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Abstract: The second law performance of double diffusive forced convection in a horizontal porous 

channel with thick walls was considered. The Soret effect is included in the concentration equation 

and the first order chemical reaction was chosen for the concentration boundary conditions at the 

porous-solid walls interfaces. This investigation is focused on two principal types of boundary 

conditions. The first assumes a constant temperature condition at the outer surfaces of the solid 

walls, and the second assumes a constant heat flux at the lower wall and convection heat transfer at 

the upper wall. After obtaining the velocity, temperature and concentration distributions, the local 

and total entropy generation formulations were used to visualize the second law performance of 

the two cases. The results indicate that the total entropy generation rate is directly related to the 

lower wall thickness. Interestingly, it was observed that the total entropy generation rate for the 

second case reaches a minimum value, if the upper and lower wall thicknesses are chosen correctly. 

However, this observation was not true for the first case. These analyses can be useful for the design 

of microreactors and microcombustor systems when the second law analysis is taken into account. 

Keywords: entropy generation; double diffusion; first order chemical reaction; porous channels; 

Soret effect 

 

1. Introduction 

Double diffusion convection has been observed in the ocean as a result of density stratification, 

which occurs when different solutes or temperature variations are present [1]. This phenomenon is 

of considerable interest for cases in which temperature and solute differences with different 

diffusivities impact the fluid motion and thermal properties of the system. Double diffusion 

convection has flourished into a new category of subjects when thermofluid systems with different 

species concentrations are being investigated [2–4]. This topic has matured into a subject with various 

scientific and industrial applications such as solar distillers [5,6], solar ponds [7,8], liquefied natural 

gas storage [9] and solidification [10]. 

A review of the current literature indicates an increased interest in double diffusion convection. 

For example, Sheremet [11] opted in favor of conjugate natural convection in a two-dimensional 

cavity, and later this idea was extended to an investigation for a three-dimensional cavity [12]. The 

walls’ thicknesses where considered in both analyses [11,12]. Various illustrations, such as 

streamlines and concentration field, were illustrated. In a series of papers, Kefayati [8,13,14] 

investigates double diffusion natural convection in a cavity with various fluids and boundary 

conditions. While constant temperature and concentration boundary conditions were considered for 

mailto:Bud.Peterson@gatech.edu


Entropy 2017, 19, 171 2 of 16 

 

both hot and cold vertical walls of a cavity in one study [13], a magnetic field was incorporated in 

another study [14]. Sinusoidal boundary conditions were assumed for the temperature and 

concentration boundary conditions for the cold wall of the cavity [8]. The finite difference lattice 

Boltzmann method was used for the numerical computations, and the effect of different parameters 

on isoconcentrations, isotherms and streamlines were investigated [8,13,14]. 

Bhagat et al. [15] investigated the instability mode and flow patterns resulting from the double 

diffusion phenomenon in pressure driven pipe flow. This investigation considered two types of fluids 

in the pipe—one that served as the resident fluid, and the other one as the invading fluid. A finite-

volume based software package, i.e. Gerris, was used for the solution of the transient partial 

differential equations that were developed to describe the double diffusion problem. The effects of 

the diffusivity ratio on the concentration and viscosity fields were illustrated by different contours. 

Nikbakhti and Rahimi [16] simulated the double diffusion convection phenomenon in a cavity with 

partially active side walls. The average Nusselt and Sherwood numbers were calculated for different 

aspect ratios and configurations, and isoconcentrations, isotherms and streamlines were plotted for 

various positions of the hot and cold side walls. 

Alternatively, Wang et al. [17] solved the transient governing equations for double diffusion in 

a horizontal cavity. Soret and Dufour effects were included in the simulation, and the SIMPLE 

algorithm was utilized to obtain the solution. It was shown that monocellular counter-clockwise flow, 

monocellular clockwise flow, bicellular ascending flow and bicellular descending flow could be 

obtained depending on the initial conditions of the double diffusive convection. In a neatly and 

practical simulation, Alvarado-Juárez et al. [18] solved the steady-state two-dimensional governing 

differential equations for double diffusive convection in a solar still. A radiation boundary condition 

was considered for the top glass cover of the inclined solar distillation system. Rigorous analyses 

were performed to obtain the optimum values for the aspect ratio (A) and the inclination angle. The 

results indicate that the most suitable case for the solar still was A = 5 and 6.67 with an inclination 

angle of 20°. 

Since the second law of thermodynamics can often provide more information about a system 

than the first law [19–21], scholars have started to re-examine double diffusion convection 

phenomenon in thermal systems, based on the second law of thermodynamics [22–28]. Mourad et al. 

[22] considered the entropy generation in a tilted cavity, with different but constant wall 

temperatures and concentrations. A specific control volume finite-element method was used for the 

solution and the total entropy generation rate was provided versus various parameters such as 

Grashof number, buoyancy ratio and inclination angle. By plotting the total entropy generation rate 

versus the inclination angles, it could be demonstrated that the total entropy generation rate may 

increase to a maximum amount for a specific inclination angle. 

Chen and Du [23] considered the entropy generation resulting from double diffusion natural 

convection in a rectangular cavity. A turbulent regime was assumed for the simulation, and both 

local and total entropy generation rates were investigated. Somewhat later, Chen et al. [24] extended 

the previous mentioned study by Chen and Du [23] to the entropy generation for laminar, transient 

and turbulent double diffusion natural convection of Water-SiO2 nanofluid. Similar to the 

investigation of Mourad et al. [22], Chen et al. [24] also showed that the buoyancy ratio could have 

influential impact on the total entropy generation rate and optimization of the system from a second 

law perspective. Most recently, Kefayati [28] extended the solution provided to a case of an open 

cavity [29] with entropy generation, while considering Soret and Dufour effects. A non-Newtonian 

power law fluid filled the cavity and a horizontal magnetic field was included in the modeling. 

Similar to previous investigations [8,13,14], a finite difference lattice Boltzmann method was 

employed, and both local and total entropy generation rates were illustrated and discussed. 

Although not strongly related to the double diffusion convection, the interesting work of Matin 

and Khan [25] is also relevant for these situations. A microchannel was considered in which the flow 

was generated by electroosmotic forces and pressures, simultaneously. Velocity, temperature and 

concentration fields were considered, and the local and total entropy generation rates were computed 

and illustrated. 
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Later, these studies were extended to the second law analyses of double diffusion convection in 

porous systems [30–33]. An early study in this regard was performed by Mchirgui et al. [30] for a 

porous cavity with constant temperatures and concentrations for the vertical walls. This investigation 

[30] was later extended to that of an inclined porous cavity [31]. In both studies [30,31], transient 

equations were considered and the transient total and local entropy generation rates were developed. 

More recently, Hussain [32] opted in favor of entropy generation in a tilted sinusoidal corrugated 

porous enclosure. While neither the Soret nor Dufour effects were considered, an inclined magnetic 

field was applied on the fluid phase of the porous media. After validation, local entropy generation 

contours for the various cavity inclination angles were computed and illustrated. 

In a somewhat similar investigation, Kefayati [33] extended the heat transfer analysis of double 

diffusion natural convection in a porous cavity [34] to an entropy generation investigation. Both Soret 

and Dufour effects were incorporated in the simulation, and a non-Newtonian power law fluid was 

assumed in the modeling. The study considered both non-tilted and tilted cavities, with constant 

temperatures and concentrations for the two side walls. In this investigation [33], the total entropy 

generation versus the power law index was illustrated for different values of the Rayleigh and Darcy 

numbers. It was shown that depending on the parametric values of the system, the maximum or 

minimum values for the total entropy generation rate or Bejan number could be determined. 

The main objective of the current investigation is to extend the double diffusion convection 

phenomenon in porous channels. An extensive literature review revealed no investigation evaluating 

double diffusive convection for a pressure driven flow within a porous channel. As a result, solid upper 

and lower walls were incorporated in the simulation [20,35,36], and both magnetic and radiation field 

effects were considered in the modeling. The following section provides the details of the problem 

investigated, with mathematical illustrations for the fundamental equations. Section 3 presents the 

solution methodology and comprehensively examines the illustrated plots resulting from the sample 

mathematical calculations. Finally, Section 4 summarizes the most important findings and presents 

suggestions for further investigation in this area. 

2. Problem Statement 

A horizontal porous channel similar to that shown in Figure 1 was considered, where the upper 

and lower channel walls’ thicknesses were varied in relationship to the height of the channel [35,37]. 

Similar to other recent investigations [35,36], two cases were considered. In the first case, the upper 

cooler wall and warmer lower wall temperatures were held constant. In the second case a constant 

heat flux was applied to the lower wall and a convection heat transfer condition was applied to the 

upper wall. First order chemical reaction boundary conditions were assumed for both the inner wall 

porous material interfaces [38–40]. The current analysis employed classical no-slip boundary 

conditions for both velocity and temperature [20]. A similar geometry has been recently considered 

for heat and mass transfer analysis [20,36], although the concentration equations and radiation term 

have not been included. Therefore, the detailed mathematical analyses have been provided within 

the Appendix for interested readers. By using the relevant dimensionless parameters the governing 

non-dimensionalized differential equations of the problem take the following form: 
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where in Equation (2b) the Pr   Ec = Br , the Brinkman number. Consequently, the following 

dimensionless form of the local entropy generation rate governs the second law perspective of the 

investigated thermal system: 
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Integration to obtain the total entropy generation rate can be found as 
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(a) (b) 

Figure 1. Configuration of the microchannels filled with a porous material; (a) Case one, (b) Case two. 

3. Results and Discussion 

The solution procedure is similar to that of recent publications by Torabi and co-workers [20,36]. 

First the velocity distribution is obtained, and is digested in the energy differential Equation (2b). 

After obtaining the temperature field, it is incorporated into the concentration Equation (3) to obtain 

the species concentration. Finally, velocity, temperature and species fields are used to obtain entropy 

generation by using Equation (7). It is useful to note that the constant parameters for velocity 

distribution are obtained completely analytically, while the constant parameters for temperature 

distribution and concentration fields are obtained numerically, case-by case. Interested readers may 

find detailed solution procedure in recently published articles in this area [20,36]. This solution 

methodology has been validated against completely analytical solution procedure for various 

problems and has been observed to be very accurate [41,42]. Although this section focuses primarily 

on the total entropy generation rate, a few sample analyses regarding the effects of radiation 

parameter on the temperature and radiation, Soret and Damkohler parameters on the local entropy 

generation rate are provided. Hence, this section is divided into two subsections: Subsection 3.1 

which contains temperature and local entropy generation plots; and Subsection 3.2 which includes 

the total entropy generation rate plots. In all illustrated calculations in this investigation, except Figure 7 

which is about the influence of boundary conditions, part a of each figure is related to the first case and part b 

of the same figure is about the impact of the same parameter on the second case. 

3.1. Temperature and Local Entropy Generation Rate 

Figure 2 illustrates the effects of the radiation parameter on the temperature distribution for both 

cases. As illustrated, the radiation parameter increases the rate of heat transfer and consequently 

decreases the temperature within the system. The influence of the radiation increases significantly 

when the power changes from zero to unity, although it does not significantly influence the 

temperature when the power changes to two from unity. The reduction in the temperature has been 

examined by including the radiation effect in the system as it has been reported by previous scholars 

[43]. As the temperature boundary conditions for the first case are fixed and for the second case are 

not fixed in this investigation, the variation of any parameter is more likely to impact the temperature 

field of the second case rather than the first one. This consequently controls the behavior of the total 

entropy generation rate versus other parameters in case one and two, which will be discussed in the 

nest subsection. Figure 3, which serves as a companion to Figure 2, visualizes the radiative effects on 

the entropy generation rate. Although the effect of radiative heat transfer on the temperature 

distribution can be seen more clearly for the second case in Figure 2, Figure 3 shows that the radiative 

effect on the entropy generation rate is more prominent for the first case compared with the second 

one. This is an important result, which highlights the importance of the second law analyses for these 

types of systems. 
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(a) (b) 

Figure 2. Effect of radiation parameter on the temperature distribution in the porous channels. 

  
(a) (b) 

Figure 3. Effect of radiation parameter on the local entropy generation rate in the porous channels. 

The effect of the Soret number, which describes the temperature effects on the concentration 

distribution, on the local entropy generation rate has been illustrated in Figure 4. Consequently, 

Figure 5 depicts the effect of Damkohler parameter, which describes the ratio of chemical reaction to 

diffusion, on the local entropy generation rate. From both figures, it is clearly seen that these 

parameters have strong effect on the local entropy generation of the first case, although their effect 

on the second case is marginal. Moreover, depending on the location of the probed point in the 

channel, Soret and Damkohler parameters may have increasing or decreasing effects on the local 

entropy generation rate, as it is seen from Figures 4 and 5. 
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(a) (b) 

Figure 4. Effect of Soret parameter on the local entropy generation rate in the porous channels. 

  

(a) (b) 

Figure 5. Effect of Damkohler parameter on the local entropy generation rate in the porous channels. 

3.2. Total Entropy Generation Rate 

Figure 6 plots the variation of the total entropy generation rate versus radiation parameter using 

various values for Soret effect. Similar to the effect of radiation parameter on the temperature, the 

total entropy generation rate decreases sharply by increasing the radiation effect from zero to unity, 

and then it continues to decrease with a lesser slope. Unlike the effect of Soret parameter on the local 

entropy generation rate, the effect of Soret parameter on the total entropy generation rate for both 

cases is significant. As can be seen from Figure 6a,b, the Soret effect tends to decrease the total entropy 

generation rate for both cases. While the effects of both Soret and radiation parameters for the first 

case are on the third order of decimal, these effects for the second case affect the total entropy 

generation by the first order of decimal. This can be attributed to the fact that the temperature 

boundary conditions for the second case are not fixed, and changing the parametric values of the 

system may have stronger effects of the temperature compared to the first case (For example see 

Figure 2). These modifications on the temperature impact the local entropy generation of the second 

case more than the first case, and consequently the total entropy generation for the second case seems 

to be more sensible to these parameters. Figure 7 illustrates the variation of the total entropy 
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generation rate versus the Damkohler parameter for various values of dimensionless parameters 

related to the outer boundary conditions for both cases. It is observed from this figure that the 

Damkohler parameter slightly increases the total entropy generation rate as it has been increased 

from almost zero to two. Effects of other boundary related parameters such as the temperature of the 

hot lower wall for the first case, and the heat flux and convection parameters for the second case, both 

on the total entropy generation, are similar to the recent investigation reported in Reference [35], and 

will not be discussed here. 

  

(a) (b) 

Figure 6. Variation of the total entropy generation rate versus radiation parameter with various values 

for Soret parameters. 

 
 

(a) (b) 

( )b
( )a
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(c) 

Figure 7. Variation of the total entropy generation rate versus Damkohler parameter with various 

values for (a) hot wall temperature, (b) convection coefficient and (c) heat flux. 

When examining a thermophysical system, the thermal properties of the materials, along with 

the configuration properties of the system can significantly impact the optimum performance for the 

system. For the system under investigation here, it is possible to try to achieve the best configuration 

by varying the walls’ thicknesses and looking for an optimum second law performance of the system. 

Figures 8–11 are devoted to illustrate the total entropy generation rate as a function of the wall 

thicknesses using various values for other parameters and possibly finding the optimum 

configuration of the system. Generally speaking, as mentioned before, due to the fixed temperature 

boundary conditions for the first case and non-fixed temperature boundary conditions for the second 

case, the fluctuation of the total entropy generation for the second case with respect to various 

parameters should be more than the fluctuations for the first case total entropy generation. These 

fluctuations help researchers to find an optimum condition for the second law performance of the 

system under investigation. 

  
(a) (b) 

Figure 8. Variation of the total entropy generation rate versus lower wall’s thickness with various 

values for Damkohler parameter. 
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(a) (b) 

Figure 9. Variation of the total entropy generation rate versus lower wall’s thickness with various 

values for 
2Y . 

  
(a) (b) 

Figure 10. Variation of the total entropy generation rate versus 
2Y  with various values for 

Damkohler parameter. 

  

(a) (b) 

Figure 11. Variation of the total entropy generation rate versus 
2Y  with various values for the lower 

wall’s thickness. 
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Figure 8 shows that while the total entropy generation rate versus the lower wall thickness is 

always increasing for the first case, this behavior may change when dealing with the second case. For 

the second case, when the value for 
2Y  is fixed at 0.95, the total entropy generation rate versus the 

lower wall thickness increases at first, reaches a maxima and then starts to decrease, as illustrated in 

Figure 8b. Similar behavior for both cases is seen when other values for 
2Y  are chosen, which is 

illustrated in Figure 9. Figure 9b shows the relationship between the thickness of the porous section 

of the channel, i.e. the smaller the value of 
2Y , the lower would be the maximum value of the total 

entropy generation rate, which the second case experiences. Figures 10 and 11 represent the total 

entropy generation rate versus 
2Y  for different values of the Damkohler parameter and the lower 

wall thickness, respectively. It is apparent from Figures 10a and 11a that the variation of the total 

entropy generation rate with 
2Y  for the first cases is always decreasing. This, again, can be justified 

by the fixed temperature boundary conditions for this case, which does not give enough room to the 

temperature profile of the system to vary, and hence the behavior of the total entropy generation may 

not vary significantly. However, as shown in Figures 10b and 11b, it may be possible to find an 

optimum value for 
2Y  that decreases the total entropy generation rate to a minimum value for the 

second case, and hence the exergy destruction of the system would be minimized. As shown in Figure 

10b, when the value of 
1Y  is fixed at 0.05, the total entropy generation rate versus 

2Y  first slightly 

increases and then starts to decrease reaching a minimum value and finally continuously increases 

as 
2Y  increases. However, when the Damkohler parameter is fixed at 0.5 and the value of 

1Y  is 

increased to 0.1 or 0.2 in Figure 11b, the minimum point is no longer apparent and the behaviour of 

the total entropy generation rate versus 
2Y  is continuously increasing. 

4. Conclusions 

Two types of horizontal porous channels are considered in this investigation to examine the 

entropy generation of double diffusion forced convection systems. A first order chemical reaction 

boundary condition was used for the interfaces of the porous material with solid walls, and the Soret 

effect was included in the modeling. The radiation effect and a constant magnetic field were also 

considered in the formulation. It was found that although radiation, Soret and Damkohler parameters 

have marginal effects on the temperature distribution and the local entropy generation rate, their 

effects on the total entropy generation rate for both cases are non-negligible. Throughout the 

investigations it was shown that the effects of radiation and Soret numbers for the first case is on the 

third order of decimal, while these effects impact the second decimal of the total entropy generation 

for the second case. Hence, it was concluded that these parameters affect the second case more 

drastically than the first case. It was also observed that for the first case, i.e. constant temperature 

boundary conditions, the total entropy generation rate versus 
1Y  or 

2Y  may be always increasing or 

decreasing. However, the second case resulted in a considerably more complicated relationship. This 

is attributed mainly to the fixed temperature boundary conditions for the first case, and non-fixed 

temperature boundary condition for the second case. As discussed, for the parametric values 

examined in this investigation, the total entropy generation rate versus the lower wall’s thickness 

always reaches a maximum point. Also, the total entropy generation rate versus 
2Y  may or may not 

have a minimum value depending on the value of the lower wall thickness. Again, as the temperature 

boundaries at the second case has more room to vary, they impact the flexible variation of the 

temperature and finally the total entropy generation for this case can have more extremum points 

compared with the first case. These findings are crucial for microreactors or microcombustor systems 

where the optimum second law performance is the design target. Using the analyses developed in 

this investigation, it is possible to optimize the configuration of the system and, as a result, to 

minimize the exergy destruction. 
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Nomenclature 

0
B  magnetic field, T  

Br  Brinkman number ( Pr Ec ) 

Da  Darcy number 

Ec  Eckert number 

h  convection heat transfer (Case two), 2 1W m K    

3
h  height of the channel, m  

1
k  reference thermal conductivity for lower solid material, 1 1W m K    

2
k  reference thermal conductivity for upper solid material, 1 1W m K    

eff
k  effective thermal conductivity of porous medium, 1 1W m K    

1e
k

 ratio of porous medium thermal conductivity to lower solid material thermal conductivity 

2e
k

 ratio of porous medium thermal conductivity to upper solid material thermal conductivity 

s
N  dimensionless local entropy generation rate 

Nc  dimensionless convection heat transfer (Case two) 

M
 

Hartmann number 

Pr
 

Prandtl number 

1
Q

 
dimensionless volumetric internal heat generation rate for the lower solid material 

2
Q  dimensionless volumetric internal heat generation rate for the upper solid material 

H
Q  dimensionless heat flux boundary condition (Case two) 

p
Q  dimensionless volumetric internal heat generation rate for the porous medium 

1
q  volumetric internal heat generation rate for the lower solid material, 3W m  

2
q  volumetric internal heat generation rate for the upper solid material, 3W m  

H
q  heat flux boundary condition (Case two), 2W m  

p
q

 
volumetric internal heat generation rate for the porous medium, 3W m  

Rd  dimensionless radiation parameter 

S   local entropy generation rate, 3 1W m K    

T  temperature, K  

1
T  temperature of the lower solid material, K  

2
T  temperature of the upper solid material, K  

C
T  outer temperature of the upper solid material, K  

H
T  inner temperature of the lower solid material, K  

p
T  temperature of the porous medium, K  

U  dimensionless velocity 
u  velocity of the fluid in porous medium, 1m s  

r
u  characteristics velocity 

Greek symbols  

  permeability, 2m  
*  Rosseland mean absorption coefficient 
  porosity 

f
  dynamic viscosity of the base fluid, 

1 1Kg s m    

  dimensionless temperature 

1
  dimensionless temperature of the lower solid material 

2
  dimensionless temperature of the upper solid material 

p
  dimensionless temperature of the porous medium 

H
  dimensionless temperature at outer side of the lower wall 
  electrical conductivity of fluid, 1S m  

*  Stefan-Boltzmann constant, 2 4W m K    

Appendix 

As shown in Figure 1 two types of horizontal porous channels are considered in this 

investigation. The fluid flow was assumed to be under influence of a constant magnetic field, and the 
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effect of thermal radiation was considered in the porous section of the system. By assuming the above 

outlined conditions, the momentum, energy and concentration governing equations of the problem 

can be expressed as [20,35,36]: 
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Concentration 

22

1 22 2

dd
0

d d

p

T

TC
D D h y h

y y
   

 
(A3) 

The radiation parameter takes the form 
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and using a Rosseland approximation, the last term of the energy equation in the porous section of 

the channel is transformed to 
2* 3
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Hence, Equation (A2b) reads: 
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The outer thermal boundary conditions of the system for each case are: 

Case one 

1
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H
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3 2 C
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The inner boundary conditions for both cases under investigation are: 
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(A9b) 

The entropy generation rate in the considered system consists of entropy generation due to the 

heat transfer through walls and porous section of the channel, entropy generation due to the fluid 

friction, entropy generation due to the magnetic field and entropy generation due to the mass transfer 

resulting from the concentration equation. Incorporating the various aspects of the entropy 

generation rate, the formulation for the local entropy generation rate can be expressed as: 
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Finally, the total entropy generation rate is given by integrating over the height of the channel 

for the local entropy generation rate. To provide the universal data, the above mentioned governing 

equations have to be non-dimensionalized. By considering 
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following dimensionless parameters: 
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(A11) 

The system of equations are easily transformed to dimensionless partial differential equations 

which has been provided in Section 2. As mentioned before, the solution procedure is similar to that 

of recent publications by Torabi and co-workers [20,36], and is not repeated here for the sake of 

brevity. 
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