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Abstract: Urban sprawl (US), propelled by rapid population growth leads to the shrinkage of 
productive agricultural lands and pristine forests in the suburban areas and, in turn, adversely 
affects the provision of ecosystem services. The quantification of US is thus crucial for effective 
urban planning and environmental management. Like many megacities in fast growing developing 
countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced 
extensive US triggered by the doubling of total population over the past three decades. However, 
the extent and level of US has not yet been quantified and a prediction for future extent of US is 
lacking. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, 
and 2016, and computed six landscape metrics to delineate the extent of urban areas within a 10 km 
suburban buffer of Chennai. The level of US was then quantified using Renyi’s entropy. A land 
change model was subsequently used to project land cover for 2027. A 70.35% expansion in urban 
areas was observed mainly towards the suburban periphery of Chennai between 1991 and 2016. The 
Renyi’s entropy value for year 2016 was 0.9, exhibiting a two-fold level of US when compared to 
1991. The spatial metrics values indicate that the existing urban areas became denser and the 
suburban agricultural, forests and particularly barren lands were transformed into fragmented 
urban settlements. The forecasted land cover for 2027 indicates a conversion of 13,670.33 ha (16.57% 
of the total landscape) of existing forests and agricultural lands into urban areas with an associated 
increase in the entropy value to 1.7, indicating a tremendous level of US. Our study provides useful 
metrics for urban planning authorities to address the social-ecological consequences of US and to 
protect ecosystem services. 

Keywords: urban sprawl; random forest classification; spatial metrics; Renyi’s entropy; 
sustainability; land change modelling; remote sensing; urban growth model; Chennai 

 

1. Introduction 

A rapid global increase in human population has triggered the migration of rural poor towards 
the cities for a better standard of living, education and income [1]. By 2030 the world’s population is 
expected to increase by 72% with a 175% upsurge in urban areas (>100,000 inhabitants) [2]. The 
migrant rural poor often encroach the cheap suburban peripheries [3,4] and, consequently, the cities 
expand to accommodate immigrants as well as to create employments by intensification of industries 
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[4]. This eventually leads to urban sprawl (US) and the uneven development, through the conversion 
of suburban lands to built-up settlements [5].  

US entails adverse impacts on ecosystem services by diminishing agricultural lands, water 
bodies and forests [1]. US has also been associated with increasing risks from environmental 
externalities, such as energy crisis, biodiversity loss and floods [6]. Particularly, in developing 
countries like India, where 60% of the total population (approximately 70 million) are predicted to 
live in urban areas by 2030, US may entail disastrous impacts on ecosystem and biodiversity [7]. The 
quantification of the extent and level of US are thus essential for Indian cities to support sustainable 
planning, policies and efficient design of cities [8]. However, with a few exceptions, such studies are 
scarce for India [9–13]. 

Globally, remote sensing imageries and techniques showed considerable potentials for urban 
growth and US analysis [14–16]. Landuse and landcover classes (LULC) are important indicators for 
understanding the connections between environment and human activities [17–21], which can be 
efficiently obtained from satellite imageries through image classification. These are particularly 
useful for countries like India, where ground monitoring data are scarce and inaccessible [18]. 
Moreover, the availability of remotely sensed data from multiple dates enables to carry out studies 
on multitemporal urban modeling [9,17,18,22–28]. The extent of urban areas can be automatically 
identified from satellite imagery using machine learning algorithms [29]. Change detection analysis 
can be carried out through the use of transition matrices, which measure the changes between two 
LULC maps from different periods of time. They, in turn, help to quantify the extent of US through 
the differences between urban extent across multiple temporal periods [17]. In addition, the spatial 
and physical characteristics of urban features, urban patterns and their forms may be quantified using 
several landscape metrics [25]. These metrics can be derived from thematic maps computed from 
remotely sensed data [26]. Furthermore, Entropy values, such as Shannon’s Entropy and Renyi’s 
Entropy, which are widely used to characterize and identify the degree of spatial dispersion and 
concentration of urban areas [30–37], can also be computed from remotely sensed images and 
effectively used to quantify the level of US [35]. 

In this study we quantified the extent and level of US within a 10 km suburban buffer of an 
Indian megacity, i.e., Chennai, Tamilnadu, using Landsat imageries from 1991, 2003 and 2016. We 
quantified: (1) the changes in US extent between 1991 and 2016; (2) the US level and patterns using 
entropy and landscape metrics; and (3) predicted the US extent and level for 2027 using a land change 
model. 

2. Study Area 

Chennai is the capital city of Tamilnadu state, India, and the gateway of south India (Figure 1). 
The geographical location of Chennai spans between 13.04° N 80.17° E with an elevation between 6 
m and 60 m above the mean sea level. It covers an area of about 42,600 ha [16]. This is India’s fourth 
largest city, with a total population of 8,233,084 according to the 2011 India census [16], which has 
doubled during in the last two decades [15]. Chennai is also one of the principal business hubs of 
India with an unprecedented expansion of industries and infrastructures [38]. With several United 
Nations Educational, Scientific and Cultural Organization (UNESCO) world heritage sites, Chennai 
is one of the main tourist hubs [15]. The suburban periphery of the city represents a unique 
biodiversity hotspot. The coastal area (Marina beach) at the East represents a unique mangrove 
ecosystem [39], whereas the dense forest at the West represents a rare composition of tropical flora 
and fauna [40]. 

The city of Chennai is one of the fastest growing urban areas in the world during the last three 
decades [15]. This has resulted in an uncontrolled US with negative consequences regarding air 
pollution, housing scarcity, overcrowding, encroachment, slums, unregulated disposal of waste, 
increasing water scarcity and pollution [14]. The US has also lead to various adverse environmental 
impacts, such as higher energy exploitations, disturbance of species diversity, increasing flood risk, 
and ecosystem fragmentation [6]. 
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The spatial trend of US in Chennai is towards two peripheral districts, i.e., Tiruvallur (Northwest 
Chennai) and Kanchipuram (Southwest Chennai) [16]. Consequently, we selected an area 
constituting 82,488.16 ha, which covers the geographic extent of the Chennai city and a 10 km 
suburban buffer, i.e., Tiruvallur and Kanchipuram districts, to study US. 

 

Figure 1. The study area covering Chennai city and 10 km sub-urban buffer. 

3. Materials and Methods 

3.1. Data and Pre-Processing 

We used Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images with 
a 30 m spatial resolution covering the temporal scenes from 1991, 2003, and 2016 (Table 1). The images 
were freely downloaded from the Unites States Geological Survey (USGS) portal [41] in GeoTIFF 
format and georeferenced using the World Geodetic System (WGS) 1984 coordinate reference system. 
The data were initially geo-corrected and rectified, and cropped to the study area (Figure 1). The 
image pre-processing was performed using Environment for Visualizing Images (ENVI) software 
package (Version 5.1) [42,43]. 

Table 1. A technical description of the Landsat TM and ETM+ imageries used in this study. 

Date Sensor Path/Row 
25 August 1991 Landsat-5 TM 142/51 

9 May 2003 Landsat-7 ETM+ 142/51 
4 July 2016 Landsat-7 ETM+ 142/51 

3.2. Landuse and Landcover (LULC) Mapping, and Accuracy Assessment 

We applied a Random Forest (RF) machine learning algorithm on the pre-processed TM and 
ETM+ images for LULC classification [44] (Figure 2). The RF algorithm in R involves the following 
steps: 

1. Create the stack for the available raster data; 
2. Create n-tree bootstrap samples from the raster data; 
3. Apply an unpruned classification grown for each of the bootstrap samples according to the 

Digital Number (DN) values of the raster data;  
4. Create N number of polygons according to the DN raster values; 
5. Assign different color bands to the several classes; 
6. Display the unsupervised classification. 

In a next step, the spatially-cohesive features of the classified images were homogenized using 
a segmentation algorithm and the regions with the maximum homogeneity were delineated [45]. The 
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regions with five distinct LULC classes (Table 2) were delineated for 1991, 2003 and 2016 by providing 
the minimum and maximum threshold values of pixels obtained from the RF, and the population 
thresholds for pixels corresponding to a LULC class [9]. We used the RF package in R for the 
classifications of LULC [46]. The classified image homogenization and delineation of LULC regions 
were performed using the ENVI (Version 5.1) feature extraction tool [43,47]. 

 

Figure 2. Flow-chart for image processing, classification and accuracy assessment. 

Table 2. Landuse and landcover (LULC) nomenclature. 

No LULC Classes Land Uses Included in the Class 
1 Water bodies Rivers, reservoir, lakes, streams, open water, and ponds 
2 Urban Roads, airports, and built-up areas 
3 Agriculture  Agriculture lands and plantations  
4 Bare land Dry lands, non-irrigated lands, ready for construction, and real estate plots 
5 Vegetation Forests and shrubs 

The accuracy of the image classification was assessed using the kappa coefficient (KC) [35,36]. 
We compared the classified images with the ground truth data obtained from Google Earth image of 
2016 and the landuse and landcover map of 2005 from the Indian Geo-platform of ISRO-Bhuvan 
(http://bhuvan.nrsc.gov.in) [16]. Subsequently, a confusion matrix and KC were calculated using 
eCognition Developer (8.7) for each of the classified images of the three years [48]. 

3.3. Quantification of Extent and Level of Urban Sprawl (US)  

3.3.1. Extent of US 

We calculated six landscape metrics to quantify the extent of US between 1991 and 2027 in the 
Chennai city (see Table 3 for details on the landscape metrics) [49]. These metrics quantify the spatial 
characteristics and pattern of the classified LULC areas using three levels, i.e., the patch level, class-
area level and landscape level. The landscape metrics were computed in the freely available 
FRAGSTATS software package (Version 4.2) [50]. 
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Table 3. Description and formulae for spatial metrics computation. 

Landscape 
Metrics Formula Description Range 

Class Area 
Metrics (CA) 

= 	 110000  

aij = area in m2 of patch ij. 

Total amount of class 
area in the landscape CA > 0, without limit 

Number of 
Patches (NP) 

=  
ni = total number of patches in the area of 
patch type i (class). 

Number of patches of 
landscape classes (Built 
up and non-built-up) 

NP ≥ 1, without limit 

Largest patch 
Index (LPI) 

= 	 	 (100) 
aij = area in m2 of patch ij and  
A = landscape area in total (m2) 

Percentage of the 
landscape included by 

the largest patch 
0 < LPI ≤ 100 

Clumpiness 
Index 

(CLUMPY) 

= [( − 	)/ 	 < & < 5, 
else − 	/	1 −	 	] 
gii = number of like joins among pixels of 
patch type, i based double-count process 
and gik = number of like joins among pixels 
of patch type, k based double-count process, 
Pi = amount of the landscape occupied by 
patch type 

Measure the 
clumpiness of patches 

in urban areas 
−1 ≤ CLUMPY ≤ 1 

Fractal Index 
Distribution 
(FRAC_AM) 

= [ 	( 	/	 ) ] 
aij = area in m2 of patch ij. 

To measure area 
weighted mean patch 

fractal dimension 
1 ≤ FRAC_AM ≤ 2 

Contagion 

= [1 + [( 	){
/ }{ln	( ) [
/ ]/2 ln( )]100 

pi = amount of the landscape employed by 
patch type (i) class and gik = number of like 
joins among pixels of patch type, i and k 
based double-count process,  
m = number of patch classes (types) existing 
in the landscape 

Defines the 
heterogeneity of a 

landscape 
Percent < Contagion ≤ 100 

3.3.2. Level of US 

Renyi’s Entropy (RE) [35,51,52] was calculated to estimate the level of US between 1991 and 2016. 
First, we aggregated the classified LULC map into two classes, i.e., built-up and non-built-up. Then, 
the total number of patches (N) for the built-up and non-buit-up areas and their corresponding 
perimeters (Pi) were computed. Finally, a H order entropy value Hα as calculated using (1), where α 
≥ 0 and α ≠ 0: = ∑   (1) 

The RE values (Hα) varied from 0 (indicating very dense distribution of aggregated classes) to 1 
(indicating dispersed distribution across the study area) [52]. The changes in RE values for the built-
up patches during three decades, i.e., 1991–2016, represented the change in the US level (i.e., 
dispersion of urban areas) for the Chennai city, Tamilnadu. 
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3.4. Prediction of Urban Extent for 2027 

The prediction of future urban extent was performed using the Land Change Modeler available 
in the TerrSet (formerly IDRISI) software (Version 18.3) [53]. The land change model was calibrated 
to predict the extent of Chennai for 2016 using a four-step procedure: (1) quantification of urban 
change between 1991 and 2003; (2) transition modelling between 1991 and 2003; (3) urban extent 
prediction for 2016; and (4) validation using the classified LULC for 2016 as reference data (Figure 3).  

 

Figure 3. Methodology applied for the prediction of urban sprawl extent and level for 2027.  

LULC change analysis was conducted using the LULC maps for 1991 and 2003 as primary inputs 
[53]. The land changes between 1991 and 2003 were quantified and the losses and gains among the 
LULC classes were obtained. Then, a change map between 1991 and 2003 using a multilayer 
perception neural network algorithm was computed. This included constraints and factors used in 
the urban extent prediction. Next, a change map was generated for the period 2003–2016 using the 
computed changes between 1991 and 2003. Subsequently, a change probability grid for the 2003–2016 
period was obtained. In a final step, we calibrated the urban extent prediction model (UEPM) using 
a Markov Chain, which combined the change map with a change probability grid for the period  
2003–2016.  

The urban extent of Chennai was predicted for 2016 applying the UEPM. The predicted urban 
extent was compared with observed LULC map for 2016 using Kappa variations, i.e., Klocation and 
Kquantity [54–59]. If acceptable values for these kappa variations are obtained, then we proceed to 2027 
simulation [55]. The calibrated and validated UEPM was applied to predict the urban extent of 
Chennai for 2027 using the urban extent for 2016 as baseline and combining the change map and 
change probability grid between 2016 and 2027 computed using the procedure described above. The 
year 2027 was selected for our prediction because we wanted to use a 10-year horizon for this study. 
The transition probabilities used in the modeling process were obtained using the period 1991–2003 
which is very similar to the period from 2016–2027 used in the prediction. 
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4. Results and Discussion 

4.1. The Extent and Patterns of US in Chennai between 1991 and 2016 

The LULC maps of three different periods show that the study area has experienced a 
remarkable land cover change between 1991 and 2016 (Figure 4). From 1991 to 2016 the growth of 
urban, i.e., built-up, areas were more than three-fold, i.e., an increase of about 37,919.81 ha (Table 4). 
This transformation influenced several classes, especially the agriculture and vegetation land, which 
decreased by about 3802.70 ha (4.61%) and 9923.32 ha (12.03%), respectively. The bare land exhibited 
the highest amount of decrease, i.e., 30.3% and thus indicate that the growth of urban areas were 
accommodated mostly by diminishing bare lands. The water bodies increased by 1451.79 ha between 
1991 and 2003, but decreased slightly between 2003 and 2016 (about 651.65 ha). These results confirm 
that the urban areas in Chennai are extending toward the peripheral region of Kanchipuram (South 
Chennai) and to the Thiruvalluvar (North Chennai) district area, and thus a substantial US. Although, 
the US was mostly accommodated by the loss of bare lands, this growth has greatly impacted the 
landscapes with the loss of valuable vegetation and agriculture lands.  

 
Figure 4. Landuse and landcover (LULC) maps for 1991, 2003, and 2016 in Chennai.  
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Table 4. Landscape indices and their changes in percent.  

Metrics 
Year Changes in Urban Structure  

1991 2003 2016 Δ% = 1991–2003 Δ% = 2003–2016 Δ% = 1991–2016
CA 20,110.61 39,965.51 58,030.42 98.72 45.20 188.5 
NP 289 354 477 22.49 34.74 65 
LPI 2.14 4.87 6.78 127.57 39.21 216.8 

Clumpy −1 0.6 0.8 160 33.33 180 
FRAC_AM 1.12 1.27 1.83 13.39 44.09 63.3 
CONTAG 72.32 68.43 71.24 6.66 4.10 1.4 

The Chennai coastline has also experienced a remarkable urban growth between 1991 and 2016 
(Figures 1 and 4). Almost all the coastline of the study region was covered by urban settlements by 
2016 by an alarming rate of conversion of the mangrove forest area (Figure 4). These results are in 
line with [60,61], which demonstrated negatively impacted mangrove forests and the Savukku 
plantations in the periphery of Chennai. This vegetation provides important ecosystem services, such 
as protection from Tsunami, cyclones, and other ecological disasters [62]. As a result, we anticipate 
environmental externalities and biodiversity loss for Chennai, such as habitat loss for native species 
including the Great Indian Horned Owl, spotted deer, mongooses, bonnet monkeys, and golden 
jackals [14].  

Additionally, the degradation of forest may lead to an increase in city temperature and air 
pollution levels [63,64], e.g., recent studies have revealed Chennai as one of the highly air polluted 
cities in India [65]. 

The obtained KC for the LULC maps of 1991, 2003, and 2016 were 0.92, 0.97, and 0.92, respectively. 
These values indicate a high accuracy level for landuse and landcover classification [9,56]. 

The landscape metrics indicate that the urban class area (CA) has increased by 98.72% and 
45.20% between 1991 and 2003, and 2003 and 2016, respectively (Table 4). The NP for urban 
settlements has shown an associated increase of 22.49% and 37.74% between 1991 and 2003 and 2003 
and 2016, respectively. These values indicate a high level of land fragmentation.  

The LPI increased by 127% between 1991 and 2003. This high value due to the large urban 
patches indicates a compact urban growth for the centre, but fragmented and dispersed urban growth 
in the fringe areas, i.e., US. LPI continued to increase from 2003 to 2016 (39.21%), confirming the 
continuation of US process for Chennai. 

The CLUMPY in 1991 was −1, showing a maximally disaggregated urban patch. However, these 
values were 0.6 and 0.8 in 2003 and 2016, respectively, indicating an aggregation or clumpiness of 
urban patches. Likewise, FRAC_AM increased between 1991 and 2003 as a result of contained urban 
growth with reasonable shape complexity (the values for this metric were marginally greater than 1). 
Nevertheless, the FRAC_AM value between 2003 and 2016 was 1.83 (increased by 44.09%), indicating 
that the landscape had a higher range of urban growth and more dispersed urban sprawl than the 
1991–2003 period.. The decrease in the CONTAG value between 1991 and 2003 indicates a high 
fragmentation of the landscape. However, this value increased slightly between 2003 and 2016 
(4.10%) showing that the fragmented urban area has become denser than the 1991–2003 period.  

4.2. Change in US Level in Chennai  

The Renyi’s entropy value for the Chennai was 0.4 in 1991, indicating rather moderately 
aggregated urban settlements, i.e., negligible US level. However, in 2003 the entropy value reached 
the threshold value of 0.5, indicating the initiation of dispersion, i.e., US, in Chennai [35,57]. In 2016, 
the entropy value was 0.9, which indicates a very high level of US in the periphery of Chennai. This 
high level of US in 2016 may directly relate to the haphazard encroachment of the urban fringe. This, 
in further, relates to the rapid population growth and land scarcity in the city centre, which were 
claimed to be the major reasons behind the US in the peripheral districts of Chennai [1]. 

The high level of US adds strain to urban infrastructure, such as sewage water disposal and 
waste management, and directly lead to urban water and soil pollution [66]. Recent studies showed 
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that the threat of pollution of the Cooum river [67] and the coastal zones in Chennai have been 
increased towards 2016 due to the uncontrolled discharge of untreated sewage wastes from domestic 
and commercial activities, which may be linked to the high level of US observed in our study [37]. 
Moreover, the high level of US hampers waste management, e.g., 0.71 kg of daily garbage per capita 
in Chennai are currently incinerated at Perungudi and Kodungaiyu dump yards [68]. This creates 
severe soil and air pollution, and causes several health hazards, including respiratory disorders and 
cancers, for the city residents [38]. 

4.3. US Extent and Level Prediction for 2027 

The obtained Klocation and Kquantity for comparison between the modelled and classified LULC for 
2016 were 84% and 81%, respectively. These values indicate a high level of accuracy for the calibrated 
UEPM for urban extent prediction for 2016 in Chennai [26,34,58,59]. 

The predicted LULC for 2027 is shown in Figure 5. It shows an increase in the projected urban 
area of 12,805.58 ha (22.06%) from 2016 (Table 5). The vegetation and agriculture classes are predicted 
to decrease to 3961.66 ha (66.29%) and 701.35 ha (87.44%), respectively. This is associated with a 
transition of 4883.09 ha agricultural lands and 7792.9 ha vegetation areas to urban areas, between 
2016 and 2027 (Figure 6 and Table 5). The increase of bare land i.e., 1570.12 ha (57.31%) will occur as 
a consequence of the transitions from vegetation, water bodies, and agriculture land (Table 5). Thus, 
the bare land will increase at the expense of vegetation and agricultural lands and will potentially 
lead to the loss of important ecosystem services. 

 
Figure 5. Simulated LULC map for the year 2027. 

Table 5. Comparison of the LULC areas of three study periods, i.e., 1991, 2003 and 2016, with the 
predicted LULC areas of Chennai for 2027. 

Land-Use Class 1991 2003 2016 2027 
Forecasted LULC in 2027

ha % 
Built-up/urban 20,110.61 39,965.51 58,030.42 70,836.76 12,805.58 22.06 

Agriculture 9387.15 22,857.47 5584.44 701.35 −4883.09 −87.44 
Vegetation 21,677.89 9296.41 11,754.56 3961.66 −7792.9 −66.29 

Water bodies 5320.48 6772.27 6120.62 5420.62 −700 −11.43 
Bare land 25,992.02 3596.48 998.10 1570.12 572.02 57.31 

Total 82,488.16 82,488.16 82,488.16 82,488.16 - - 
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The urban areas covered 70.35% of the total landscape in 2016, which is predicted to increase to 
85.87% in 2027 (Figure 6). The Renyi’s entropy value of the predicted urban area in 2027 is expected 
to be 1.7, which is above the range value of 1 [35], indicating a tremendous level of US. Overall, the 
extent and level of US for the coming 12 years is expected to increase at an alarming rate and cause 
degradation of urban ecosystem services. 

 

Figure 6. Urban sprawl, i.e., changes in urban extents between 1991–2027. 

5. Concluding Remarks 

We found fragmented urban growth in the outskirts of Chennai city, with the transformation of 
vegetation cover and agriculture land into built-up settlements. This alarming extent and level of US 
will have adverse impacts on the natural resources and land of Chennai. The combined application 
of geographic information systems, remote sensing, urban change modelling, landscape metrics and 
entropy measures proved to be a useful and efficient approach for our assessment and modelling US 
for the Chennai city. Consequently, this study contributes with indicators and metrics to monitor this 
US in Chennai. It also provides relevant information for sustainable urban growth and efficient urban 
planning as well as for mitigation of environmental impacts in Chennai. To conclude, our study 
provides quantitative measures for urban planning and management authorities for mitigating 
social-ecological consequences of US and preventing loss of urban ecosystem services. 
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