

  Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution




Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution







Entropy 2017, 19(5), 189; doi:10.3390/e19050189




Article



Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution



Songbai Song *, Xiaoyan Song * and Yan Kang *





College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, China









*



Correspondence: Tel.: +86-29-8708-2902 (S.S); Fax: +86-29-8708-2901 (S.S.)







Academic Editors: Huijuan Cui, Bellie Sivakumar, Vijay P. Singh and Kevin H. Knuth



Received: 6 March 2017 / Accepted: 21 April 2017 / Published: 26 April 2017



Abstract:



Two methods based on the principle of maximum entropy (POME), the ordinary entropy method (ENT) and the parameter space expansion method (PSEM), are developed for estimating the parameters of a four-parameter exponential gamma distribution. Using six data sets for annual precipitation at the Weihe River basin in China, the PSEM was applied for estimating parameters for the four-parameter exponential gamma distribution and was compared to the methods of moments (MOM) and of maximum likelihood estimation (MLE). It is shown that PSEM enables the four-parameter exponential distribution to fit the data well, and can further improve the estimation.
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1. Introduction


Hydrological frequency analysis is a statistical prediction method that consists of studying past events that are characteristic of a particular hydrological process in order to determine the probabilities of the occurrence of these events in the future [1,2]. It is widely used for planning, design, and management of water resource systems. The probability distributions containing four or more parameters may exhibit some useful properties [3]: (1) versatility and (2) ability to represent data from mixed populations. Among these distributions, some popular distributions are Wakeby, two-component lognormal, two-component extreme value distributions, and the four-parameter kappa distribution. Since the pioneering stream flow records frequency analysis of Herschel and Freeman during the period from 1880 to 1890, hydrological frequency analysis has undergone extensive further development. There are a multitude of methods for estimating parameters of hydrologic frequency distributions. Some of the popular methods include [3,4]: (1) the method of moments; (2) the method of probability weighted moments; (3) the method of mixed moments; (4) L-moments; (5) the maximum likelihood estimation; (6) the least square method; and (7) the entropy-based parameter estimation method.



Among the above parameter estimation methods, entropy, which is a measure of uncertainty of random variables, has attracted much attention and has been used for a variety of applications in hydrology [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]. For example, an entropy-based derivation of daily rainfall probability distribution [24], the Burrr XII-Singh-Maddala (BSM) distribution function derived from the maximum entropy principle using the Boltzmann-Shannon entropy with some constraints [25]. “Entropy-Based Parameter Estimation in Hydrology” is the first book focusing on parameter estimation using entropy for a number of distributions frequently used in hydrology [3], including the uniform distribution, exponential distribution, normal distribution, two-parameter lognormal distribution, three-parameter lognormal distribution, extreme value type I distribution, log-extreme value type I distribution, extreme value type III distribution, generalized extreme value distribution, Weibull distribution, gamma distribution, Pearson type III distribution, log-Pearson type III distribution, beta distribution, two-parameter log-logistic distribution, three-parameter log-logistic distribution, two-parameter Pareto distribution, two-parameter generalized Pareto distribution, three-parameter generalized Pareto distribution and two-component extreme value distribution. Recently, two entropy-based methods, called the ordinary entropy method (ENT) and the parameter space expansion method (PSEM), that are both based on the principle of maximum entropy (POME) have been applied for estimating the parameters of the extended Burr XII distribution and the four-parameter kappa distribution [5,16]. The results of the estimation show that the entropy method enables these two distributions to fit the data better than the other estimation methods. In the above method of entropy-based parameter estimation of a distribution, the distribution parameters are expressed in terms of the given constraints, and then the method can provide a way to derive the distribution from the specified constraints. The general procedure for the ENT for a hydrologic frequency distribution involves the following steps [3]: (1) define the given information in terms of the constraints; (2) maximize the entropy subject to the given information; and (3) relate the parameters to the given information. The PSEM employs an enlarged parameter space and maximizes the entropy subject to the parameters and the Lagrange multipliers [3]. The parameters of the distribution can be estimated by the maximization of the entropy function.



The Pearson III distribution is recommended as a standard distribution to fit hydrological data in China. In addition, generalized Pareto distribution (GPD), generalized extreme value (GEV) and three-parameter Burr type XII distribution also have been applied flood frequency analysis [26].



Inspired in large part by the two-parameter gamma distribution, a four-parameter exponential gamma distribution has been developed to apply in many areas, such as wind and flood frequency in Yellow River basin, Yangtse River basin, Aumer Basin and Liaohe River basin of China [4]. Depending on the parameter values, the four-parameter exponential gamma distribution can be turned into a Pearson type III distribution, Weibull distribution, Maxwell distribution, Kritsky and Menkel distribution, Chi-square distribution, Poisson distribution, half-normal distribution and half-Laplace distribution. The properties of the four-parameter exponential gamma and relations between this distribution and other distributions have been investigated [4]. These investigations suggest that the four-parameter exponential gamma distribution may have a potential in hydrology. Despite the advances mentioned above, the entropy-based parameter estimation for the four-parameter exponential gamma distribution has received comparatively little attention from the hydrologic community.



The objective of this paper is to apply two entropy-based methods that both use the POME for the estimation of the parameters of the four-parameter exponential gamma distribution; compute the annual precipitation quantiles using this distribution for different return periods; and compare these parameters with those estimated when the methods of moments (MOM) and maximum likelihood estimation (MLE) were employed for parameter estimation.




2. Four-Parameter Exponential Gamma Distribution


2.1. Probability Density Function and Cumulative Distribution Function


The probability density function (PDF) of the four-parameter exponential gamma distribution can be expressed as [4]:


[image: there is no content]



(1)




where [image: there is no content][image: there is no content], [image: there is no content] and [image: there is no content] are, respectively, the shape, scale, location and transformation parameter.



Depending on the values of the four parameters [image: there is no content][image: there is no content], [image: there is no content] and [image: there is no content], Equation (1) turns into the following special cases:



(1) If [image: there is no content], then Equation (1) becomes the Pearson type III distribution:


[image: there is no content]



(2)







If [image: there is no content], Equation (2) becomes a gamma distribution:


[image: there is no content]



(3)







(2) If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) reduces to the Weibull distribution:


[image: there is no content]



(4)







(3) If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) becomes the three-parameter Weibull distribution:


[image: there is no content]



(5)







(4) If [image: there is no content] and [image: there is no content], then Equation (1) reduces to the Kritsky and Menkel distribution:


[image: there is no content]



(6)







(5) If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) becomes the Chi-square distribution:


[image: there is no content]



(7)







(6) If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) reduces to the Poisson distribution


[image: there is no content]



(8)







(7) If [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) becomes the half-normal distribution:


[image: there is no content]



(9)







(8) If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) becomes the half-normal distribution:


[image: there is no content]



(10)







(9) If [image: there is no content], [image: there is no content] and [image: there is no content], then Equation (1) reduces to the half-Laplace distribution:


[image: there is no content]



(11)







The cumulative distribution function (CDF) of the four-parameter exponential gamma distribution can be expressed as:


[image: there is no content]



(12)







Let [image: there is no content], then [image: there is no content], [image: there is no content] and [image: there is no content]. Substitution of the above quantities in Equation (12) yields [4]:


[image: there is no content]



(13)




where [image: there is no content] and can be determined by the incomplete gamma function.




2.2. Quantile Corresponding to the Probability of Exceedance


The quantile corresponding to the probability of exceedance [image: there is no content], [image: there is no content], is obtained by Equation (14) or Equation (15):


[image: there is no content]



(14)






[image: there is no content]



(15)




here, [image: there is no content] and [image: there is no content] are the mean and coefficient of the variation of a sample, respectively, and [image: there is no content] is the frequency factor corresponding to [image: there is no content]. Given the expectation and variance of the population, the frequency factorr [image: there is no content] is given by [4]:


[image: there is no content]



(16)




where [image: there is no content] and [image: there is no content] are the expectation and variance of the population.



If [image: there is no content], the frequency factors of the four-parameter exponential gamma distribution, [image: there is no content], are very close to that of the log-normal distribution (Table 1). If [image: there is no content], the [image: there is no content] values are very close to that of the Gumbel distribution (Table 2).



Table 1. Frequency factors of the four-parameter exponential gamma distribution and log-normal distribution ([image: there is no content]).







	
[image: there is no content]

	
Distribution

	
P (%)




	
0.01

	
0.1

	
1

	
5

	
20

	
50

	
90

	
99






	
0.2

	
Four-parameter exponential gamma

	
4.17

	
3.39

	
2.47

	
1.70

	
0.830

	
−0.033

	
−1.26

	
−2.18




	
log-normal

	
4.17

	
3.39

	
2.47

	
1.70

	
0.830

	
−0.033

	
−1.26

	
−2.18




	
2.0

	
Four-parameter exponential gamma

	
9.44

	
6.23

	
3.53

	
1.90

	
0.614

	
−0.240

	
−0.963

	
−1.26




	
log-normal

	
9.51

	
6.24

	
3.52

	
1.89

	
0.614

	
−0.240

	
−0.967

	
−1.28










Table 2. Frequency factors of the four-parameter exponential gamma distribution and Gumbel distribution under [image: there is no content].







	
Distribution

	
P (%)




	
0.01

	
0.1

	
1

	
5

	
20

	
50

	
90

	
99






	
Four-parameter exponential gamma

	
6.80

	
4.92

	
3.12

	
1.87

	
0.728

	
−0.166

	
−1.10

	
−1.61




	
log-normal

	
6.80

	
4.94

	
3.14

	
1.87

	
0.728

	
−0.164

	
−1.10

	
−1.64











2.3. Cumulants and Moments


The first three cumulants of the four-parameter exponential gamma distribution are expressed as [4]:


[image: there is no content]



(17)






[image: there is no content]



(18)






[image: there is no content]



(19)







Using the relations between moments and cumulants and Equations (17)–(19), the expression for the first four moments of the four-parameter exponential gamma distribution are given below:


[image: there is no content]



(20)






[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)







In next sections, we use two methods of parameter estimation, ENT and PSEM, to derive the parameters estimation expression of the four-parameter exponential gamma distribution.





3. Ordinary Entropy Method


For ENT, three steps are involved in the estimation of the parameters of a probability distribution: (1) specification of appropriate constraints, (2) derivation of the entropy function of the distribution, and (3) derivation of the relations between parameters and constraints [3,16].



3.1. Specification of Constraints


Taking the natural logarithm of Equation (1), we obtain:


[image: there is no content]



(24)







Multiplying Equation (24) by [–f(x)] and integrating from [image: there is no content] to [image: there is no content], we obtain the entropy function:


[image: there is no content]



(25)







To maximize [image: there is no content] in Equation (25), the following constraints for Equation (25) should be satisfied


[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)






[image: there is no content]



(29)








3.2. Construction of Partition Function and Zeroth Lagrange Multiplier


The least-biased pdf, [image: there is no content], consistent with Equations (26) to (29) and corresponding to the POME takes the form:


[image: there is no content]



(30)




where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are Lagrange multipliers. Substitution of Equation (30) in Equation (26) yields:


[image: there is no content]



(31)







The argument of the exponential function on the left side of Equation (31) has two parts: zeroth Lagrange multiplier without the random variable and four Lagrange multipliers with the random variable. The zeroth Lagrange multiplier part is separated out and is expressed as:


[image: there is no content]



(32)







To calculate the above integral, let [image: there is no content], then [image: there is no content], [image: there is no content]. Substituting the above quantities in Equation (32), we obtain:


exp(λ0)=∫0∞(yλ3)−(λ1+λ2b)⋅exp(−y)bλ3byb−1dy=bλ3b−(bλ1+λ2)∫0∞yb−(bλ1+λ2)−1⋅e−ydy=bλ3b−(bλ1+λ2)Γ[b−(bλ1+λ2)]



(33)







Taking the logarithm of Equation (33) results in the zeroth Lagrange [image: there is no content] multiplier as a function of Lagrange multipliers [image: there is no content], [image: there is no content] and [image: there is no content], with the expression given as:


[image: there is no content]



(34)






[image: there is no content]



(35)








3.3. Relation between Lagrange Multiplier and Constraints


Differentiating Equation (35) with [image: there is no content], [image: there is no content] and [image: there is no content], we obtain the derivatives of [image: there is no content] with respect to [image: there is no content], [image: there is no content] and [image: there is no content], the detailed derivations are given in Appendix B:


[image: there is no content]



(36)






[image: there is no content]



(37)






[image: there is no content]



(38)







Furthermore, we can write:


[image: there is no content]



(39)







Additionally, differentiating Equation (34) with [image: there is no content], [image: there is no content] and [image: there is no content], we obtain:


[image: there is no content]



(40)






[image: there is no content]



(41)






[image: there is no content]



(42)






[image: there is no content]



(43)







Equating Equations (36) and (40), we obtain:


[image: there is no content]



(44)







Equating Equations (37) and (41), we obtain:


[image: there is no content]



(45)







Equating Equations (38) and (42), we obtain:


[image: there is no content]



(46)







Equating Equations (39) and (43), we obtain:


[image: there is no content]



(47)








3.4. Relation between Lagrange Multiplier and Parameters


Introduction of Equation (34) in Equation (30) produces:


f(x)=exp{−lnb+[b−(bλ1+λ2)]lnλ3−lnΓ[b−(bλ1+λ2)]−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b}=exp(lnb−1)⋅exp[lnλ3b−(bλ1+λ2)]⋅exp{ln1Γ[b−(bλ1+λ2)]}⋅exp[ln(x−δ)−λ1]⋅exp[ln(x−δ)−λ2b]⋅exp[−λ3(x−δ)1b]=1b⋅λ3b−(bλ1+λ2)⋅1Γ[b−(bλ1+λ2)]⋅(x−δ)−λ1⋅(x−δ)−λ2b⋅exp[−λ3(x−δ)1b]=λ3b−(bλ1+λ2)b⋅Γ[b−(bλ1+λ2)]⋅(x−δ)−(λ1+λ2b)⋅e−λ3(x−δ)1b



(48)




a comparison of Equation (48) with Equation (1) shows that:


[image: there is no content]



(49)






[image: there is no content]



(50)








3.5. Relation between Parameters and Constraints


The four-parameter exponential gamma distribution has four parameters [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] that are related to the Lagrange multipliers by Equations (49) and (50). In turn, these parameters are related to the known constrains by Equations (44)–(47). Eliminating the Lagrange multipliers among these four sets of Equations, we can obtain the following Equations:


[image: there is no content]



(51)









4. Parameter Space Expansion Method


4.1. Specification of Constraints


Following reference [3], the constraints consistent with the POME method and appropriate for the four-parameter exponential gamma distribution are specified by Equations (26), (27) and (29).




4.2. Construction of Zeroth Lagrange Multiplier


The least-biased pdf corresponding to POME and consistent with Equations (26), (27) and (29) takes the form:


[image: there is no content]



(52)




where [image: there is no content], [image: there is no content] and [image: there is no content] are Lagrange multipliers. Substitution of Equation (52) into Equation (26) yields


[image: there is no content]



(53)






[image: there is no content]



(54)







Let [image: there is no content], then [image: there is no content], [image: there is no content]. Substituting the above quantities in Equation (54) and changing the limits of integration, we obtain:


exp(λ0)=∫0∞(yλ2)−bλ1⋅exp(−y)bλ2byb−1dy=bλ2b−bλ1∫0∞yb−bλ1−1⋅e−ydy=bλ2b−bλ1Γ(b−bλ1)



(55)







This yields the zeroth Lagrange multiplier:


[image: there is no content]



(56)








4.3. Derivation of Entropy Function


Introduction of Equation (56) into Equation (52) yields:


f(x)=exp[−lnb+(b−bλ1)lnλ2−lnΓ(b−bλ1)−λ1ln(x−δ)−λ2(x−δ)1b]=λ2b−bλ1bΓ(b−bλ1)(x−δ)−λ1exp[−λ2(x−δ)1b]



(57)




a comparison of Equation (57) with Equation (1) shows that:


[image: there is no content]



(58)






[image: there is no content]



(59)




taking the logarithm of Equation (57) yields:


[image: there is no content]



(60)




then, making use of Equation (60), the entropy function can be written as:


S=−∫δ∞f(x)lnf(x)dx=∫δ∞[−(b−bλ1)lnλ2+lnb+lnΓ(b−bλ1)+λ1ln(x−δ)+λ2(x−δ)1b]f(x)dx=−(b−bλ1)lnλ2+lnb+lnΓ(b−bλ1)+λ1E[ln(x−δ)]+λ2E[(x−δ)1b]



(61)








4.4. Relation between Parameters and Constraints


Taking partial derivatives of (61) with respect to [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], and equating each derivative to zero yields:


[image: there is no content]



(62)






[image: there is no content]



(63)






[image: there is no content]



(64)






[image: there is no content]



(65)







Introduction of Equations (58)–(59) into Equations (62)–(65) and recalling Equations (62)–(65) yields, respectively:


[image: there is no content]



(66)




The expectations of Equation (66) are replaced by their sample estimates, and the simplification of Equation (66) leads to:


[image: there is no content]



(67)




Equations (51) has the second moments and results in some biases. Therefore, Equation (67) should be used for the estimation of the parameters.





5. Two Other Parameter Estimation Methods


Two other methods of parameter estimation frequently used in hydrology are the method of moments (MOM) and the MLE method.



5.1. Method of Moments


The four-parameter exponential gamma distribution has four parameters [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].Therefore, four moments are needed for the parameters estimation. The detailed derivation of the four moments is presented in Appendix A:


[image: there is no content]



(68)







For a sample, [image: there is no content], the estimation equations become:


[image: there is no content]



(69)




where [image: there is no content] is the sample size; [image: there is no content].




5.2. Method of Maximum Likelihood Estimation


For the MLE method, the log-likelihood function L for a sample [image: there is no content] is given by:


[image: there is no content]



(70)







The MLE's of parameters [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are taken to be the values that yield the maximum of [image: there is no content]. Differentiating Equation (70) partially with respect to each parameter and equating each partial derivative to zero produces:


[image: there is no content]



(71)







These are the parameter estimation Equations, and the obtained results are the same as those of the PSEM method.





6. Evaluation and Comparison of Parameter Estimation Methods


The PSEM as presented in this paper is used for six annual precipitation data sets observed from 1959 to 2008 without any missing records at the Weihe River basin of China. All data are obtained from the National Climate of China Meteorological Administration and are complete. The characteristics of these data are summarized in Table 3. Obviously, all annual precipitation records have very low first-order serial correlation coefficients, [image: there is no content]. Using Anderson's test of independence, the results have shown that these gauge data have an independent structure at 90% confidence levels. Hence, they are suitable for the application of meteorological frequency analysis.



Table 3. Characteristics of data used for parameter estimation.







	
Site Name

	
Mean

	
Standard Deviation

	
Coefficient of Variation

	
Skewness

	
Kurtosis

	
First-Order Serial Correlation Coefficient






	
Xi’an

	
571.9

	
126.9575

	
0.2220

	
0.2938

	
3.1935

	
−0.11399




	
Zhouzhi

	
635.2

	
158.7627

	
0.2499

	
0.6613

	
3.6873

	
0.16198




	
Lantian

	
713.7

	
150.0908

	
0.2103

	
0.2787

	
3.1394

	
0.02126




	
Huxian

	
633.8

	
147.5611

	
0.2328

	
0.3582

	
3.1987

	
0.05029




	
Lintong

	
579.5

	
129.2021

	
0.2230

	
0.6108

	
3.5747

	
0.04745




	
Wugong

	
606.7

	
158.2829

	
0.2609

	
0.5710

	
3.0826

	
0.09791










None of the above-discussed three methods yielded explicit solutions for the estimation of parameters of the four-parameter exponential gamma distribution. The parameter estimation Equations were therefore solved for [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] by the four-dimensional Levenberg–Marquardt method.



Equations (67)–(68) and (71) can be simplified as the form of [image: there is no content]. Then, according to the above procedures the Matlab (Version R2007b) computer codes were developed and used to calculate the parameters. To verify the validities of parameters, the left side functions [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in Equations (67)–(68) and (71) are listed Table 4. It is seen that these compute quantities are close to zero, indicating satisfactory performance of the four dimensional Levenberg–Marquardt algorithm.



Table 4. The left side functions [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in Equations (67)–(68) and (71).







	
Site Name

	
Methods

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Xi’an

	
PSEM

	
0.00581

	
0.00350

	
0.00000

	
−0.08445




	
MLE

	
0.00581

	
0.00350

	
0.00000

	
−0.08445




	
MOM

	
0.00842

	
−0.00000

	
0.00000

	
0.07950




	
Zhouzhi

	
PSEM

	
0.00144

	
0.00174

	
0.00000

	
−0.01937




	
MLE

	
0.00144

	
0.00174

	
0.00000

	
−0.01937




	
MOM

	
0.01241

	
−0.00007

	
0.00000

	
0.02139




	
Lantian

	
PSEM

	
0.00244

	
0.00206

	
0.00000

	
−0.07525




	
MLE

	
0.00244

	
0.00206

	
0.00000

	
−0.07525




	
MOM

	
0.00493

	
−0.00000

	
0.00000

	
0.01965




	
Huxian

	
PSEM

	
0.00242

	
0.00199

	
0.00000

	
−0.05926




	
MLE

	
0.00242

	
0.00199

	
0.00000

	
−0.05926




	
MOM

	
0.00533

	
−0.00006

	
0.00000

	
0.08050




	
Lintong

	
PSEM

	
0.00086

	
0.00107

	
0.00000

	
−0.08474




	
MLE

	
0.00086

	
0.00107

	
0.00000

	
−0.08474




	
MOM

	
0.03094

	
−0.00002

	
0.00000

	
0.02216




	
Wugong

	
PSEM

	
−0.00047

	
−0.00132

	
0.00000

	
0.00726




	
MLE

	
−0.00047

	
−0.00132

	
0.00000

	
0.00726




	
MOM

	
0.00285

	
−0.00001

	
0.00000

	
0.00850










The values of the distribution parameters are given in Table 5. The results of PSEM and MLE are the same. To evaluate and compare the performance of the three methods, the relative error (RERR) was employed that can be defined as:


[image: there is no content]



(72)




where [image: there is no content] and [image: there is no content] are the observed and predicted values of a given (i-th) quantile, respectively, and n is the sample size. The RERR values are summarized in Table 5.



Table 5. Parameter values estimated by the three methods.







	
Site Name

	
Methods

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
RERR






	
Xi’an

	
PSEM

	
0.01000

	
88.34381

	
4.42388

	
2.11605

	
0.00127




	
MLE

	
0.01000

	
88.34381

	
4.42388

	
2.11605

	
0.00127




	
MOM

	
7.20138

	
62.88730

	
1.79612

	
1.77889

	
0.00131




	
Zhouzhi

	
PSEM

	
0.01000

	
79.70604

	
4.26549

	
2.19876

	
0.00189




	
MLE

	
0.01000

	
79.70604

	
4.26549

	
2.19876

	
0.00189




	
MOM

	
210.63187

	
27.69157

	
1.27634

	
1.95521

	
0.00274




	
Lantian

	
PSEM

	
0.01000

	
94.39458

	
3.88381

	
2.05573

	
0.00128




	
MLE

	
0.01000

	
94.39458

	
3.88381

	
2.05573

	
0.00128




	
MOM

	
68.28209

	
60.56026

	
1.69273

	
1.80523

	
0.00136




	
Huxian

	
PSEM

	
0.01000

	
84.61866

	
4.25523

	
2.15294

	
0.00119




	
MLE

	
0.01000

	
84.61866

	
4.25523

	
2.15294

	
0.00119




	
MOM

	
212.47184

	
30.39572

	
1.33086

	
1.92191

	
0.00213




	
Lintong

	
PSEM

	
0.01000

	
90.81538

	
4.35225

	
2.08997

	
0.00129




	
MLE

	
0.01000

	
90.81538

	
4.35225

	
2.08997

	
0.00129




	
MOM

	
162.17872

	
36.92153

	
1.48868

	
1.87230

	
0.00161




	
Wugong

	
PSEM

	
0.01000

	
75.75303

	
4.39321

	
2.24406

	
0.00158




	
MLE

	
0.01000

	
75.75303

	
4.39321

	
2.24406

	
0.00158




	
MOM

	
114.20629

	
35.23074

	
1.35950

	
1.89735

	
0.00183










Examination of the data in Table 5 shows that the parameters estimated using PSEM and MLE are comparable to MOM in terms of RERR and it is thus difficult to distinguish them from one another. However, PSEM and MLE yield the best parameter estimates. Thus, the parameters estimated by PSEM should be employed as the ones of four-parameter exponential gamma distribution in case study sites.



To measure the agreement between a theoretical probability distribution and an empirical distribution for the samples, Kolmogorov–Smirnov (K–S) test [image: there is no content] was used to assess the goodness-of-fit.



Let [image: there is no content] be order statistics for a sample size [image: there is no content] whose population is defined by a continuous cumulative distribution function [image: there is no content] and [image: there is no content] be a specified distribution that contains a set of parameters [image: there is no content] ([image: there is no content] is estimated value from a sample size [image: there is no content]). For an annual precipitation series, the null hypothesis [image: there is no content] that the true distribution was [image: there is no content] with parameters [image: there is no content] was tested. K–S test [image: there is no content] can be expressed as:


[image: there is no content]



(73)






[image: there is no content]



(74)







The sample values of K–S test statistic [image: there is no content], are shown in Table 6. The critical value [image: there is no content] of the four-parameter exponential gamma distribution (at the significance level a = 0.05, for sample size [image: there is no content]) is 0.18654. From Table 6 it can be seen that the statistics of observed annual precipitation are all less than their corresponding critical values, respectively. Therefore, it is concluded that annual precipitation series are all accepted by the K–S test.



Table 6. Sample values of K–S test statistic [image: there is no content] of case study sites.







	
Site Name

	
[image: there is no content]

	
Site Name

	
[image: there is no content]






	
Xi’an

	
0.07764

	
Huxian

	
0.07268




	
Zhouzhi

	
0.07290

	
Lintong

	
0.07755




	
Lantian

	
0.04485

	
Wugong

	
0.10037











7. Conclusions


Hydrologic frequency analysis, in spite of having developed a great number of distribution models and parameter estimation methods for reliable parameters and quantiles estimates, comes up against practical difficulties imposed by the short sample ranges. The Pearson Type III distribution is recommended as a standard distribution in hydrological frequency analysis in China. A large number of studies have shown that fitting small and large return period segments of Pearson Type III distribution is affected by its skewness value. Different studies employing the same parameter estimation methods may obtain different results. The use of four-parameter exponential gamma distribution has emerged as an attempt to reduce the estimate errors of small and large return period segments. The advantage of the proposed entropy method is that the first moments are made about the calculation of the distribution parameters, instead of variance, skewness and kurtosis. The results of the case estimates show that the entropy method enables the four-parameter exponential gamma distribution to fit the data well. The entropy-based parameter estimation also provides a new way to estimate parameters of the four-parameter exponential gamma distribution. The disadvantage of the method is that it will be computationally cumbersome because four parameters are involved. However, this should not be an insurmountable difficultly, given the currently available numerical tools and computer progress. Also, there are significant differences between among the MOM, PSEM and MLE estimates. Such large differences may be caused by the system of non-linear equations of parameter estimation involving the second central moment of the variable for the MOM, first moments for PSEM and MLE. In addition, the confidence intervals of quantiles for the four-parameter exponential gamma distribution deserve thorough investigation.



In summary, the following conclusions can be drawn from the present study: (1) for parameter estimation, PSEM yields the same results as MLE, whereas MOM performs with the highest bias; (2) PSEM is comparable to the MOM; (3) the four-parameter exponential gamma distribution fits the observed annual precipitation data well; (4) the quantile discharge values estimated by the three methods are close to each other; (5) the four-parameter exponential gamma distribution is a versatile distribution and results in nine different distributions, depending on its parameter values.
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Appendix A. First Four Original Moments and Central Moments


Consider that the first original moments of the four-parameter exponential gamma distribution are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively; [image: there is no content], [image: there is no content], [image: there is no content] are the second, third and fourth central moments, respectively;[image: there is no content] is coefficient of variation; [image: there is no content] is coefficient of skewness; [image: there is no content] is coefficient of kurtosis. A detailed derivation of the above moments is given below:


μ′1=∫δ∞xf(x)dx=∫δ∞βαbΓ(α)x(x−δ)αb−1e−β(x−δ)1bdx=∫0∞βαbΓ(α)(δ+1βbtb)(1βbtb)αb−1e−tbβbtb−1dt=∫0∞1Γ(α)(δ+1βbtb)tα−1e−tdt=1Γ(α)[δ∫0∞tα−1e−tdt+1βb∫0∞tα+b−1e−tdt]=1Γ(α)[δ⋅Γ(α)+1βbΓ(α+b)]=Γ(α+b)βbΓ(α)+δ



(A1)






μ′2=∫δ∞x2f(x)dx=∫δ∞βαbΓ(α)x2(x−δ)αb−1e−β(x−δ)1bdx=∫0∞βαbΓ(α)(δ+1βbtb)2(1βbtb)αb−1e−tbβbtb−1dt=∫0∞1Γ(α)(δ+1βbtb)2tα−1e−tdt=1Γ(α)[δ2∫0∞tα−1e−tdt+2δβb∫0∞tα+b−1e−tdt+1β2b∫0∞tα+2b−1e−tdt]=1Γ(α)[δ2Γ(α)+2δβbΓ(α+b)+1β2bΓ(α+2b)]=δ2+2δβbΓ(α)Γ(α+b)+1β2bΓ(α)Γ(α+2b)



(A2)






μ′3=∫δ∞x3f(x)dx=∫δ∞βαbΓ(α)x3(x−δ)αb−1e−β(x−δ)1bdx=∫0∞βαbΓ(α)(δ+1βbtb)3(1βbtb)αb−1e−tbβbtb−1dt=∫0∞1Γ(α)(δ+1βbtb)3tα−1e−tdt=1Γ(α)[δ3∫0∞tα−1e−tdt+3δ2βb∫0∞tα+b−1e−tdt+3δβ2b∫0∞tα+2b−1e−tdt+1β3b∫0∞tα+3b−1e−tdt]=1Γ(α)[δ3Γ(α)+3δ2βbΓ(α+b)+3δβ2bΓ(α+2b)+1β3bΓ(α+3b)]



(A3)






μ′4=∫δ∞x4f(x)dx=∫δ∞βαbΓ(α)x4(x−δ)αb−1e−β(x−δ)1bdx=∫0∞βαbΓ(α)(δ+1βbtb)4(1βbtb)αb−1e−tbβbtb−1dt=∫0∞1Γ(α)(δ+1βbtb)4tα−1e−tdt=1Γ(α)[δ4∫0∞tα−1e−tdt+4δ3βb∫0∞tα+b−1e−tdt+6δ2β2b∫0∞tα+2b−1e−tdt+4δβ3b∫0∞tα+3b−1e−tdt+1β4b∫0∞tα+4b−1e−tdt]=δ4+4δ3Γ(α+b)βbΓ(α)+6δ2Γ(α+2b)β2bΓ(α)+4δ⋅Γ(α+3b)β3bΓ(α)+Γ(α+4b)β4bΓ(α)



(A4)






μ2=Var(x)=μ′2−(μ′1)1=δ2+2δβbΓ(α)Γ(α+b)+1β2bΓ(α)Γ(α+2b)−[Γ(α+b)βbΓ(α)+δ]2=δ2+2δβbΓ(α)Γ(α+b)+1β2bΓ(α)Γ(α+2b)−Γ2(α+b)β2bΓ2(α)−2δβbΓ(α)Γ(α+b)−δ2=1β2bΓ(α)Γ(α+2b)−Γ2(α+b)β2bΓ2(α)=Γ(α+2b)Γ(α)−Γ2(α+b)β2bΓ2(α)



(A5)






μ3=E[X−E(X)]3=E[X3−3X2E(X)+3XE2(X)−E3(X)]=E(X3)−3E(X2)E(X)+2E3(X)=μ′3−3μ′2μ′1+2(μ′1)3=1Γ(α)[δ3Γ(α)+3δ2βbΓ(α+b)+3δβ2bΓ(α+2b)+1β3bΓ(α+3b)]−3[δ2+2δ⋅Γ(α+b)βbΓ(α)+Γ(α+2b)β2bΓ(α)]⋅[Γ(α+b)βbΓ(α)+δ]+2[Γ(α+b)βbΓ(α)+δ]3=(δ3+2δ3−3δ3)+[3δ2Γ(α+b)βbΓ(α)−3δ2Γ(α+b)βbΓ(α)−6δ2⋅Γ(α+b)βbΓ(α)+6δ2Γ(α+b)βbΓ(α)]+[3δ⋅Γ(α+2b)β2bΓ(α)−3δ⋅Γ(α+2b)β2bΓ(α)]+[6δ⋅Γ2(α+b)β2bΓ2(α)−6δ⋅Γ2(α+b)β2bΓ2(α)]+Γ(α+3b)β3bΓ(α)+2Γ3(α+b)β3bΓ3(α)−3Γ(α+b)Γ(α+2b)β3bΓ2(α)=Γ2(α)Γ(α+3b)−3Γ(α)Γ(α+b)Γ(α+2b)+2Γ3(α+b)β3bΓ3(α)



(A6)






μ4=E[X−E(X)]4=E[X4−4X3E(X)+6X2E2(X)−4XE3(X)+E4(X)]=E(X4)−4E(X3)E(X)+6E(X2)E2(X)−3E4(X)=μ′4−4μ′3μ′1+6μ′2(μ′1)2−3(μ′1)4=δ4+4δ3Γ(α+b)βbΓ(α)+6δ2Γ(α+2b)β2bΓ(α)+4δ⋅Γ(α+3b)β3bΓ(α)+Γ(α+4b)β4bΓ(α)−41Γ(α)[δ3Γ(α)+3δ2βbΓ(α+b)+3δβ2bΓ(α+2b)+1β3bΓ(α+3b)]⋅[Γ(α+b)βbΓ(α)+δ]+6[δ2+2δ⋅Γ(α+b)βbΓ(α)+Γ(α+2b)β2bΓ(α)]⋅[Γ(α+b)βbΓ(α)+δ]2−3[Γ(α+b)βbΓ(α)+δ]4=(δ4−4δ4+6δ4−3δ4)+[4δ3Γ(α+b)βbΓ(α)−4δ3Γ(α+b)βbΓ(α)−12δ3Γ(α+b)βbΓ(α)+12δ3⋅Γ(α+b)βbΓ(α)]+[12δ3⋅Γ(α+b)βbΓ(α)−6δ3⋅Γ(α+b)βbΓ(α)−6δ3⋅Γ(α+b)βbΓ(α)]+[6δ2Γ(α+2b)β2bΓ(α)+6δ2Γ(α+2b)β2bΓ(α)−12δ2Γ(α+2b)β2bΓ(α)]+[24δ2⋅Γ2(α+b)β2bΓ2(α)−12δ2Γ2(α+b)β2bΓ2(α)−12δ2⋅Γ2(α+b)β2bΓ2(α)]+[6δ2Γ2(α+b)β2bΓ2(α)−3δ2Γ2(α+b)β2bΓ2(α)−3δ2Γ2(α+b)β2bΓ2(α)]+[4δ⋅Γ(α+3b)β3bΓ(α)−4δ⋅Γ(α+3b)β3bΓ(α)]+[12δ⋅Γ(α+b)Γ(α+2b)β3bΓ2(α)−12δ⋅Γ(α+b)Γ(α+2b)β3bΓ2(α)]+[12δ⋅Γ3(α+b)β3bΓ3(α)−6δ⋅Γ3(α+b)β3bΓ3(α)−6δ⋅Γ3(α+b)β3bΓ3(α)]+Γ(α+4b)β4bΓ(α)−4Γ(α+b)Γ(α+3b)β4bΓ2(α)+6Γ2(α+b)Γ(α+2b)β4bΓ3(α)−3Γ4(α+b)β4bΓ4(α)=Γ(α+4b)β4bΓ(α)−4Γ(α+b)Γ(α+3b)β4bΓ2(α)+6Γ2(α+b)Γ(α+2b)β4bΓ3(α)−3Γ4(α+b)β4bΓ4(α)=Γ3(α)Γ(α+4b)−4Γ2(α)Γ(α+b)Γ(α+3b)+6Γ(α)Γ2(α+b)Γ(α+2b)−3Γ4(α+b)β4bΓ4(α)



(A7)






[image: there is no content]



(A8)






Cs=μ3(μ2)3/2=Γ2(α)Γ(α+3b)−3Γ(α)Γ(α+b)Γ(α+2b)+2Γ3(α+b)β3bΓ3(α)[Γ(α+2b)Γ(α)−Γ2(α+b)β2bΓ2(α)]3/2=Γ2(α)Γ(α+3b)−3Γ(α)Γ(α+b)Γ(α+2b)+2Γ3(α+b)β3bΓ3(α)β3bΓ3(α)[Γ(α)Γ(α+2b)−Γ2(α+b)]3/2=Γ2(α)Γ(α+3b)−3Γ(α)Γ(α+b)Γ(α+2b)+2Γ3(α+b)[Γ(α)Γ(α+2b)−Γ2(α+b)]3/2



(A9)






Ce=μ4(μ2)2−3=Γ3(α)Γ(α+4b)−4Γ2(α)Γ(α+b)Γ(α+3b)+6Γ(α)Γ2(α+b)Γ(α+2b)−3Γ4(α+b)β4bΓ4(α)⋅β4bΓ4(α)[Γ(α)Γ(α+2b)−Γ2(α+b)]2−3=Γ3(α)Γ(α+4b)−4Γ2(α)Γ(α+b)Γ(α+3b)+6Γ(α)Γ2(α+b)Γ(α+2b)−3Γ4(α+b)[Γ(α)Γ(α+2b)−Γ2(α+b)]2=Γ3(α)Γ(α+4b)−4Γ2(α)Γ(α+b)Γ(α+3b)+6Γ(α)Γ2(α+b)Γ(α+2b)−3Γ4(α+b)[Γ(α)Γ(α+2b)−Γ2(α+b)]2+−3Γ2(α)Γ2(α+2b)+6Γ(α)Γ(α+2b)Γ2(α+b)−3Γ4(α+b)[Γ(α)Γ(α+2b)−Γ2(α+b)]2=Γ3(α)Γ(α+4b)−4Γ2(α)Γ(α+b)Γ(α+3b)+12Γ(α)Γ2(α+b)Γ(α+2b)−3Γ2(α)Γ2(α+2b)−6Γ4(α+b)[Γ(α)Γ(α+2b)−Γ2(α+b)]2



(A10)








Appendix B. Derivatives of [image: there is no content] with Respect to [image: there is no content], [image: there is no content] and [image: there is no content]




∂λ0∂λ1=−∫δ∞ln(x−δ)⋅exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞ln(x−δ)⋅exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞ln(x−δ)⋅f(x)dx∫δ∞⋅f(x)dx=−E[ln(x−δ)]



(A11)






∂λ0∂λ2=−∫δ∞ln(x−δ)1b⋅exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞ln(x−δ)1b⋅exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞ln(x−δ)1b⋅f(x)dx∫δ∞f(x)dx=−E[ln(x−δ)1b]



(A12)






∂λ0∂λ3=−∫δ∞(x−δ)1b⋅exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞(x−δ)1b⋅exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx∫δ∞exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=−∫δ∞(x−δ)1b⋅f(x)dx∫δ∞f(x)dx=−E[(x−δ)1b]



(A13)




Furthermore, we can write:


∂2λ0∂λ32=∫δ∞[(x−δ)1b]2⋅exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx{∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx}2⋅∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx+−∫δ∞(x−δ)1b⋅exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx{∫δ∞exp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx}2⋅∫δ∞(x−δ)1bexp[−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=∫δ∞[(x−δ)1b]2⋅exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx{∫δ∞exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx}2∂λ0∂λ3=−b−(bλ1+λ2)λ3+−∫δ∞(x−δ)1b⋅exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx{∫δ∞exp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx}2⋅∫δ∞(x−δ)1bexp[−λ0−λ1ln(x−δ)−λ2ln(x−δ)1b−λ3(x−δ)1b]dx=∫δ∞[(x−δ)1b]2⋅f(x)dx{∫δ∞f(x)dx}2⋅∫δ∞f(x)dx−∫δ∞(x−δ)1b⋅f(x)dx{∫δ∞f(x)dx}2⋅∫δ∞(x−δ)1bef(x)dx=∫δ∞[(x−δ)1b]2⋅f(x)dx{∫δ∞f(x)dx}2⋅∫δ∞f(x)dx−∫δ∞(x−δ)1b⋅f(x)dx{∫δ∞f(x)dx}2⋅∫δ∞(x−δ)1bef(x)dx=E[(x−δ)1b]2−{E[(x−δ)1b]}2



(A14)
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