parietal region),
respectively, have provided the best single classification results. Nonetheless, their combination
by an SVM classifier has improved their single diagnostic accuracy by a 15%. Thus, while AAPEn
and QSEn have presented a single discriminant ability around 65–67%, the SVM-based discriminant
model has reported an accuracy higher than 80%. Additionally, compared with other works also
dealing with automatic identification of distress from the EEG [37–39], this classification result could
be considered as similar or slightly higher, such as Table 2 shows. Indeed, the blend of only irregularity
information from the right parietal (channel P4) and left occipital (channel O1) brain areas, introduced
recently by García-Martínez et al. [40], has only reported a diagnostic accuracy about 75%. Similarly,
the combination of linear features from the EEG spectral analysis has also been unable to provide
a discriminant ability greater than 70% [39].

Table 2. Comparison of the most relevant works dealing with automatic identification of negative
stress from the EEG recording.

Work Experiment Features Classifier Accuracy

Bastos-Filho
et al. [39] (2012)

32 subjects Statistical features,
PSD and HOC

K-nearest neighbor
(K-NN)

Stat.: 66.25%
4 EEG channels PSD: 70.1%

Videoclips HOC: 69.6%

Hosseini
et al. [37] (2010)

15 subjects FD, CD and wavelet
entropy

Linear discriminant
analysis (LDA) and

SVM

LDA: 80.1%
SVM: 84.9%5 EEG channels

IAPS

García-Martínez
et al. [40] (2016)

32 subjects
SEn, QSEn and DEn Decision tree 75.29%32 EEG channels

Videoclips

This study
32 subjects

QSEn, PEn and AAPEn SVM 81.31%32 EEG channels
Videoclips

Moreover, it is interesting to note that the proposed SVM-based discriminant model also presents
the additional advantage of only using two EEG electrodes (located at the left and right parietal brain
regions). This characteristic could make its integration in clinical and psychological trials very easy
and, thus, the proposed system may be conveniently used for continuous monitoring of subjects with
mental and affective problems. This kind of follow-up may be very useful to gain information about
how the brain works under different controlled stressful environments, as well as to provide the
best-tailored actions for the regulation of this emotion towards a positive mood, when possible [36].
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Finally, some limitations merit consideration. On the one hand, the studied DEAP dataset was
not tailor-made for recognition of negative stress. Indeed, it contains samples different from emotional
states of calm and distress [47]. Additionally, a variety of alternatives for arousal of emotions can
be found in the literature and no consensus exists about which the best option is [20]. Although
audiovisual stimulation has been widely used in previous experiments, too long music videos with
a duration of 1 min in length were considered here. Thus, the likelihood of elicitation of subsequent
emotions could be rated as high [47]. Despite these limitations, note that unbiased results are
obtained with this dataset, which can moreover be honestly compared with other previous or future
works making use of the same EEG recordings. On the other hand, only brain dynamics have been
characterized in the present study, thus discarding information from other physiological recordings.
Since the DEAP database also contains additional peripheral recordings to the EEG, some of them will
be considered in the future to assess the relationship between the brain and other physiological signals
under distress. Nonetheless, since most physiological signals are non-stationary, advanced nonlinear
tools will be used for exploring fractal, multiscale, multivariate and causal information [72–74].
Although PEn and AAPEn take into consideration causal information within each ordinal pattern,
causality among patterns is dismissed. Thus, specific indices to estimate time series causality, such
as transfer entropy or Granger index, will be considered to improve current automatic identification
of distress.

5. Conclusions

Two permutation entropies have been analyzed for the first time with the aim of complementing
the promising analysis of brain dynamics with QSEn for automatic recognition of negative stress.
Interestingly, they have proven a similar ability to QSEn for discerning between emotional states of
calm and distress, moreover quantifying successfully some additional unrevealed brain dynamics.
More precisely, the obtained results suggest a synchronized conduct between cross parietal and
frontal areas from both hemispheres of the brain. Thus, according to previous neurophysiological
studies, heightened stress levels seem to cause activation of the left frontal and right parietal areas
and, simultaneously, relaxing of their counterparts. Considering this brain behavior, an SVM-based
discriminant model combining only two variables has also shown a higher diagnostic accuracy than
other algorithms previously proposed to identify distress. Moreover, compared with these previous
methods, which typically require a wide variety of features, the proposed discriminant model may be
conveniently used for continuous monitoring of distress in controlled environments, thus making its
regulation towards a more positive affective state possible. Nonetheless, further studies with wider
datasets, where emotions were elicited by a variety of different ways, are required in the future to
corroborate and improve the presented results.
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