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Abstract: In longitudinal medical studies, multicomponent images of the tissues, acquired at
a given stage of a disease, are used to provide information on the fate of the tissues. We propose
a quantification of the predictive value of multicomponent images using information theory. To this
end, we revisit the predictive information introduced for monodimensional time series and extend it
to multicomponent images. The interest of this theoretical approach is illustrated on multicomponent
magnetic resonance images acquired on stroke patients at acute and late stages, for which we propose
an original and realistic model of noise together with a spatial encoding for the images. We address
therefrom very practical questions such as the impact of noise on the predictability, the optimal choice
of an observation scale and the predictability gain brought by the addition of imaging components.
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1. Introduction

In the medical context, one often needs to predict the future health of tissues based on information
contained in one or more imaging components from one or more acquisition time points. An important
problem in this type of multicomponent and longitudinal imaging studies is not only to process
jointly several components, but also to a priori quantify the benefits (if any) of multi-component and
multi-time point integration. This problem is particularly challenging when faced, as is always the
case in medical imaging studies, with biological variability and noise in the imaging system.

In such a context, the informational content of physical signals can be defined and quantified
in a powerful way by means of statistical information theory, as pioneered by Shannon [1,2].
Statistical information theory proposes measures of similarity and predictability, which are common
tools in image processing [3,4]. However, images are not immediately given as statistical objects,
and, therefore, each novel situation calls for its specific statistical modeling. This requires the description
of a communication channel with at least an input and an output characterized by their statistics expressed
on a definite (discrete or continuous) alphabet of symbols together with a noise model. The modeling of
imaging problems in the framework of information theory is an active research topic and was recently
applied for instance to spectral reduction [5,6], observation scale optimization [7], image visualization [8,9]
and multimodality imaging [10,11].

In this work, we propose to study the problem of tissue health prediction in the framework
of a Shannon-like communication channel. First, we formalize multicomponent and longitudinal
imaging studies in this general framework and revisit the notion of predictive information introduced
by Bialek [12]. Then, we illustrate the use of this framework in acute stroke studies. We propose
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to study the problem of the classification of brain tissues depending on their chances of survival
after stroke from magnetic resonance (MR) multicomponent images. We demonstrate the interest
of such a modeling approach to address generic practical questions such as (i) the quantification of
the gain in predictability obtained by the addition of new image components in prediction studies;
(ii) the selection of a relevant spatial observation scale to optimally predict tissue fate; and (iii) the
quantification of the impact of imaging noise on the predictability.

2. Methods

2.1. Modeling a Shannon-Like Communication Channel for Multicomponent and Longitudinal Biomedical
Imaging Studies

We propose to model multicomponent and longitudinal biomedical imaging studies as
a Shannon-like communication channel (see Figure 1), where the input X and the output Y of the
communication channel are composed of a multicomponent stack of 3D images acquired, respectively,
at an early and a late stage of the evolution of a disease. The underlying hypothesis of the channel
proposed in Figure 1 is that the biological process from X to Y is deterministic, assuming therefore that,
when the input X is appropriately chosen, only noise in the measuring process of X and Y impairs the
predictability of Y given X. Within this framework, we define the predictive power of the input X on
the output Y as

PPX,Y =
H(Y)− H(Y|X)

H(Y)
∗ 100 (%), (1)

with H(Y) = − ∑
y∈DY

Pr(Y = y) log (Pr(Y = y)) , (2)

and H(Y|X) = ∑
x∈DX

∑
y∈DY

Pr(X = x, Y = y) log
(

Pr(X = x)
Pr(X = x, Y = y)

)
, (3)

where H(Y), the entropy of Y, quantifies the amount of information held in the random variable
Y and H(Y|X), the conditional entropy of Y on X, quantifies the amount of information needed to
describe the outcome of the random variable Y given that the value of the random variable X is known.
The value of the predictive power will vary between 0% when X is not informative of Y and 100%
when X is a perfect predictor of Y, i.e., X ≡ Y. In the literature, there has been numerous proposals for
the use of information theory as a measure of temporal evolution [13]. Some are symmetric measures,
such as the predictive information [12], and others enable, at the price of numerous acquisition
time-points, to determine causal relationships between variables, such as the transfer entropy [14]
or the Granger causality [15]. We chose to use a symmetric measure because, in most longitudinal
studies, the number of time points is generally limited and the direction of the transfer of information
is known. The predictive power proposed here is a normalized version, expressed in percentage rather
than in Shannon, of the predictive information introduced by Bialek [12].

In Section 2.2, we explicitly describe the input X and output Y encountered in multicomponent
and longitudinal imaging studies for stroke.
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Figure 1. General Shannon-like communication channel for multicomponent and longitudinal
biomedical imaging studies. The imaging process is not deterministic, and the input and output
are perturbed by noise.

2.2. Multicomponent and Longitudinal Imaging Studies in Stroke

Resulting from an abrupt perturbation of blood supply in the brain, stroke is the leading cause of
disability in the world. The longer the blood supply stays impaired, the higher the risk of damage
to the patient. Treatments can, however, have dangerous side-effects. It is therefore important in
clinical routine to rapidly but efficiently evaluate the benefit-risk ratio of administering a treatment
to the patient. In this context, diffusion-weighted imaging (DWI) and perfusion-weighted imaging
(PWI) are two useful MR imaging modalities used as a diagnostic tool in acute stroke. The biological
process leading to infarction is, however, very complex and still misunderstood. Therefore, DWI and
PWI MR images are also used in retrospective studies in the aim of gaining a better understanding of
stroke mechanisms and improving patient care. These retrospective studies generally investigate the
predictive power of DWI and PWI MR images on tissue fate. To do so, they often work from segmented
binary masks of the affected areas which can be identified from DWI and PWI images (see Figure 2),
as well as a segmented binary mask of the final infarct identified from a follow-up fluid-attenuated
inversion recovery (FLAIR) MR image. DWI MR imaging produces one 3D image component on
which it is possible to identify areas suffering from a cytotoxic edema. Contrarily, PWI MR imaging
produces a 4D image (3D + time) from which we extract, after post-processing, multiple 3D-image
components called hemodynamic parameter maps. On each of these maps, it is possible to identify
areas suffering from abnormal hemodynamic properties. In practice, five imaging components are
commonly generated: the 3D maps of the cerebral blood flow, the cerebral blood volume, the mean
transit time, the time to maximum and the time to peak.

(a) (b) (c)

Figure 2. Illustration of the binary mask of a cytotoxic edema (c) segmented from the diffusion-weighted
imaging of a patient in acute stage (a); (b) show the superposition of the affected area on the image
used for the segmentation.
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The multicomponent and longitudinal stroke studies therefore fit well with the communication
channel modeled in Figure 1. The input X of the communication channel can be considered as
a six-component stack of binary 3D images segmented at the acute stage of the stroke disease
X = [X1; X2; X3; X4; X5; X6], where X1 is segmented from the DWI MR image and X2, X3, X4, X5

and X6 are segmented from the cerebral blood flow, cerebral blood volume, mean transit time, time to
maximum and time to peak maps, respectively, whereas the output Y can be considered as a binary 3D
image of the final infarct (one-component stack). Since the image acquisition is realized in emergency
conditions, their spatial resolution is low to reduce acquisition time. Furthermore, due to pain or
shock, the patients often move during MRI acquisition causing artifacts in the images. The artifacts
and poor spatial resolution in stroke studies therefore render the segmentation of the affected areas
difficult. In addition, some of the affected areas are less contrasted and more fragmented than others,
adding to the difficulty of segmentation [16,17]. Therefore, in stroke studies, the noise level in the
input X and output Y is relatively high and a question still under debate is whether the predictive
value of X on Y is limited by the fact that there is a high noise level in the images or because X does
not capture all the parameters relevant to the biological process of infarction. Furthermore, although
largely disseminated in clinic and clinical research for acute stroke, the quantitative benefit of using
PWI MRI in addition to DWI MRI is still subject to discussion [18,19]. Since time is of the essence in
stroke patient management, an other question of interest is thus to quantify the gain in predictability
when integrating PWI imaging components to prediction models. Finally, several stroke prediction
studies have shown the interest of taking into account the local spacial environment around voxels
rather than considering voxels as independent entities, detached from their surroundings [20–23].
For this reason, it seems important—particularly when considering the fact that binary masks are a
crude summary for gray-scale images, likely to contain segmentation errors near their borders—to
quantify the predictability gain in encoding information on the local environment of each voxel.

The communication channel model proposed here offers us a rigorous framework to investigate
these clinical questions. Sections 2.2.1–2.2.3 detail the methodology used to address (1) the gain in
integrating multiple components in tissue fate prediction studies; (2) the benefit from taking into
account the local environment of the tissue and the optimum observation scale; and (3) the impact of
imaging noise on the accuracy of tissue fate prediction.

2.2.1. Gain of Predictability with Multicomponent Integration

In order to quantify the gain in predictability when integrating PWI imaging components to
prediction models, we propose using the predictive power defined in Equation (1) to select the best
combination of n components in terms of tissue fate prediction and evaluating the relative gain in
predictability from an n- to an (n + 1)-component combination. For the component combination
selection, we propose to use a forward-selection approach. Starting from an empty combination set,
the forward-selection approach consists of constructing the best component combination by adding at
each iteration the component giving the highest predictive power when considering iteratively one,
two, three, four, five, then finally six components. In real applications, the data support is finite and
the predictive power of noise is consequently non-zero. To evaluate the order of magnitude of the
predictive power of noise, we simulate a “noise component” for each component input Xi, composed of
voxels with the same distribution as the real component Xi but with a different and random position
in space. The mean predictive power of the noise components on the real output Y is then evaluated
over 100 noise realizations.

2.2.2. Optimal Observation Scale for Tissue Fate Prediction

We propose a simple modification of the input components in order to include information on
the state of the neighboring voxels, while still preserving a small number of labels (small alphabet).
We propose to encode a value for each voxel that depends not only on the value of the voxel itself
but also on the value of its N × N neighborhood (neighboring voxels falling outside the brain region
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being ignored), with N the observation scale. Instead of a two-label encoding (with a label equal to 0
if the voxel is not in the affected area, and to 1 if the voxel is in the affected area), we now propose
the six-label encoding described in Table 1.

Table 1. Six-label encoding for binary masks taking into account, for each voxel, the state of the voxels
in its N × N neighborhood.

Label Voxel in Affected Area % Of Neighboring Voxels in Affected Area

0 no [0, 25]
1 no (25, 75)
2 no [75, 100]
3 yes [0, 25]
4 yes (25, 75)
5 yes [75, 100]

The evolution of the voxels labels as the observation scale N is increased is illustrated in Figure 3.
We want to study the evolution of the predictive power when the observation scale N is increased.
An illustration of the processing pipeline is given in Figure 4.

N
191 3 5 7 1715

//

Figure 3. Illustration of the evolution of the labels in an image component as the observation scale N
is increased.

Figure 4. Illustration of the processing pipeline proposed for the study of the gain in predictability
from observation scale optimization in tissue fate prediction studies for stroke. The study of the gain
in predictability from component integration presented in Section 2.2.1 corresponds to the specific
case where the observation scale equals 1 and the encoded images are thus exactly the same as the
binary masks.

2.2.3. Impact of Noise on Tissue Fate Prediction Accuracy

We want to quantify to what extent noise impacts the estimated value of the predictive power
of the input X on the output Y. However, the difficulty is that, in practice, we do not have access
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to the real noise-free input Xr and output Yr, but we only observe a noisy version of Xr and Yr,
X = Xr + εX and Y = Yr + εY , with εX and εY the error terms on X and Y. To quantify the impact
of noise, we need to be able to isolate the drop in predictive power that can be traced back to noise
only. To do so, we propose in this work to place ourselves in the simple case where the input X is
mono-component and where, without noise, X would be a perfect predictor for the output Y, that is,
where PPXr ,Yr = 100%. We simulate inputs X and outputs Y, starting with X = Xr = Yr = Y = M,
and then progressively and independently adding a realistic noise εX and εY to both X and Y in order
to study the evolution of the predictive power of X on Y as the noise level increases.

If we ask multiple operators to segment the affected areas on the same image, we observe
classically two types of differences between the segmentation masks obtained: (i) local differences
situated near the borders of the segmentation masks (see Figure 5b,d) and (ii) global differences with
the absence/presence of entire components (see Figure 5b,c). In practice, the status of voxels situated
near the border of a segmentation mask is generally less reliable than the status of voxels situated in
the core of a segmentation mask.

(a) (b) (c) (d) (e) (f)

Figure 5. (a–d): illustration of segmentation masks of a same image (a) when segmented by three
different experts (b–d). One can see that the small affected area segmented by the experts in masks (b,d),
was not segmented by the expert on mask (c). In addition, one can clearly see differences between
masks (b–d) around the border of the largest affected area. (e,f): illustration of noisy masks simulated
from the segmentation mask (b) with Algorithm 1.

To the best of our knowledge, no simulator of realistic segmentation noise was presented in
the literature and we therefore propose a simulator of our own. Realistic global differences with the
absence/presence of entire components is harder to simulate than realistic local differences situated
near the borders of the segmentation mask. In this work, we introduce only local differences in order
to simulate noise. We propose simulating noisy segmentation masks by using randomly positioned
modifications (deletions and additions) of Nm voxels from a reference segmentation mask M, where
the number of modified voxels (Nm) controls the level of noise introduced. We propose two relative
measures of the noise level: the proportion of error PE and the error rate ER, defined as PE = Nm/Ns
and ER = Nm/Nl, with Ns the number of voxels in the inside contour of the reference segmentation
mask and Nl the total number of voxels in the reference segmentation mask. Our simulator produces
masks with the same volume as the reference segmentation mask by introducing as many additions
as deletions. The positions of the deletions and additions are restricted to the δ × δ neighborhood
of the border of the reference segmentation mask M in order to simulate realistic local under- and
over- estimations of the real affected area. The parameter δ controls the extent of the area near the
mask border that can be subjected to modifications. For our application and given the resolution of the
images used in this study, a value of δ = 5 was chosen after inspection of several segmentation masks
from different operators. Moreover, for the noisy segmentation masks to be realistic, configurations
where deletions and additions occur in a limited number of clustered regions will be favored. In order
to do so, each time a voxel is added to (or deleted from) the initial mask M, the probability of its
neighboring voxels to be added (or deleted) will be multiplied by a factor of α and their probability to
be deleted (or added) will be divided by a factor of α, with α > 1. For α = 1, deletions and additions
will not occur in a limited number of clustered regions and will be evenly distributed around the initial
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mask border. The higher the value of α, the more localized the modifications will be. A value of α = 10
was chosen after visual inspection to obtain, as can be seen in Figure 5, a satisfying match between
real segmentation errors and simulated ones. The detailed procedure for the introduction of noise in a
reference mask M is given in Algorithm 1.

Algorithm 1: Pseudo-algorithm for the introduction of noise in a reference mask M. The inside
contour is composed of all the voxels which belong to the segmented region and are in contact
with its boundary. The outside contour is composed of all the voxels which do not belong to
the segmented region but are in contact with its boundary. The optimum values for δ and α,
the two parameters of the algorithm, are application-dependent. Here, they were set to δ = 5
and α = 10. In any case, we should have α > 1 and δ odd ≥ 3.

1 begin
2 X ←− M;
3 Dm ←− δxδ neighborhood around the boundary of the region where X = 1 ;
4 Wd(vi)←− {1 if vi ∈ Dm ; 0 otherwise}, ∀ voxel vi;
5 Wa(vi)←− {1 if vi ∈ Dm ; 0 otherwise}, ∀ voxel vi;

6 for n = 1 . . . Nm
2 do

7 begin Deletion step
8 Dd ←− {inside contour of region where X = 1} ∪ Dm;
9 Select voxel vj from Dd with probabilityWd(vj)/ ∑

∀vi∈Dd

Wd(vi);

10 Wd(vi)←− Wd(vi) ∗ α, ∀ vi ∈ {3x3 neighborhood of vj};
11 Wa(vi)←− Wa(vi)/α, ∀ vi ∈ {3x3 neighborhood of vj};
12 Wd(vj)←− 0 andWa(vj)←− 0;
13 X(vj)←− 0;
14 end
15 begin Addition step
16 Da ←− {outside contour of region where X = 1} ∪ Dm;
17 Select voxel vj from Da with probabilityWa(vj)/ ∑

∀vi∈Da

Wa(vi);

18 Wd(vi)←− Wd(vi)/α, ∀ vi ∈ {3x3 neighborhood of vj};
19 Wa(vi)←− Wa(vi) ∗ α, ∀ vi ∈ {3x3 neighborhood of vj};
20 Wd(vj)←− 0 andWa(vj)←− 0;
21 X(vj)←− 1;
22 end
23 end
24 end

3. Material

3.1. Clinical Data for Tissue Fate Prediction

For the study of the gain of predictability with multicomponents integration and of the optimum
observation scale for tissue fate prediction, we use clinical data from the European I-KNOW
database [24]. All patients in the multi-center I-KNOW database gave their informed consent and
the imaging protocol was approved by the regional ethics commitee. All patients underwent DWI
and PWI imaging at admission for acute anterior circulation stroke and follow-up FLAIR imaging
one-month after stroke onset. For this pilot study, we selected a limited number of 9 patients who
were admitted at the hospital within 3 h of symptom onset. The PWI images were corrected for
motion and deconvolved with the circular singular value decomposition-based algorithm to obtain the
hemodynamic parameters maps. The hemodynamic maps were then normalized with a hand-drawn
reference region. Finally, DWI, PWI and FLAIR images were coregistered for each patient using rigid
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registration. The binary masks of the final lesion (Y) and of the cytotoxic edema (X1) were segmented
manually by experts from the FLAIR and DWI images, respectively. To produce the binary masks from
the PWI MR images (X2, X3, X4, X5 and X6), each hemodynamic parameter map was thresholded
with a threshold value chosen to obtain the best trade-off between sensitivity and specificity for tissue
fate prediction. For each map, the threshold was chosen as the value associated with the point closest
to the upper-left corner of the sensitivity versus (1-specificity) plot (also called the receiver operating
characteristic (ROC)-curve). The ROC-curves were calculated in a region of interest only, with a ratio
of infarcting and non-infarcting voxels in accordance with the recommendations of Jonsdottir et al.
in their paper on optimal sampling strategy for training data [25]. In the end, in order to study
the gain of predictability with multicomponents integration and the optimum observation scale for
tissue fate prediction, we used a dataset of approximately 350,000 voxels extracted from the 9 patients
processed here.

3.2. Impact of Noise on Tissue Fate Prediction Accuracy

In order to evaluate the impact of noise on tissue fate prediction accuracy, we propose
in Section 2.2.3 to study the evolution of the predictive power of a perfect predictor X on an output
Y as the level of noise on X and Y increases. Intuitively, we expect that a modification of Nm voxels
on a small and fragmented area will have a considerably higher impact on prediction accuracy than
a modification of Nm voxels on a large and compact area. Therefore, it is necessary to take into
account the variability in size and shape of affected areas in stroke if we want to have a representative
estimate of the impact of noise in tissue fate prediction studies. In order to quantify the degree to
which a segmented area might be affected by noise, simply as a result of its size and shape, we define
the susceptibility factor as SF = Ns/Nl × 100 (%), where Ns is the number of voxels in the inside
contour of the affected region and Nl the total number of voxels in the affected region. The final lesion
masks segmented from a cohort of 42 patients of the I-KNOW database exhibit a great variability of
susceptibility factors (cf. Figure 6). We want to evaluate the range of predictive drop due to noise that
can be expected in a patient cohort, while still maintaining a reasonable computational cost. To do
so, we propose to study the evolution of the predictive power as a function of the level of noise from
only three judiciously chosen reference masks among the cohort: those with susceptibility factors
closest to the first, the second and the third quartiles, respectively (MQ1, MQ2 and MQ3). We study,
for each reference mask MQ1, MQ2 and MQ3, the evolution of the predictive power while varying the
proportion of error introduced from 0% to 100% with a 5% step. For each value of the proportion error,
30 noise realizations were simulated in order to estimate the mean behavior of the predictive power.

10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

Figure 6. Histogram of the susceptibility factor of the final lesion masks for a cohort of 42 patients,
with the red lines corresponding (from left to right) to the first, second and third quartiles, respectively.
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4. Results

4.1. Gain of Predictability with Multicomponent Integration

Using a forward-selection approach, we obtain the following optimum combinations: C1 = {X1},
C2 = {X1; X6}, C3 = {X1; X6; X4}, C4 = {X1; X6; X4; X2}, C5 = {X1; X6; X4; X2; X5} and
C6 = {X1; X6; X4; X2; X5; X3}, where X1 is the mask extracted from the DWI image, X2 from cerebral
blood flow map, X3 from the cerebral blood volume map, X4 from the mean transit time map, X5 from
the time to maximum map and X6 from the time to peak map. The predictive power of X = Cn

increases as the number of components n increases (cf. Figure 7). However, the predictive power
seems to saturate and reach a plateau around 46% after the integration of five components.
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Figure 7. Evolution of the predictive power as the number of components in the communication
channel input is increased.

In the literature, the regions in the cytotoxic edema (visible on DWI images) are known to be
highly likely to die, even if an efficient treatment is given to the patient, whereas regions suffering
from abnormal hemodynamic properties (visible on PWI images) are in danger of infarction but
might be salvaged if reperfusion of the tissue occurs. This is in accordance with the results from
our forward-selection approach, ranking the DWI segmentation mask as the highest predictive
component. In addition, the temporal signal of a PWI 4D image is often modeled in the literature by
a gamma-function governed by four parameters [26]. This is in accordance with the results from our
forward-selection approach, where the gain in predictability saturates after four components from the
PWI have been integrated (C5), corresponding to the intrinsic dimension of the PWI modality.

4.2. Optimal Observation Scale for Tissue Fate Prediction

Table 2 shows the evolution of the predictive power of combinations C1 to C6 as a function of the
observation scale N of the environment of each voxel. No matter the number of components used in the
input X, the predictive power starts saturating around N = 13. The saturation level reached depends,
however, on the number of components in X and the higher the number of components, the higher the
predictive power at saturation. The nine patients included in this study had large and compact final
lesions. On average, their lesions measured around 529 voxels2 per affected slices, that is, if the lesions
were a square, they would be a 23× 23 square. The observation scale after which saturation occurs is
therefore almost two times smaller than the average lesion size, which seems reasonable. In addition,
this observation scale is in accordance with the results reported in [21] where the authors showed that
cuboid-based models give better accuracy than voxel-based models and found an optimum cuboid
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size of 15× 15 for time-to-maximum maps and of 13× 13 for apparent diffusion coefficient MR images.
Another important observation is that the mean value of the predictive power of noise increases
significantly as we change the size of the coding alphabet (from 2 when N = 1 to 6 when N > 1) and as
we increase the number of components considered in the input X. This increase is non-negligible and
should be taken into consideration in prediction studies when we work with a limited amount of data.

Table 2. Predictive power obtained for real data ± mean predictive power of noise evaluated over
100 noise realizations. Cn = optimum combination of n predictor variables. N = observation scale for
the voxel neighborhood.

N C1 C2 C3 C4 C5 C6

1 37.4508 ± 0.0004 43.1119 ± 0.0009 44.475 ± 0.002 45.669 ± 0.005 46.108 ± 0.001 46.31 ± 0.02
3 42.294 ± 0.002 48.46 ± 0.01 49.90 ± 0.06 51.5 ± 0.2 52.7 ± 0.8 54 ± 2
5 44.903 ± 0.002 51.40 ± 0.01 52.93 ± 0.06 54.6 ± 0.3 56 ± 1 58 ± 3
7 46.846 ± 0.002 53.48 ± 0.01 55.10 ± 0.06 56.9 ± 0.3 58 ± 1 60 ± 3
9 48.206 ± 0.002 54.95 ± 0.01 56.60 ± 0.07 58.5 ± 0.3 60 ± 1 62 ± 4
11 49.103 ± 0.002 55.94 ± 0.01 57.59 ± 0.07 59.6 ± 0.3 61 ± 1 63 ± 4
13 49.668 ± 0.002 56.57 ± 0.01 58.33 ± 0.07 60.4 ± 0.3 62 ± 1 64 ± 4
15 50.101 ± 0.002 56.92 ± 0.01 58.78 ± 0.07 60.9 ± 0.3 63 ± 1 65 ± 4
17 50.437 ± 0.002 57.29 ± 0.01 59.23 ± 0.07 61.4 ± 0.3 63 ± 1 65 ± 4
19 50.558 ± 0.002 57.55 ± 0.01 59.50 ± 0.07 61.8 ± 0.3 64 ± 1 65 ± 4

4.3. Impact of Noise on Tissue Fate Prediction Accuracy

The evolution of the predictive power as a function of the level of noise simulated is displayed
in Figure 8. We can see that the predictive power decreases nonlinearly as the level of noise increases.
When considering the proportion of error to evaluate the level of noise, one can see that the decrease
rate is more important for lesions with a high susceptibility factor (MQ3) than lesions with a small
susceptibility factor (MQ1). In addition, the variability due to noise increases as the level of noise
increases and it increases faster for lesions with a large susceptibility factor. This suggests that it
could be interesting to investigate prediction models with proportional error models rather than
additive error models. In Table 2, we found a predictive power of 37.5% for X = {X1}. Such a low
predictive power value is never obtained in our simulations from MQ1 and MQ2 and is obtained only
for very large noise levels in our simulations from MQ3. The final lesions of MQ1, MQ2 and MQ3
were re-segmented manually by two independent operators in an attempt to estimate the order of
magnitude of noise in real data. We alternatively took one of the three masks as the reference masks
and measured the mean PE and ER obtained for MQ1, MQ2 and MQ3, respectively. We obtained
a mean PE of 100.9%, 121.1% and 106.2% and a mean ER of 26.9%, 47.4% and 57.3%. Consequently,
for a realistic noise level, we obtain with real DWI data a much smaller predictive power than a noisy
perfect predictor would give. This suggests that there are other biological processes involved in the
infarction mechanism, processes which are not captured by the DWI imaging modality. Here again,
this is in accordance with the literature; notably, many studies recently showed the importance of
collateral circulation in stroke [27].
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Figure 8. Evolution of the predictive power as a function of the proportion of error (a) or corresponding
error rate introduced (b), in red for the mask representative of the first quartile (MQ1), in orange for
the mask representative of the second quartile (MQ2) and in purple for the mask representative of the
third quartile (MQ3) of the susceptibility factor distribution. The points correspond to the mean values,
the line to the median values and the dotted lines to the first and third quartiles values obtained over
30 noise realizations for each value of the proportion of error tested.

5. Discussion

In this article, we have demonstrated the possibility of modeling multicomponent and longitudinal
imaging studies using statistical information theory. We modeled multicomponent and longitudinal
imaging studies as a communication channel, specifying a model for the perturbations affecting the
channel. After this formalization step, we made full use of the framework offered by information theory
and demonstrated the efficiency of this modeling approach to answer practical questions encountered
in real biomedical problems such as the gain of predictability brought by the addition of new imaging
components, the best spatial observation scale for tissue fate prediction or the quantitative impact of
noise on the predictability estimated in tissue fate prediction studies. This was illustrated on MRI
imaging for stroke disease on a small number of patients. However, all of the results obtained with
the statistical information framework were in accordance with results found in the literature and
obtained with other image processing tools than information theory. Entropy-based predictability
measure the potential of a given set of data for the prediction of a given output. This is somehow
similar to what a signal to noise ratio represents, i.e., a measure of detectability, for a detection task.
A perspective of this work would be to compare the predictability power obtained from a given
dataset with the prediction performances of various modeling tools (random forest, artificial neural
networks, support vector machines, . . . ) obtained from the same dataset. For stroke, there is currently
no consensus for the best modeling tool. However, challenges comparing different approaches, such
as the Ischemic Stroke Lesion Segmentation (ISLES) Challenge [28], could be used for a validation of
the entropy-based framework proposed here.

Our approach is similar to the predictive information introduced by Bialek in [12] to estimate the
intrinsic dimension of time series. So far, the practical applications of predictive information have been
mainly focused on monodimensional time series. Here, we have extended the applicability of this
theoretic informational framework to multicomponent images and longitudinal studies. A difficulty
when extending information theory tools from a monodimensional to a multidimensional problem lies
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in the encoding of the data. It can tend to generate huge sizes of alphabets leading to the necessity of
large amount of data and overwhelming computing costs. In this work, this difficulty was limited due
to the fact that we had the possibility to work, as is done in practical stroke applications, on binary
images at the input and output of the channel instead of gray level images. In addition, we defined
a simple encoding of the environment information of a voxel, adapted to the problematic of tissue fate
prediction. This encoding allowed for keeping a constant size of alphabet while scanning the whole
range of spatial scale available in the images.

This opens the way for investigations in various directions. Here, we tested a very crude encoding
of the voxel environment, and it would be interesting to study the gain in predictability with other
local descriptors such as the local binary patterns [29,30], which have the advantage of encoding
the environment of voxels in gray level imaging while still maintaining a limited size of alphabet.
Furthermore, the question of predictability, as stressed by Bialek in [12], is linked to some fundamental
questions in machine learning. The evolution of predictability as a function of the number of imaging
components or points in a time series gives insights on the intrinsic complexity or dimension of
a problem. Nowadays, machine learning methods are very popular in biomedical imaging and
have recently been tested successfully on the biomedical issues illustrated in this work [22,31] .
A fundamental question is the size of the training set necessary to allow the learning of the prediction
of tissue fate without over-fitting. The communication channel model proposed here constitutes
a possible tool in this context to estimate the intrinsic dimension or complexity of a problem that could
serve in many biomedical applications.
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